ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
|
|
- Πολύδωρος Γιαννακόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: info@hmsgr, wwwhmsgr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 05 4 Απριλίου 05 Θέματα μικρών τάξεων Πρόβλημα Αν x, yz, είναι θετικοί πραγματικοί αριθμοί, να αποδείξετε ότι: ( 3x + y)(3y + z)(3z + x) 64xyz Πότε ισχύει η ισότητα; Θα χρησιμοποιήσουμε την ανισότητα αριθμητικού γεωμετρικού μέσου για 4 θετικούς όρους a+ a + a3 + a4 4 aaaa 3 4, 4 όπου η ισότητα, όταν a = a = a3 = a4 Για κάθε xy>, 0, έχουμε 3x+ y x+ x+ x+ y = x y 3x+ y 4 x y () 4 4 3y+ z y+ y+ y+ z = yz 3y+ z 4 yz () 4 4 3z+ x z+ z+ z+ x = zx 3z+ x 4 zx (3) 4 4 Με πολλαπλασιασμό κατά μέλη των (), () και (3) κατά μέλη λαμβάνουμε ( )( )( ) 3x + y 3y+ z 3z+ x 4 x y 4 y z 4 z x = 64 x y z = 64 xyz Η ισότητα στις ανισότητες (), () και (3) ισχύει όταν x = y, y = zκαι z = x, αντίστοιχα, οπότε και στην τελευταία ανισότητα η ισότητα ισχύει όταν x = y = z Πρόβλημα Θεωρούμε οξυγώνιο τρίγωνο ΑΒΓ με ΑΒ < ΑΓ εγγεγραμμένο σε κύκλο κέντρου Ο Τα ύψη ΒΔ, ΓΕ τέμνονται στο Η Αν Ο είναι το περίκεντρο του τριγώνου ΒΗΓ, να αποδείξετε ότι το ΑΗΟ Ο είναι παραλληλόγραμμο Παρατηρούμε ότι το Ο είναι στη μεσοκάθετη ΟΜ του ΒΓ Επιπλέον ισχύει ότι ΑΗ // ΟΟ (ως κάθετες στη ΒΓ ), οπότε αρκεί να αποδείξουμε ότι ΑΗ = ΟΟ Όμως είναι γνωστό ότι ΑΗ = ΟΜ, οπότε αρκεί να αποδείξουμε ότι ΟΜ = ΜΟ
2 To τετράπλευρο ΕΑΔΗ είναι εγγράψιμο, οπότε εγγεγραμμένη στον περιγεγραμμένο κύκλο του ΒΗΓ και η ΒΗΓ = 80 Α Τώρα η ΒΗΓ είναι ΒΟ Γ είναι επίκεντρη Επομένως ΒΟ Γ = Α Επομένως τα ισοσκελή τρίγωνα ΒΟΓ, ΒΟΓ έχουν τις γωνίες της κορυφής ίσες, άρα έχουν όλες τις γωνίες ίσες και έχουν και κοινή τη ΒΓ, οπότε είναι ίσα Επομένως η ΒΓ είναι μεσοκάθετος της ΟΟ, οπότε Μ μέσο του Ο Ο, οπότε ΟΜ = ΜΟ Πρόβλημα 3 Σχήμα Να αποδειχθεί ότι δεν υπάρχει θετικός ακέραιος n τέτοιος, ώστε οι αριθμοί ( ) ( n 3 ) n + + να είναι ταυτόχρονα τέλεια τετράγωνα Έστω A= ( n+ ) n και B ( n 3 ) n + = + Διακρίνουμε τις περιπτώσεις: n + n και Αν άρτιος, τότε οι αριθμοί είναι τέλεια τετράγωνα, οπότε αφού οι αριθμοί είναι περιττοί, θα πρέπει να είναι και οι δύο τέλεια τετράγωνα Πράγματι, αν είναι n= k, k, και ( ) n ( ) k A= n+ = k+ = r, τότε k r, k r και r k + = k Ομοίως προκύπτει και ότι ο 3 3 n + = k + θα είναι τέλειο τετράγωνο Όμως αυτό είναι άτοπο, γιατί δεν υπάρχουν τέλεια τετράγωνα που να απέχουν κατά δύο ab,, a> b είναι Πράγματι, η διαφορά δύο οποιωνδήποτε τέλειων τετραγώνων ακεραίων ( ) της μορφής a b = ( a b)( a+ b) 3 = 3 Αν, τότε οι αριθμοί γράφονται A = και B =,
3 οπότε σε αυτή την περίπτωση οι αριθμοί πρέπει να είναι τέλεια τετράγωνα Όμως, αυτό είναι άτοπο, αφού όπως αποδείξαμε προηγουμένως, δεν υπάρχουν θετικοί ακέραιοι που να είναι τέλεια τετράγωνα και να απέχουν κατά ένα Πρόβλημα 4 Σε ένα σχολείο έχουν δημιουργηθεί ομάδες που η καθεμιά αποτελείται από μαθητές Επίσης, οποιεσδήποτε δύο ομάδες έχουν ακριβώς έναν κοινό μαθητή Να αποδειχθεί ότι: (α) Υπάρχει ένας μαθητής που ανήκει σε τουλάχιστον ομάδες (β) Υπάρχει ένας μαθητής που ανήκει σε όλες τις ομάδες (α) Θεωρούμε μία τυχαία ομάδα Ο Καθεμία από τις υπόλοιπες ομάδες έχει ακριβώς έναν μαθητή της Ο Αφού = 0 +, από την αρχή της περιστεροφωλιάς, θα υπάρχει ένας μαθητής x στην Ο που ανήκει σε τουλάχιστον ομάδες Επομένως ο x (μαζί με την Ο ) ανήκει σε συνολικά ομάδες, έστω Ο, Ο,, Ο (β) Θα δείξουμε ότι ο x ανήκει σε όλες τις ομάδες Πράγματι, έστω ότι ο x δεν ανήκει στην ομάδα Ο ' Τότε η Ο ' έχει ακριβώς έναν κοινό μαθητή με τις Ο, Ο,, Ο, αλλά επειδή η Ο ' έχει μαθητές, θα υπάρχουν δύο ομάδες, έστω οι Ο i, Ο j που ο κοινός μαθητής με την Ο ' θα είναι ο ίδιος, έστω y Τότε όμως οι ομάδες Ο, Ο έχουν δύο κοινούς μαθητές, τον x και τον y, άτοπο Άρα ο x ανήκει σε όλες τις ομάδες i j 3
4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: info@hmsgr, wwwhmsgr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 05 4 Απριλίου 05 Θέματα μεγάλων τάξεων Πρόβλημα Να προσδιορίσετε τα ζεύγη θετικών ακέραιων ( x, y ) που είναι λύσεις της εξίσωσης: xy ( x + y 0) 3x y + x + 6y = 60 Η εξίσωση γράφεται: xy x + y 0 3x y + x + 6y = 60 ( ) ( ) ( ) y x + y y+ x= y y ( y ) x ( y )( y ) x ( y )( y ) ( y ) x ( y )( y ) x ( y )( y ) ( y 3) x ( y 7) x ( y 5) = = 30 + = + + = ( y 3)( x 7x xy y 0) 30 ( y 3)( x 4 7x xy y 4) 30 ( y )(( x )( x ) x x y) + + = 3 + 7( ) + ( ) = 30 ( y 3)( x )( x+ y 5) = 30= 3 5 Επειδή οι παράγοντες x, y 3 και x+ y 5 είναι ακέραιοι τέτοιοι ώστε: ( x ) + ( y 3) = x+ y 5 και x, y 3, x+ y 5 3, έχουμε τις εξής περιπτώσεις: x = x = 3 x = x = 5 y 3= 3 ή y 3= ή y 3= 5 ή y 3= x+ y 5= 5 x+ y 5= 5 x+ y 5= 6 x+ y 5= 6 xy, = 4,6 ή xy, = 5,5 ή xy, = 3,8 ή xy, = 7,4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Εναλλακτικά, στην παραπάνω διαδικασία από την εξίσωση: y 3 x + ( y 3)( y 7) x= y 8y+ 30 ( ) ( ) λαμβάνουμε την εξίσωση ( y 3 ) x + ( y 7) x = y 6y+ 60 () 4
5 οπότε, αφού για x, y θετικοί ακέραιοι, προκύπτει ότι: ( y 3 ) y 6y+ 60 Από την τελευταία, με τη διαίρεση πολυωνύμων y 6y+ 60= y 3 y προκύπτει ότι y 3 30 Επομένως, έχουμε ότι ( )( ) y 3 { ±, ±, ± 3, ± 5, ± 6, ± 0, ± 5, ± 30 }, οπότε δεδομένου ότι πρέπει να ισχύει y > 0, δηλαδή y 3 έχουμε ότι: y 3 { ±, ±,3,5,6,0,5,30 } Για καθεμία από τις παραπάνω τιμές, αντικαθιστώντας στην () προκύπτει μία δευτεροβάθμια ως προς x Έτσι προκύπτουν οι λύσεις που έχουμε βρει και στην προηγούμενη μέθοδο επίλυσης της εξίσωσης Πρόβλημα Δίνονται διαφορετικά μεταξύ τους σημεία που ανήκουν στο εσωτερικό ή και την περιφέρεια μοναδιαίου δίσκου Να αποδειχθεί ότι υπάρχουν τουλάχιστον 998 τμήματα που σχηματίζονται από αυτά τα σημεία και έχουν μήκος μικρότερο του 3 Σχήμα Χωρίζουμε τον κύκλο σε τρία ίσα μέρη που αντιστοιχούν σε κεντρική γωνία 0 που είναι και τέτοια ώστε να μην περιέχουν κάποιο από τα σημεία στο σύνορό τους, με μόνη εξαίρεση αν κάποιο σημείο ταυτίζεται με το κέντρο του δίσκου, όπου τότε θεωρούμε ότι ανήκει σε ένα από τα μέρη Αυτό είναι εφικτό καθώς τα σημεία είναι πεπερασμένα ενώ για την επιλογή του διαχωρισμού σε τρία ίσα μέρη έχουμε άπειρες επιλογές Έστω ότι έχουμε δύο σημεία Α, Β στον ίδιο τομέα και έστω ότι ο τομέας τέμνει τον κύκλο στα Κ, Λ (βλέπε σχήμα) Τότε αν οι ΟΑ, ΟΒ τέμνουν τον κύκλο στα σημεία Α ', Β' και ΑΟΒ 3 = ω < 60 έχουμε ότι ΑΒ Α' Β ' = R ημ( ω) < Rημ60 = = 3 (Ισότητα δεν μπορεί να έχουμε στο πρώτο βήμα καθώς τα σημεία δεν ανήκουν στο σύνορο σύμφωνα με το χωρισμό σε μέρη που κάναμε στην αρχή) 5
6 Επομένως, οποιαδήποτε δύο σημεία στο ίδιον τομέα έχουν απόσταση μικρότερη από 3 Έστω ότι στους τρεις τομείς έχουμε αντίστοιχα x, y, z το πλήθος σημεία Τότε x + y + z = και τα τμήματα με μήκος μικρότερο 3 είναι τουλάχιστον x y z x( x ) + y( y ) + z( z ) x + y + z + + = = ( x + y + z) Όμως από την ανισότητα Cauchy- Schwarz έχουμε: x + y + z = 3 3 x y z Άρα έχουμε: = 998 Πρόβλημα 3 Δίνεται οξυγώνιο σκαληνό τρίγωνο ABC με AB < AC < BC, εγγεγραμμένο σε κύκλο c ( O,R ) Ο παρεγεγραμμένος κύκλος ( c Α ) (που αντιστοιχεί στην κορυφή Α ), έχει κέντρο Ι και εφάπτεται στις πλευρές BC, AC, AB (του τριγώνου ABC ) στα σημεία D,Ε, Ζ αντίστοιχα Η ΑΙ τέμνει το κύκλο ( c ) στο σημείο Μ και ο περιγεγραμμένος κύκλος (έστω ( c )) του τριγώνου AZE τέμνει τον κύκλο ( c ) στο σημείο Κ Ο περιγεγραμμένος κύκλος (έστω ( c ) ) του τριγώνου OKM τέμνει τον κύκλο ( c ) στο σημείο N Να αποδείξετε ότι οι ευθείες ΑΝ και ΚΙ τέμνονται επάνω στο κύκλο ( c ) Εφόσον οι AZ και AE είναι εφαπτόμενες του παρεγεγραμμένου κύκλου ( c Α ), θα ισχύει ΙΖ ΑΖ και ΙΕ ΑΕ Άρα ο κύκλος ( c ) θα περνάει από το Ι και η ΑΙ θα είναι διάμετρός του Πρώτα θα αποδείξουμε ότι ΑΝ, περνάει από το σημείο Ο Δηλαδή ότι: Κ ˆ ΝΟ = ΚΝ ˆ Α (*) Οι γωνίες Κ ˆ ΝΟ και ΚΜ ˆ Ο είναι εγγεγραμμένες στο κύκλο ( c ) και βαίνουν στο τόξο ΟΚ Άρα Κ ˆ ΝΟ = ΚΜ ˆ Ο Από το ισοσκελές τρίγωνο ΟΚΜ έχουμε: ΚΜΟ ˆ = ΟΚˆ Μ Από τις τελευταίες ισότητες γωνιών προκύπτει: Κ ˆ ΝΟ = Κ ΜΟ ˆ = ΟΚˆ Μ () Σχήμα 3 6
7 Οι γωνίες Κ ˆ ΝΑ και Κ ˆ ΙΑ είναι εγγεγραμμένες στο κύκλο ( c ) και βαίνουν στο τόξο ΑΚ Άρα είναι: Κ ˆ ΝΑ = Κ ˆ ΙΑ Το τρίγωνο ΑΚΙ είναι ορθογώνιο, αφού η ΑΙ είναι διάμετρος του κύκλου ( c ) Άρα ΚΙΑ ˆ ο ο = 90 ΙΑΚ ˆ = 90 ΜΑΚ ˆ Στο κύκλο ( c ), η γωνία Μ ˆ ΑΚ είναι εγγεγραμμένη με αντίστοιχη επίκεντρη την Μ ˆ ΟΚ ˆ Άρα ˆ ΜΟΚ Μ ΑΚ = Επιπλέον, από το ισοσκελές τρίγωνο ΟΚΜ έχουμε: ˆ ˆ ο ΜΟΚ ΟΚΜ = 90 Από τις παραπάνω ισότητες γωνιών και την (), έχουμε: Κ ˆ ΝΑ = Κ ˆ ˆ () ο ο ΙΑ = 90 ΙΑΚ ˆ = 90 ΜΑˆ ο ΜΟΚ Κ = 90 = ΟΚΜ ˆ = Κ ΝˆΟ (*) Άρα τα σημεία Α, Ο, Ν είναι συνευθειακά και έστω Τ το σημείο τομής της ΑΝ με τον κύκλο ( c ) Θα αποδείξουμε ότι τα σημεία Κ, Τ, Ι είναι συνευθειακά, δηλαδή ότι: Α ˆ ΚΙ = ΑΚˆ Τ Η γωνία Α ˆ ΚΤ είναι ορθή διότι είναι εγγεγραμμένη στον κύκλο ( c ) και βαίνει στην διάμετρό του ΑΤ Η γωνία Α ˆ ΚΙ είναι ορθή διότι είναι εγγεγραμμένη στον κύκλο ( c ) και βαίνει στην διάμετρό του ΑΙ Παρατήρηση Εναλλακτικά μπορούμε να θεωρήσουμε το σημείο τομής, έστω T, της KI με τον κύκλο ( c ), οπότε η AT είναι διάμετρος του κύκλου ( c ), και στη συνέχεια να αποδείξουμε ότι τα σημεία AOT,,, N είναι συνευθειακά Πρόβλημα 4 Να βρεθούν όλες τις συναρτήσεις f : που ικανοποιούν τη σχέση: f ( xy) yf ( x) + f ( y) () για κάθε xy, Αν θέσουμε όπου y το y στην () θα πάρουμε f ( xy) yf ( x) + f ( y) () Με πρόσθεση των () και () έχουμε: f ( xy) + f ( xy) f ( y) + f ( y) για κάθε xy, (3) Αν στην τελευταία θέσουμε όπου y το, θα πάρουμε: f ( x) + f ( x) f () + f ( ) (4) Aν στην (3) θέσουμε όπου x το y, θα πάρουμε: f ( ) + f ( ) f ( y) + f ( y) για κάθε y 0 (5) Από τις (4), (5) έχουμε ότι: f ( y) + f ( y) = f () + f ( ) = c για κάθε y 0, oπότε η () γίνεται: c f ( xy) yf ( x) + c f ( y), δηλαδή έχουμε 7
8 yf ( x) + f ( y) f ( xy), για κάθε x, y 0 (6) Από τις () και (6) έχουμε ότι: f ( xy) = yf ( x) + f ( y) για κάθε x, y 0 (7) Από την τελευταία σχέση για x = y = λαμβάνουμε f ( ) = 0, ενώ εναλλάσσοντας τους ρόλους των x, y λαμβάνουμε: f ( yx) = xf ( y) + f ( x) για κάθε x, y 0 (8) οπότε από τις σχέσεις (7) και (8) έχουμε: yf ( x) + f ( y) = xf ( y) + f ( x) f ( x)( y ) = f ( y)( x ) f ( x) f ( y) = x y για κάθε x, y 0, Άρα, αφού f () = 0, έχουμε: f ( x) = a( x ), για κάθε x 0 Τέλος θέτοντας όπου x το 0 στην αρχική παίρνουμε: f ( y) ( y) f (0), για κάθε y, οπότε ( ) ( y) f ( 0) για κάθε y 0, οπότε ( y )( a f ( )) = f ( 0) Άρα είναι f ( x) f ( 0)( x ) f ( 0)( x) a y a την () + 0 0, για κάθε y 0 οπότε = =, για κάθε x, που επαληθεύει 8
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραGREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότερα2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
Διαβάστε περισσότερα2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΠολλαπλασιάζοντας και τα δύο μέλη της σχέσης (1) επί 2, λαμβάνουμε = k+ ), (2) οπότε με αφαίρεση της (1) από τη (2) κατά μέλη, λαμβάνουμε:
6 Θέματα μεγάλων τάξεων ΠΡΟΒΛΗΜ Δίνεται η ακολουθία πραγματικών αριθμών ( a ), =,,, με + a = και a = ( a+ a + + a ), Να προσδιορίσετε τον όρο a 0 Λύση ( ος τρόπος) Παρατηρούμε ότι: 4 4 a =, a = a =, a
Διαβάστε περισσότεραΑ τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
Διαβάστε περισσότεραΑρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
Διαβάστε περισσότεραx , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραB τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79
Διαβάστε περισσότεραΒ τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
Διαβάστε περισσότεραΘαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός
Διαβάστε περισσότεραΘέματα μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 2012 7 Απριλίου 2012
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 0 7 Απριλίου 0 ΠΡΟΒΛΗΜΑ Να προσδιορίσετε όλες τις τριάδες p n όπου p πρώτος και αρνητικοί ακέραιοι που είναι λύσεις της εξίσωσης: p n Λύση Η δεδομένη εξίσωση
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕυκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α
Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται
Διαβάστε περισσότερα( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραB τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραB τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-al : fo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepstou (Εleftherou Vezelou) Street
Διαβάστε περισσότεραΠρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.
ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens
Διαβάστε περισσότερα2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
Διαβάστε περισσότεραβ =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΑρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;
Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των
Διαβάστε περισσότερα: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΓια τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79 - Athens
Διαβάστε περισσότερα[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.
Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και
Διαβάστε περισσότεραB τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
Τηλ 10 361653-103617784 - Fax: 10 364105 Tel 10 361653-103617784 - Fax: 10 364105 ΣΒΒΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 B τάξη υμνασίου Να υπολογίσετε την τιμή της αριθμητικής παράστασης ( 00 :8 1 100) 00 : ( 8 ) 76
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μικρών τάξεων ΠΡΟΒΛΗΜΑ 1 Έστω τρίγωνο ΑΒΓ με ˆ ΒΑΓ = 10. Αν Δ είναι το μέσον της
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ 1 Να λύσετε στους ακέραιους την εξίσωση 4 xy y x =
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΚεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.
Διαβάστε περισσότεραΕνδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Α= = Επομένως έχουμε:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ
Διαβάστε περισσότεραΤο εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
Διαβάστε περισσότερα