B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

Σχετικά έγγραφα
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 65 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 2004 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

: :

Θέματα κι επίσημες λύσεις 2006 εως 2014 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

Θέματα κι επίσημες λύσεις 2006 εως 2015 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Θαλής Α' Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

x , οπότε : Α = = 2.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

Ευκλείδης Β' Γυμνασίου Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=

B τάξη Γυμνασίου : : και 4 :

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

f(x - 2) + f(x + 2) = 3 f(x).

Α={1,11,111,1111,..., }

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

: :

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

Θαλής Β' Γυμνασίου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ


ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

: :

Επαναληπτικές ασκήσεις για το Πάσχα.

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

: :

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

Β ΓΥΜΝΑΣΙΟΥ. + και. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hms.gr

Έκδοση 1 η (διορθωμένη): Μάιος Συγγραφική Ομάδα. Ελληνική Μαθηματική Εταιρεία. Παράρτημα Λάρισας. Επαναληπτικές Ασκήσεις.

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Θέματα μεγάλων τάξεων

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 B τάξη Γυμνασίου Πρόβλημα Να υπολογίσετε την τιμή της αριθμητικής παράστασης ( 00 :8 00) 00 : ( 8 ) 76 3 007 Α= + + + + + + Πρόβλημα Οι μαθητές ενός Γυμνασίου μπορούν να παραταχθούν σε εξάδες, σε οκτάδες και σε δεκάδες, χωρίς να περισσεύει κανείς Τα πλήθη των μαθητών των τάξεων Α, Β και Γ είναι αριθμοί ανάλογοι προς τους αριθμούς 5, 4 και 3, αντίστοιχα Αν το πλήθος των μαθητών του Γυμνασίου είναι αριθμός μεγαλύτερος του 300 και μικρότερος του 400, να βρεθεί το πλήθος των μαθητών κάθε τάξης Πρόβλημα 3 Ένας έμπορος αγόρασε 00 κιλά φράουλες με τιμή αγοράς 3 ευρώ το κιλό Κατά τη μεταφορά είχε απώλεια 0% στα κιλά που αγόρασε Πόσο πρέπει να πουλήσει το κιλό τις φράουλες ώστε να έχει κέρδος 0% επί της τιμής της αγοράς; Πρόβλημα 4 Στο τραπέζιο ΑΒΓΔ του διπλανού σχήματος η μεγάλη βάση ΒΓ είναι διπλάσια της μικρής βάσης ΑΔ Αν το εμβαδόν του τραπεζίου είναι300cm και το σημείο Κ είναι το συμμετρικό του Α ως προς την ευθεία ΒΓ Β (δηλαδή η ΒΓ είναι μεσοκάθετος της ΑΚ), να υπολογίσετε: (α) το εμβαδόν του τριγώνου ΑΒΔ και (β) το εμβαδόν του τετραπλεύρου ΑΒΚΓ Α Κ E Δ Γ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Γ τάξη Γυμνασίου Πρόβλημα Να υπολογίσετε την τιμή των παραστάσεων: 8 4 ( x ) ( y ) x( y ) y( x ) Α= : 4 + 4 :, B= 3 3 4 + 3 Για ποιες τιμές του x αληθεύει η ανίσωση: Α >Β Πρόβλημα Στο παρακάτω σχήμα το τρίγωνο ε Α Ζ δ ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και ΒΑΓ ˆ = 40 Η ευθεία ε είναι παράλληλη προς την πλευρά ΒΓ και η ευθεία δ είναι μεσοκάθετη της πλευράς ΑΓ (α) Να υπολογίσετε τη γωνία ΖΓ ˆ x, (β) Να αποδείξετε ότι ΚΑ = ΑΖ Πρόβλημα 3 (α) Να αποδείξετε ότι, αν ένας φυσικός αριθμός είναι τετράγωνο φυσικού αριθμού, τότε το τελευταίο του ψηφίο ανήκει στο σύνολο Σ= { 0,, 4,5, 6,9} (β) Να βρεθεί πενταψήφιος φυσικός αριθμός της μορφής A = aaabb, όπου ab, ψηφία με a 0, ο οποίος είναι τετράγωνο φυσικού αριθμού, περιττός και διαιρείται με το 9 Κ Β E Γ x Πρόβλημα 4 Στο διπλανό σχήμα δίνεται Α ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και ΒΑΓ ˆ = 30 Η ΑΔ είναι παράλληλη προς τη ΒΓ και η ΓΔ είναι κάθετη προς την ΟΓ Ο (α) Να υπολογίσετε το εμβαδόν του κυκλικού τομέα ΟΑΕΓ συναρτήσει της πλευράς ΒΓ = α του τριγώνου ΑΒΓ (β) Να υπολογίσετε το εμβαδόν του Β Μ τριγώνου ΑΒΓ συναρτήσει της πλευράς ΒΓ = α (γ) Να αποδείξετε ότι το τρίγωνο ΑΓΔ είναι ισοσκελές Δ Ε Γ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Α τάξη Λυκείου Πρόβλημα Δύο παιδιά συζητούν για αλγεβρικά προβλήματα Ο Γιάννης λέει στη Μαρία: Έχω σκεφτεί δύο ακέραιους αριθμούς x και y που είναι τέτοιοι ώστε, αν μειώσω τον x κατά 50 και αυξήσω τον y κατά 40, τότε το γινόμενό τους δεν μεταβάλλεται Η Μαρία ρωτάει το Γιάννη: Αν αυξήσεις τον αριθμό x κατά 00 και μειώσεις τον αριθμό y κατά 0, τότε πάλι το γινόμενό τους δεν μεταβάλλεται; Ο Γιάννης απαντάει: Πράγματι, αυτό ισχύει Η Μαρία καταλήγει: Τότε γνωρίζω τους αριθμούς που σκέφθηκες Έχει δίκιο η Μαρία; Εσείς μπορείτε να βρείτε τους αριθμούς που σκέφθηκε ο Γιάννης; Πρόβλημα Αν α, βγ R, με ( α β)( β γ)( γ α) 0 τότε να υπολογίσετε την τιμή της παράστασης: ( α )( α + ) ( β )( β + ) ( γ )( γ + ) Α= + + ( α β)( α γ) ( β α)( β γ) ( γ α)( γ β) Πρόβλημα 3 Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Α= ˆ 45 Φέρουμε ευθεία ε κάθετη προς την ΑΓ στο Α η οποία τέμνει την προέκταση της ΓΒ στο Ε Πάνω στην ευθεία ε παίρνουμε σημείο Δ τέτοιο ώστε ΑΔ = ΑΓ με το σημείο Α να βρίσκεται μεταξύ των Ε και Δ Να υπολογίσετε συναρτήσει της πλευράς ΑΓ= β : (α) το εμβαδόν του τετραπλεύρου ΑΒΓΔ, (β) το μήκος του ευθύγραμμου τμήματος ΑΕ Πρόβλημα 4 Να βρεθούν οι θετικοί ακέραιοι αριθμοί x,y που ικανοποιούν τη σχέση: 6 3 3 4 x +x y +3x + y +3y - 40 = 0 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Β τάξη Λυκείου Πρόβλημα Να βρεθούν οι πραγματικοί αριθμοί x, y που ικανοποιούν τη σχέση: 6 4 3 4 x + x - x - x y -y +y +=0 Πρόβλημα Να βρεθούν όλες οι δυνατές τιμές των θετικών μονοψήφιων ακεραίων αριθμών κλμ,,, για τους οποίους η δευτεροβάθμια εξίσωση κx + λx+ μ = 0 έχει δύο ακέραιες ίσες λύσεις Πρόβλημα 3 Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ και ημιευθεία Αx // ΒΓ(η Α x βρίσκεται στο ίδιο ημιεπίπεδο με το σημείο Γ ως προς την ευθεία ΑΒ) Στην ημιευθεία Α x θεωρούμε τα σημεία Δ και Ε έτσι, ώστε το τετράπλευρο ΒΓΔΕ να είναι ρόμβος (το σημείο Ε βρίσκεται ανάμεσα στο Α και στο Δ ) Στο σημείο Δ θεωρούμε την κάθετη ευθεία στη ΔΓ που τέμνει την προέκταση της πλευράς ΒΑ στο Ζ (α) Να αποδειχθεί ότι το τρίγωνο ΔΕΖ είναι ισόπλευρο (β) Να αποδειχθεί ότι το Ε είναι έγκεντρο του τριγώνου ΑΓΖ Πρόβλημα 4 * Αν xyz,,, να λυθεί το σύστημα: x y+ yz = xz 3 70 7 yz+ 4zx = 56xy + = 5z x 6xy 5 yz ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Γ τάξη Λυκείου Πρόβλημα Έστω ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Α= ˆ 30 Στα σημεία Α και Γ θεωρούμε τις εφαπτόμενες του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ που τέμνονται στο Δ (α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΑΓΔ είναι όμοια (β) Να υπολογίσετε το εμβαδόν του τετραπλεύρου ΑΒΓΔ συναρτήσει της πλευράς ΒΓ = α του τριγώνου ΑΒΓ Πρόβλημα (α) Να προσδιοριστούν οι παράμετροι λ, μ έτσι ώστε ο αριθμός να είναι ρίζα των εξισώσεων: 3 λx μ x μx x λ + 4 = 0 και 4 = 0 (β) Για τις τιμές των λ, μ που βρήκατε στο ερώτημα (α), να λύσετε την εξίσωση 3 λx ( μ+ 4) x 7 = μx 4x λ 8 Πρόβλημα 3 Αν για τη συνάρτηση f : ισχύει: f f( x) f( y) = f f( x) y, για κάθε, τότε να αποδείξετε ότι η συνάρτηση f είναι περιττή xy, Πρόβλημα 4 Για κάθε τρεις μη μηδενικούς πραγματικούς αριθμούς ab, και διαφορετικοί μεταξύ τους ανά δύο, να αποδείξετε ότι: a+b b+c c+a + + a-b b-c c-a c, που είναι ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007 Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007 Αν ω είναι ο αριθμός των μαθητών του Γυμνασίου, τότε ο ω είναι ΕΚΠ 6,8,0 = 0, κοινό πολλαπλάσιο των αριθμών 6, 8 και 0 Επειδή [ ] έπεται ότι ω { 0, 40,360, 480, } και αφού 300 ω 400 < <, θα είναι ω = 360 Αν x, yz, είναι ο αριθμός των μαθητών της Α, Β και Γ τάξης, αντίστοιχα, τότε θα έχουμε x y z = = = λ και x+ y+ z = 360 5 4 3 Άρα είναι x= 5 λ, y = 4 λ, z = 3λ και 5λ+ 4λ+ 3λ = 360 λ = 360 λ = 30 Άρα είναι: x= 5 30 = 50, y = 4 30 = 0, z = 3 30 = 90 3 Ο έμπορος πλήρωσε για την αγορά 00 3 = 600 ευρώ 0 Η απώλεια του σε κιλά ήταν 00 = 0 κιλά, οπότε του έμειναν 00 00 0=80 κιλά Για να έχει κέρδος 0% επί της τιμής αγοράς πρέπει να εισπράξει 0 600 + 600 = 70 ευρώ 00 Άρα πρέπει να πουλήσει το κιλό 70 :80 = 4 ευρώ 4 (α) Αν x =ΒΓ, y =ΑΔ και ΑΕ = υ, τότε x = y και ( x+ y) υ Ε =Ε= ( ΑΒΓΔ) 3y υ = Ε y υ = y υ = 00cm 3 Άρα έχουμε Ε( ΑΒΔ ) = y υ = 00 cm = 00 cm (β) ( ΑΒΚΓ ) = ( ΑΒΓ ) = y υ = ( y υ) = 00 = 400 cm

Διαφορετικά Το τετράπλευρο ΑΒΚΓ έχει καθέτους διαγώνιους, οπότε έχει εμβαδόν ( ΑΒΚΓ ) = ΒΓ ΑΚ = y υ = ( y υ) = 00 = 400 cm

3 Γ ΓΥΜΝΑΣΙΟΥ Α= : 4 + 4 : = :4 + 4 : 8 4 8 4 4 = :( ) 4 + : = ( : + 4 ) : 4 4 = + 4 : = 3:6= 8 4 8 4 ( x ) ( y ) x( y ) y( x ) x 3 3y ( xy x yx 3y) B= 3 3 4 + 3 = + + = x 3y+ 5 xy+ x+ xy+ 3y = x+ 5 Α>Β > x+ 5 x> 7 x< 7 (α) ΖΓ ˆx = ΑΖΓ ˆ (ως εντός εναλλάξ στις παράλληλες ΒΓ και ε ) Επειδή η δ είναι μεσοκάθετη της ΑΓ το τρίγωνο ΑΓΖ είναι ισοσκελές με ΖΓΑ ˆ = ΖΑΓ ˆ Όμως, από την παραλληλία των ευθειών ε και ΒΓ προκύπτει ότι ΖΑΓ ˆ = Γ ˆ Από το ισοσκελές τρίγωνο ΑΒΓ με Α= ˆ 40 προκύπτει ότι 80 ˆ ˆ ˆ Α 80 40 Β=Γ= = = 70 Άρα έχουμε ΖΓΑ ˆ = ΖΑΓ ˆ = Γ ˆ = 70, οπότε θα είναι ˆ ΑΖΓ = 80 70 = 40 ΖΑ ˆ x = 40 (β) Επειδή η δ είναι μεσοκάθετη της ΑΓ, το τρίγωνο ΚΑΓ είναι ισοσκελές με ΚΑ = ΚΓ, οπότε η ΚΕ είναι η διχοτόμος της γωνίας ΑΚΓ Άρα έχουμε AKZ ˆ =ΓΚΖ ˆ Επειδή είναι ε ΒΓ θα έχουμε AZΚ ˆ =ΓΚΖ ˆ, οπότε θα είναι και AKZ ˆ =ΑΖΚ ˆ, οπότε το τρίγωνο ΚΑΖ είναι ισοσκελές με ΚΑ = AΖ 3 (α) Από τον κανόνα πολλαπλασιασμού δύο φυσικών αριθμών έπεται ότι το τελευταίο ψηφίο του γινομένου τους είναι το τελευταίο ψηφίο του γινομένου των ψηφίων των μονάδων τους Θεωρώντας τα τετράγωνα των μονοψήφιων φυσικών αριθμών διαπιστώνουμε ότι αυτά λήγουν σε 0,, 4, 5, 6, 9, οπότε το τελευταίο ψηφίο κάθε τετραγώνου φυσικού αριθμού ανήκει Σ= 0,, 4,5, 6,9 στο σύνολο { } (β) Σύμφωνα με το πρώτο ερώτημα θα πρέπει b { 0,, 4,5, 6,9} και αφού ο αριθμός είναι περιττός πρέπει b {, 5, 9} Επειδή ο Α διαιρείται με το 9 πρέπει να ισχύει ότι: 3a+ b= πολλαπλάσιο του 9 ()

4 Για b = λαμβάνουμε 3a + = πολ9, αδύνατο Για b = 5 λαμβάνουμε 3a + 0 = πολ9, αδύνατο Για b = 9 λαμβάνουμε 3a + 8 = πολ9, οπότε προκύπτει ότι a { 3, 6,9} Άρα είναι Α= 33399 ή Α = 66699 ή Α = 99999 4 (α) Παρατηρούμε ότι ΒΟΓ ˆ = Α ˆ = 60, οπότε το τρίγωνο ΟΒΓ είναι 80 30 ισόπλευρο και ισχύει ότι R =ΒΓ= α Επιπλέον ˆ ˆ Β=Γ= = 75 Άρα είναι ΑΟΓ ˆ = 75 = 50, οπότε θα έχουμε 50 5πα E κτομ έ α ( ΟΑΕΓ ) = πα = 360 (β) Επειδή είναι ΔΑΓ=Γ= ˆ ˆ 75 (εντός εναλλάξ στις παράλληλες ΑΔ και ΒΓ με τέμνουσα την ΑΓ) και ΑΓΔ= ˆ 90 ΟΓΑ= ˆ 90 ΟΑΓ=ΔΑΓ= ˆ ˆ 75, τα τρίγωνα ΑΒΓ και ΔΑΓ είναι όμοια (γ) Επειδή είναι ΟΑ ΑΔ και ΑΔ ΒΓ θα είναι και ΟΑ ΒΓ, οπότε η ΟΑ περνάει από το μέσο Μ της πλευράς ΒΓ Από το τρίγωνο ΟΜΓ έχουμε α 3α α 3 ΟΜ = ΟΓ ΜΓ ΟΜ = α ΟΜ = ΟΜ = 4 3 Άρα είναι ΑΜ = ΑΟ + ΟΜ = α + και α 3 α ( + 3) ( ΑΒΓ ) = α α + = 4

5 Α ΛΥΚΕΙΟΥ Σύμφωνα με τη συζήτηση που είχε ο Γιάννης με τη Μαρία, αν x, y είναι οι αριθμοί, τότε θα ισχύουν: xy = ( x 50)( y + 40) 40x 50y = 000 x= 00 xy = ( x + 00)( y 0) 0x+ 00y = 000 y = 0 Το ελάχιστο κοινό πολλαπλάσιο των παρανομαστών είναι α β β γ γ α, 0 οπότε έχουμε ( β γ)( α ) ( γ α)( β ) ( α β)( γ ) Α= + + = ( α β)( β γ)( γ α) ( α β)( β γ)( γ α) ( α β)( β γ)( γ α) ( β γ) α + ( γ α) β + ( α β) γ + ( β γ + γ α + α β) = = ( α β)( β γ)( γ α) ( β γ) α + βγ( β γ) α( β γ ) = = ( α β)( β γ)( γ α) ( β γ)( α + βγ α( β + γ)) ( α β)( α γ) = = = = ( α β)( β γ)( γ α) ( α β)( γ α) 3 Δ Α 45 β Ζ Ε Β Γ (α) Το τρίγωνο ΑΓΔ είναι ορθογώνιο και ισοσκελές, οπότε ΑΓΔ ˆ = 45 Άρα είναι ˆ ΑΓΔ = 45 = ΒΑΓ ˆ, οπότε ΑΒ ΓΔ, αφού τεμνόμενες από την ΑΓ σχηματίζουν δύο εντός εναλλάξ γωνίες ίσες Άρα το τετράπλευρο ΑΒΓΔ είναι τραπέζιο με βάσεις ΑΒ = β, ΓΔ β ΑΖ = = Άρα έχει εμβαδόν ΓΔ = β + β = β και ύψος ( ) β + β β β + ΑΒΓΔ = = 4

6 (β) Επειδή είναι ΑΒ ΓΔ τα τρίγωνα ΕΑΒ και ΕΔΓ είναι όμοια, οπότε, αν ΕΑ = x, θα έχουμε: x ΕΔ x x+ β = = x = x+ β x( ) = β ΑΒ ΔΓ β β β x = = β + 4 Η δεδομένη σχέση γράφεται διαδοχικά: Οι αριθμοί όμως x 6 3 4 3 x + x y + y + 3x + 3y = 40 ( x 3 y ) ( x 3 y ) + + 3 + + = 4 ( x 3 y ) ( x 3 y ) 3 + + + + = 4 + y + και x + y +, είναι θετικοί ακέραιοι με 3 3 x + y + < x 3 + y + και γινόμενο 4 = 4 = = 3 4 = 6 7 Επομένως θα πρέπει: 3 3 x + y + = και x + y + = 4 () x x + y + = και x 3 + y + = 3 και x 3 + y + = () 3 + y + = 4 (3) 3 3 3 x + y + = 6 και x + y + = 7 (4) Προφανώς οι σχέσεις (),(),(3) είναι αδύνατες και από τη σχέση (4), έχουμε: 3 x + y = 5 που αληθεύει για x = και y = Διαφορετικά, θα μπορούσαμε να θεωρήσουμε το τριώνυμο 3 ω + 3ω 40= 0, όπου ω = x + y, η οποία, αφού xy>, 0 έχει τη μοναδική λύση x μόνο για x = και y = + y = 5, που αληθεύει 3

7 Β ΛΥΚΕΙΟΥ Ισοδύναμα από την δεδομένη ισότητα, έχουμε: 6 3 4 4 4 x x + + x x y + y + y y + = 0 3 ( x ) + ( x y ) + ( y ) = 0 ( x 3 0 και x y 0 και y 0) = = = ( x και y ) ή ( x και y ) = = = = Για να έχει η εξίσωση διπλή λύση, πρέπει η διακρίνουσά της να είναι μηδέν Δ=0 λ 4κμ = 0 λ = 4κμ -λ Στη περίπτωση αυτή η διπλή λύση είναι: x = x = κ Ο αριθμός 4κμ είναι άρτιος Άρα και ο λ είναι άρτιος, οπότε ο λ είναι άρτιος Οι δυνατές τιμές που μπορεί να πάρει ο λ (δεδομένου ότι είναι μονοψήφιος θετικός ακέραιος) είναι: λ = ή λ = 4 ή λ = 6 ή λ = 8 Αν λ = τότε: 4= 4κμ κμ =, οπότε οι δυνατές τιμές για τα κ και μ είναι κ = και μ = Αν λ = 4 τότε: 6 = 4κμ κμ = 4, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 4 ) ή ( κ = 4 και μ = ) ή ( κ = και μ = ) Αν λ = 6 τότε: 36 = 4κμ κμ = 9, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 9) ή ( κ = 9 και μ = ) ή ( κ = 3 και μ = 3) Αν λ = 8 τότε: 64 = 4κμ κμ = 6, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 8 ) ή ( κ = 8 και μ = ) ή ( κ = 4 και μ = 4 ) Άρα οι δυνατές τιμές για τη διατεταγμένη τριάδα ( κ, λμ, ) είναι: (,,), (,4,4), (,4,), (, 6, 9), (3,6,3), (,8,8), (4,8,4) Οι άλλες περιπτώσεις απορρίπτονται, διότι δεν δίνουν ακέραια λύση Οι εξισώσεις που προκύπτουν, με την αντίστοιχη διπλή λύση είναι: x + x+ = 0 με διπλή λύση x = x =, x x + 4x+ 4= 0 με διπλή λύση x = x =, + 6x+ 9= 0 με διπλή λύση x = x = 3 3 (α) Εφόσον το ΒΓΔΕ είναι ρόμβος, θα ισχύουν οι ισότητες: ΒΓ = ΓΔ = ΔΕ = ΒΕ ()

8 Θεωρούμε ΑΛ και ΕΚ κάθετες στη ΒΓ Τότε ΑΛ = ΕΚ (διότι ΑΛΚΕ είναι ορθογώνιο παραλληλόγραμμο) ΒΓ Η ΑΛ είναι διάμεσος στο ορθογώνιο τρίγωνο ΑΒΓ, οπότε ΑΛ = () ΒΓ ΒΕ Άρα ΑΛ = ΕΚ = = Δηλαδή στο ορθογώνιο τρίγωνο ΒΕΚ, έχουμε: ΒΕ ΕΚ = οπότε Β ˆ = 30 o Από το ρόμβο ΒΓΔΕ έχουμε Β ˆ ˆ =Δ = 30 o και επειδή ΓΔΖ ˆ = 90 o έχουμε τελικά ότι: Δ ˆ = 60 o () Το τετράπλευρο ΑΓΔΖ είναι εγγράψιμο (διότι Α=Δ= ˆ ˆ 90 o ) και η ΑΔ είναι διχοτόμος της γωνίας ΓΑΖ ˆ Άρα το Δ είναι μέσο του τόξου ΓΖ, οπότε () ΔΓ = ΔΖ = ΔΕ (3) Από τις σχέσεις () και (3) συμπεραίνουμε ότι το τρίγωνο ΔΕΖ είναι ισόπλευρο (β) Προφανώς η ΑΕ είναι διχοτόμος της γωνίας ΓΑΖ ˆ Αρκεί να αποδείξουμε ότι η ΖΕ είναι διχοτόμος της γωνίας ΓΖΑ ˆ Εφόσον το τρίγωνο ΔΕΖ είναι ισόπλευρο, θα ισχύει ΕΖ=ΕΒ και επειδή Β ˆ = 5 o, θα ισχύει: Ζ ˆ = 5 o (4)

9 Από το εγγράψιμο τετράπλευρο ΑΓΔΖ έχουμε ΑΖΓ ˆ = Δ ˆ = 30 o, οπότε θα είναι Ζ ˆ = 5 o 4 Για xyz 0 το σύστημα είναι ισοδύναμο με το 3xy yz 7yz 4zx 5zx 6xy + = 70, + = 56, + = 5, z x x y y z το οποίο, αν θέσουμε xy yz zx = u, = v, = w z x y γίνεται 3u+ v = 70 () 7v+ 4w= 56 () 5w+ 6u = 5 (3) Με πρόσθεση κατά μέλη των τριών εξισώσεων λαμβάνουμε 9 u+ v+ w = 378 u+ v+ w= 4 (4) Λόγω της (4) η εξίσωση () γίνεται 7v+ 4 4 u v = 56 4u+ 3v= 88 (5) Από τις () και (5) λαμβάνουμε u =, v= 3, οπότε από την (4) προκύπτει ότι w = 8 Άρα έχουμε το σύστημα xy yz zx =, = 3, = 8 (6) z x y από το οποίο με πολλαπλασιασμό κατά μέλη των τριών εξισώσεων έχουμε xyz = 83 (7) Από τις (6) και (7) λαμβάνουμε 3x = 8 3 x = 6 x=± 4 8y = 8 3 y = 64 y =± 8, z = 8 3 z = 56 z =± 6 οπότε προκύπτουν συνολικά 8 τριάδες που είναι λύσεις του συστήματος: xyz,, = 4,8,6 ή 4, 8, 6 ή 4,8, 6 ή 4, 8,6 ( ) ( ) ( ) ( ) ή 4, 8, 6 ή 4,8,6 ή 4, 8,6 ή 4,8, 6

0 Γ ΛΥΚΕΙΟΥ Α Δ Ο Β Μ Γ (α) Τα τρίγωνα ΑΒΓ και ΔΑΓ είναι ισοσκελή (ΔΑ = ΔΓ, ως εφαπτόμενες από το Δ στον περιγεγραμμένο κύκλο) και έχουν ˆΓ =ΓΑΔ, ˆ ως εντός εναλλάξ Άρα είναι όμοια (β) Παρατηρούμε ότι ΒΟΓ ˆ = Α ˆ = 60, οπότε το τρίγωνο ΟΒΓ είναι ισόπλευρο και ισχύει ότι R =ΒΓ= α Έστω η ΑΟ τέμνει τη ΒΓ στο σημείο Μ Επειδή είναι ΟΑ = ΟΒ και ΑΒ = ΑΓ η ΟΑ είναι η μεσοκάθετη της ΒΓ Άρα είναι ΑΔ ΒΓ και το τετράπλευρο ΑΒΓΔ είναι τραπέζιο 3 Επιπλέον από το τρίγωνο ΑΜΓ έχουμε ΑΜ = α + και α 3 α ΑΓ = α + + ΑΓ = α + 3 4 Επειδή τα ισοσκελή τρίγωνα ΑΒΓ και ΔΑΓ είναι όμοια ( ˆΓ =ΓΑΔ), ˆ θα έχουμε ΑΔ ΑΓ ΑΓ = ΑΔ= ΑΔ= α ( + 3 ) ΑΓ ΒΓ ΒΓ Άρα είναι α + α + 3 α + 3 α 9 + ΑΒΓΔ = = 5 3 4 (α) Για να είναι το κοινή ρίζα των δύο εξισώσεων πρέπει και αρκεί: 8λ ( μ + 4) = 0 λ = 4μ 4 λ = 0 μ = 3 (β) Για λ= και μ=3 η δεδομένη εξίσωση γίνεται: 3 x 7x 7 = 3x 4x 4 8 Όμως έχουμε τις παραγοντοποιήσεις

3 x 7x = x x + 4x+ 3x 4x 4= x 3x+ οπότε η εξίσωση είναι ισοδύναμη με την εξίσωση x + 4x+ 7 =, x, 3x + 8 3 6x 9x 6 = 0, x, 3 3 x= ή x=, x, 6 3 3 x = 6 3 Για x= y = 0 από τη δοσμένη συναρτησιακή σχέση () έχουμε: f(0) f ( f(0) ) f f(0) f(0) = f f(0) 0 = () Από τη δοσμένη συναρτησιακή σχέση () θέτοντας όπου y το f ( x ) έχουμε: f ( f( x) f ( f( x) )) = f ( f( x) ) f( x) (3) Αν τώρα στη (3) θέσουμε x = 0 έχουμε: f ( f f ( f )) = f ( f ) f και σε συνδυασμό με την () καταλήγουμε Θέτοντας στην () όπου x = 0, έχουμε: (0) (0) (0) (0) f f(0) = f(0) = 0 ( (0) ) = ( (0)) και δεδομένου ότι f f f y f f y f f(0) = f(0) = 0, καταλήγουμε στη σχέση f f( y) = y (4) Θέτοντας στην () όπου y το x έχουμε: f ( f( x) f( x) ) = f ( f( x) ) x f (0) = f ( f( x) ) x f ( f( x) ) = x (5) Αντικαθιστώντας στην (4) όπου y το f ( x ), έχουμε: f f ( f( x) ) = f( x) και σε συνδυασμό με την (5), καταλήγουμε στη σχέση f ( x) = f( x), για κάθε x, δηλαδή η f είναι περιττή 4 Αν θέσουμε a+ b x =, τότε λαμβάνουμε a b a x+ = () b x

b c c a (είναι x, αφού b 0 ) Ομοίως, αν θέσουμε y = +, z = + b c c a λαμβάνουμε b y+ = c y () c z+ και = a z (3) Από τις (), () και (3) με πολλαπλασιασμό κατά μέλη λαμβάνουμε ( x+ )( y+ )( z+ ) abc = = xy + yz + zx = ( x )( y )( z ) bca Όμως έχουμε 0 x+ y+ z = x + y + z + xy+ yz+ zx = x + y + z x y z 0 x + y + z + +