Θέματα κι επίσημες λύσεις 2006 εως 2014 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέματα κι επίσημες λύσεις 2006 εως 2014 Θαλή κι Ευκλείδη της Ε.Μ.Ε."

Transcript

1 Θέματα κι επίσημες λύσεις 006 εως 04 Θαλή κι Ευκλείδη της Ε.Μ.Ε. από τον parmenides5 η έκδοση (0-0-04) σχολικό έτος αρίθμηση / ημερομηνία ονομασία Διαγωνισμός Θαλής ος / Θαλής 006: θέματα - απαντήσεις ος / Θαλής 007: θέματα - απαντήσεις ος / Θαλής 008: θέματα - απαντήσεις ος / Θαλής 009: θέματα - απαντήσεις ος / Θαλής 00: θέματα - απαντήσεις ος / 9--0 Θαλής 0: θέματα - απαντήσεις ος / Θαλής 0: θέματα - απαντήσεις ος / Θαλής 0: θέματα - απαντήσεις Διαγωνισμός Ευκλείδης ος / Ευκλείδης 006: θέματα - απαντήσεις ος / Ευκλείδης 007: θέματα - απαντήσεις ος / Ευκλείδης 008: θέματα - απαντήσεις ος / Ευκλείδης 009: θέματα - απαντήσεις ος / Ευκλείδης 00: θέματα - απαντήσεις ος / Ευκλείδης 0: θέματα - απαντήσεις ος / -0-0 Ευκλείδης 0: θέματα - απαντήσεις ος / -0-0 Ευκλείδης 0: θέματα - απαντήσεις ος / Ευκλείδης 04: θέματα - απαντήσεις Για ευκολία χρησιμοποιήστε τους σελιδοδείκτες (bookmarks)στο αριστερό μέρος του pdf. parmenides5 facebook δημιουργός των μαθηματικών ιστοσελίδων: για την αγάπη των μαθηματικών: για τους ρομαντικούς της Γεωμετρίας:

2 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 006 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. και δεν προβλέπεται Αναβαθμολόγηση (διότι γίνεται εσωτερικά). 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 0 Ιανουαρίου 007 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 4 Φεβρουαρίου 007 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στη 4 η Βαλκανική Μαθηματική Ολυμπιάδα (Ρόδος, 6 Απριλίου Μαΐου 007), στην η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Βουλγαρία, Ιούνιος 007) και στην 48η Διεθνή Μαθηματική Ολυμπιάδα (Βιετνάμ, Ιούλιος 007). 0. Με εισήγηση της Επιτροπής Διαγωνισμών το Δ.Σ. της Ε.Μ.Ε. αποφάσισε να σταλούν μέσω των Παραρτημάτων, σε κάθε συνάδελφο, ο οποίος συμμετέχει στη διαδικασία των διαγωνισμών, αντίτυπα από εκδόσεις της Εταιρείας. Για το σκοπό αυτό, παρακαλούμε τους προέδρους των ΤΝΕ να μας αποστείλουν κατάσταση με τα πλήρη στοιχεία των εμπλεκομένων συναδέλφων στη διαδικασία των διαγωνισμών.. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμαι τον Πρόεδρο της ΤΝΕ μαζί με τα γραπτά να μας στείλει το ονοματεπώνυμο και την ταχ. Δ/νσή του καθώς και τα ονοματεπώνυμα όλων των επιτηρητών για να τους σταλεί ονομαστική ευχαριστήρια επιστολή από το Δ.Σ. της ΕΜΕ. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Θεόδωρος Εξαρχάκος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

3 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Αθήνα, 9 Δεκεμβρίου 006 Αγαπητοί μαθητές, Σας καλωσορίζουμε στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ) ΘΑΛΗΣ. Σήμερα δεν δίνετε τις συνηθισμένες εξετάσεις. Συμμετέχετε σε έναν αγώνα του πνεύματος. Και μόνο η απόφασή σας για συμμετοχή είναι μια επιτυχία. Με την ευκαιρία αυτής μας της επικοινωνίας θα θέλαμε να σας πληροφορήσουμε για τα εξής : Στα περιοδικά της ΕΜΕ Ευκλείδης Α και Ευκλείδης Β δημοσιεύονται εκτός των άλλων θεμάτων ανά τάξη και θέματα με τις λύσεις τους από Διεθνείς Μαθηματικούς Διαγωνισμούς. Επίσης έχουν εκδοθεί βιβλία της ΕΜΕ με τα θέματα των Διεθνών Μαθηματικών Ολυμπιάδων, Βαλκανιάδων, Θεωρίας αριθμών και είναι υπό έκδοση βιβλίο με τα θέματα των Ελληνικών Διαγωνισμών. Στον κόμβο της ΕΜΕ στο διαδίκτυο στη διεύθυνση, υπάρχουν θέματα με τις λύσεις τους από παλαιότερους Εθνικούς και Διεθνείς διαγωνισμούς. Ακόμα σύντομα θα τοποθετηθούν και σημειώσεις σχετικές με απαραίτητες γνώσεις μαθηματικών θεωρίας και ασκήσεων επιπέδου διεθνών Διαγωνισμών Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Θεόδωρος Εξαρχάκος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Β τάξη Γυμνασίου. Να υπολογίσετε την παράσταση: 54 Α= 64 (5 + ) 5 : :+ 6. Είναι δυνατόν ένα χαρτονόμισμα των 00 να ανταλλαγεί με 8 νομίσματα των και των 0 ;.Το 6% του αριθμού α 0 είναι ίσο με το 4% του αριθμού β. Να βρείτε την τιμή του κλάσματος. κ = 9α β 6α β 4. Στο παρακάτω σχήμα είναι ΑΒ = ΒΓ και η διχοτόμος Γ x της γωνίας ΑΓΔ ˆ είναι παράλληλη στην ΑΒ. Να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

5 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Γ τάξη Γυμνασίου. Στο παρακάτω σχήμα να υπολογίσετε το x σε μοίρες γ. Αν α + β + = 0 και αβγ=0, τότε να υπολογίσετε την τιμή της παράστασης: γ Α= α ( α + ) ( α + β). Αν p είναι πρώτος αριθμός, να αποδείξετε ότι ο αριθμός 7p + είναι σύνθετος. 4. Να εξετάσετε αν υπάρχουν πραγματικοί αριθμοί α,β διάφοροι του μηδενός, τέτοιοι ώστε 0 aβ + a β =. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Α τάξη Λυκείου. Η Α τάξη ενός Λυκείου έχει 5 τμήματα που το καθένα έχει τουλάχιστον 0 μαθητές. Σε καθένα από τους μαθητές των τμημάτων αυτών δίνουμε 0. Έτσι δώσαμε 090. Να αποδείξετε ότι δύο τουλάχιστον από τα τμήματα αυτά έχουν τον ίδιο αριθμό μαθητών. λ λx+ = λ + λx. Να λυθεί η εξίσωση ( ) για τις διαφορές πραγματικές τιμές της παραμέτρου λ.. Αν α, β, γ πραγματικοί αριθμοί διάφοροι του μηδενός να αποδείξετε ότι: 4. Σε τρίγωνο ΑΒΓ με α β γ α γ β β γ α γ β α Α >Β οι διχοτόμοι των γωνιών Α, Β τέμνονται στο Ι. Στην πλευρά ΑΒ παίρνουμε τμήμα ΒΔ = ΒΓ ΑΓ. Να αποδείξετε ότι : ΙΔ = ΙΑ. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

7 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Β τάξη Λυκείου. Να εξετάσετε αν η εξίσωση x (006κ + ) x+ 007 = 0 όπου κ, έχει δύο ακέραιες ρίζες.. Δίνεται ορθογώνιο ΑΒΓΔ με ΑΒ = 4, ΒΓ = και σημείο Μ στο εσωτερικό του με ΜΓ = και ΜΒ =. Να βρείτε το εμβαδόν του τριγώνου ΜΑΒ. 008 κ = Να αποδείξετε. Έστω ότι ο 0 διαιρεί τον κ. + > 9 4. α) Να αποδείξετε ότι : β) Να λύσετε την εξίσωση: 8 x+ x =. + ΚΑΛΗ ΕΠΙΤΥΧΙΑ

8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Γ τάξη Λυκείου. Έστω συνάρτηση f : με την ιδιότητα f( f( x+ y)) = x f( y) για κάθε xy,. Να αποδείξετε ότι η h : με hx ( ) = f( x) + f( x) είναι σταθερή.. Να βρείτε τις ακέραιες λύσεις της εξίσωσης x x x 4x 0 + =. π. Έστω οι μιγαδικοί αριθμοί z, z και θ 0,. Να αποδείξετε ότι: z z + z + z + Re( zz) συν θ ημ θ. 4. Δίνεται ευθύγραμμο τμήμα ΒΓ και τα σημεία Κ, Λ, Μ προς το ίδιο μέρος της ευθείας ΒΓ. ΒΚΓ ˆ = ΒΛΓ ˆ = ΒΜΓ ˆ, τότε να αποδείξετε ότι δύο Αν τουλάχιστον από τα γινόμενα ΚΒ ΚΓ, ΛΒ ΛΓ και ΜΒ ΜΓ είναι άνισα. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

9 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Λύσεις Β Γυμνασίου. Εκτελούμε τις πράξεις και βρίσκουμε Α= ( 44 :) :+ = ( ) :+ = 99 :+ = 9 + = 0. Επειδή ο 00 λήγει σε 0 και τα πολλαπλάσια του 0 λήγουν σε 0, θα πρέπει και ο αριθμός που εκφράζει τα νομίσματα των να λήγει σε 0. Άρα τα νομίσματα των θα είναι 5 ή 0 ή 5. Όμως παρατηρούμε ότι δεν μπορεί να είναι 5 ή 5. Άρα θα είναι 0. Πράγματι = 00.. Έχουμε: 6 4 α = β οπότε α = β. Έτσι έχουμε β β 6β β β κ = = = = 6 β β 4β β β 4. Αφού η Γx είναι διχοτόμος της γωνίας ΑΓΔ ˆ θα ισχύει = και αφού ω = φ. Επειδή Γx//ΑB θα ισχύει φ θ

10 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΛΥΣΕΙΣ ΑΒ=ΒΓ θα είναι θ = ρ. Άρα ω = φ = θ = ρ, και Άρα ω φ ρ = 80, οπότε ˆ ˆ ˆ 60 0 Α=Β=Γ=. ω = φ = ρ = Έχουμε Λύσεις Γ Γυμνασίου ˆ ˆ ΔΓΕ = ΑΓΒ = x x= x ˆ ˆ 0 0 ΔΕΓ = ΗΕΖ = 80 x 6x= 80 8x Έτσι, έχουμε, στο τρίγωνο ΓΔΕ: ˆ ˆ ˆ 0 ΔΓΕ + ΔΕΓ + Δ = 80 οπότε x+ 80 8x+ 5x= x= 80 0 x= 8. γ γ. Α= α ( β) ( ) = α 4β = α β γ = 4 = = = ( αβγ ) Έστω Α=7p+. Για p= έχουμε Α=7 +=55=5, ενώ για p o 7p είναι περιττός οπότε ο Α είναι άρτιος.

11 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΛΥΣΕΙΣ 4. Αν υπήρχαν τέτοιοι αριθμοί τότε 0 aβ + a β = 9, οπότε 9 00 a β + a β + 0 = 9 οπότε a β + a β = 9 0=, πουδεν ισχύει. 4 9 ΛΥΣΕΙΣ Α τάξη Λυκείου. Έστω ότι α,β,γ,δ,ε είναι οι αριθμοί των μαθητών των πέντε αυτών τμημάτων. Έτσι έχουμε: 0( α + β + γ + δ + ε) = 090 α + β + γ + δ + ε = 09 () Έστω ότι οι αριθμοί των μαθητών των τμημάτων αυτών είναι ανά δύο διαφορετικοί και έστω ότι: α και α,β,γ,δ,ε α < β < γ < δ < ε. Επειδή 0 φυσικοί έχουμε: β > α 0 β > 0 β γ > β γ > γ δ > γ δ > δ ε > δ ε > ε 4

12 4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΛΥΣΕΙΣ Συνεπώς α + β + γ + δ + ε 0, άτοπο λόγω της (). Άρα, δύο τουλάχιστον από τα τμήματα αυτά έχουν τον ίδιο αριθμό μαθητών.. Η εξίσωση γράφεται: λ x λ λ λx λ λ λ λ x + = + x x= ( ) λ λ λ λ = ( ) λ λ λ λ λ ή λ = 0 = 0 = 0 =. Αν λ=0 είναι αδύνατη. Αν λ= είναι αόριστη. Αν λ 0 και λ τότε λ λ x = λ λ ( λ )( λ+ ) λ+ x= x= λ λ λ ( ) ( ). Η ανίσωση γράφεται: α β γ α γ β α γ β , β γ α γ β α γ β α α β γ α γ β + + 0, αρκεί β γ α γ β α αρκεί

13 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΛΥΣΕΙΣ 5 α β β γ γ α + + β γ γ α α β η οποία ισχύει. 0, 4. Αν ΓΕ=α τότε ΑΕ=α-β=ΒΔ και ΓΙ η τρίτη διχοτόμος. Δ Δ Έχουμε ΙΓΕ = ΙΓΒ Λ Λ Ε = Β, ΙΕ=ΙΒ. Δ Δ Άρα ΙΑΕ = ΙΒΔ άρα ΙΑ=ΙΔ. Γ = Γ διότι ΙΓ=ΙΓ, ΓΕ=ΓΒ και Λ Λ Λ διότι ΒΔ=ΑΕ, ΙΕ=ΙΒ και Ε =Β = Β Β τρόπος Αρκεί το Ι να ανήκει στη μεσοκάθετο του ΑΔ. Αν δηλαδή ΙΚ ΑΔ, αρκεί ΚΑ=ΚΔ. Πράγματι ΚΑ=τ α και ΚΔ= ΒΚ ΒΔ = τ β (α β) = τ α =τ α, αφού τ>α. Λ Λ άρα,

14 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΛΥΣΕΙΣ. Αν x, x οι ρίζες, τότε ΛΥΣΕΙΣ Β τάξη Λυκείου x+ x = 006κ + () και x x 007 () =. Από την () προκύπτει ότι οι x, x θα είναι περιττοί. Αλλά τότε το άθροισμα τους x+ x θα είναι άρτιος, οπότε δεν θα ισχύει η ().. ( ) Παρατηρούμε ότι + = 4= οπότε το τρίγωνο ΜΒΓ είναι ορθογώνιο στο Μ. Επειδή οπότε Λ ΒΓ έχουμε Λ ΜΓ = ΜΒΓ = Λ και , ΜΓΒ = ΜΓΔ = Έστω

15 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΛΥΣΕΙΣ 7 κ ΜΜ ΔΓ, τότε εμβαδόν του MB. Είναι β τρόπος Δ ΜΑΒ είναι = BΓ ΒΗ οπότε ΜΜ = άρα Ε = 4 =.. υ = =. Το = υ άρα υ= = (+ + + ) + (+ + + ) (+ + + ) = = 0( ) = πολ.0 4. α) Από τη γνωστή ανισότητα: β θετικοί με α Οπότε Αρκεί λοιπόν β, έχουμε: α + β + 6 > = 6 + > 6. 6 > αβ όπου α, , ή 6 9, ή 84 6 που ισχύει.

16 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΛΥΣΕΙΣ λ = β) Αν 8 + τότε 9 λ = < < οπ τε λ < + Η εξίσωση για x 0 είναι ισοδύναμη με την x λx+ = 0 με Δ= 4( λ ) < 0. ό. Άρα η εξίσωση είναι αδύνατη. β τρόπος x λx+ = x λx+ λ λ + = = + > ( x λ) ( λ ) λ 0 ΛΥΣΕΙΣ Γ τάξη Λυκείου. Για x = 0 έχουμε f( f( y)) = f( y) για κάθε y. Για y = 0 έχουμε f( f( x)) = x f(0) για κάθε x. Άρα f( f( x)) = f( x) και f( f( x)) = x f(0), για κάθε x Επομένως f ( x) = x f(0) ή f ( x) = f (0) x () και f ( x) = f(0) + x (), για κάθε x Οπότε από τις () και () έχουμε: f( x) + f( x) = f(0), για κάθε x. Άρα η h είναι σταθερή.. Έστω ότι η εξίσωση έχει μια ακέραια λύση ρ. Τότε

17 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΛΥΣΕΙΣ 9 ρ + ρ ρ ρ 4ρ = 0 ( ρ) = 4ρ+ ρ 4ρ + 4ρ + = (αφού προφανώς ρ ) > 0 ρ ρ (4ρ + )( ρ ) < 0 < ρ < ρ { 0,, }. 4 Όπως βρίσκουμε εύκολα, οι αριθμοί ρ=0 και ρ= δεν είναι λύσεις της εξίσωσης. Ο αριθμός ρ= όμως είναι λύση της εξίσωσης. Άρα η εξίσωση έχει τη μοναδική λύση ρ=.. Επειδή ( ) + + Re = = + z z z z z z z z z z z z z z αρκεί να δείξουμε ότι: Πράγματι z z + z + z. συν θ ημ θ z z ( ) z z + = συν θ + ημ θ + ( z + z ) z + z συν θ ημ θ συνθ ημθ 4. Από την ισότητα ˆ ˆ ˆ τα Κ, Λ, Μ βρίσκονται στο ίδιο τόξο χορδής ΒΓ. Έστω ΒΚΓ = ΒΛΓ = ΒΜΓ έχουμε ότι ΒΚΓ=ΒΛΓ=ΒΜΓ= ˆ ˆ ˆ φ. Αν ΚΒ ΚΓ= ΛΒ ΛΓ= ΜΒ ΜΓ, τότε ΚΒ ΚΓ ημφ = ΛΒ ΛΓ ημφ = ΜΒ ΜΓημφ. ( ΚΒΓ ) = ( ΛΒΓ ) = ( ΜΒΓ) Αυτό σημαίνει ότι τα Κ, Λ, Μ θα βρίσκονται σε ευθεία παράλληλη στην ΒΓ, άτοπο αφού το μέγιστο πλήθος κοινών σημείων ευθείας και κύκλου είναι.

18 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. και δεν προβλέπεται Αναβαθμολόγηση (διότι γίνεται εσωτερικά). 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 9 Ιανουαρίου 008 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 008 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στη 5 η Βαλκανική Μαθηματική Ολυμπιάδα (ΠΓΔΜ, Μάιος 008), στην η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Αλβανία, Ιούνιος 008) και στην 49η Διεθνή Μαθηματική Ολυμπιάδα (Μαδρίτη Ισπανίας, Ιούλιος 008). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Νικόλαος Αλεξανδρής Ο Γενικός Γραμματέας Ιωάννης Τυρλής

19 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 B τάξη Γυμνασίου Πρόβλημα. Να υπολογίσετε την τιμή της αριθμητικής παράστασης ( 00 :8 00) 00 : ( 8 ) 76 ( ) ( ) ( ) 007 Α= Πρόβλημα. Οι μαθητές ενός Γυμνασίου μπορούν να παραταχθούν σε εξάδες, σε οκτάδες και σε δεκάδες, χωρίς να περισσεύει κανείς. Τα πλήθη των μαθητών των τάξεων Α, Β και Γ είναι αριθμοί ανάλογοι προς τους αριθμούς 5, 4 και, αντίστοιχα. Αν το πλήθος των μαθητών του Γυμνασίου είναι αριθμός μεγαλύτερος του 00 και μικρότερος του 400, να βρεθεί το πλήθος των μαθητών κάθε τάξης. Πρόβλημα. Ένας έμπορος αγόρασε 00 κιλά φράουλες με τιμή αγοράς ευρώ το κιλό. Κατά τη μεταφορά είχε απώλεια 0% στα κιλά που αγόρασε. Πόσο πρέπει να πουλήσει το κιλό τις φράουλες ώστε να έχει κέρδος 0% επί της τιμής της αγοράς; Πρόβλημα 4. Στο τραπέζιο ΑΒΓΔ του διπλανού σχήματος η μεγάλη βάση ΒΓ είναι διπλάσια της μικρής βάσης ΑΔ. Αν το εμβαδόν του τραπεζίου είναι00cm και το σημείο Κ είναι το συμμετρικό του Α ως προς την ευθεία ΒΓ Β (δηλαδή η ΒΓ είναι μεσοκάθετος της ΑΚ), να υπολογίσετε: (α) το εμβαδόν του τριγώνου ΑΒΔ και (β) το εμβαδόν του τετραπλεύρου ΑΒΚΓ. Α Κ E Δ Γ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

20 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Γ τάξη Γυμνασίου Πρόβλημα Να υπολογίσετε την τιμή των παραστάσεων: 8 4 ( ) ( ) ( ) ( ) ( x ) ( y ) x( y ) y( x ) Α= : :, B= 4 +. Για ποιες τιμές του x αληθεύει η ανίσωση: Α >Β. Πρόβλημα Στο παρακάτω σχήμα το τρίγωνο ε Α Ζ δ ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και ΒΑΓ ˆ = 40. Η ευθεία ε είναι παράλληλη προς την πλευρά ΒΓ και η ευθεία δ είναι μεσοκάθετη της πλευράς ΑΓ. (α) Να υπολογίσετε τη γωνία ΖΓ ˆ x, (β) Να αποδείξετε ότι ΚΑ = ΑΖ. Πρόβλημα (α) Να αποδείξετε ότι, αν ένας φυσικός αριθμός είναι τετράγωνο φυσικού αριθμού, τότε το τελευταίο του ψηφίο ανήκει στο σύνολο Σ= { 0,, 4,5, 6,9}. (β) Να βρεθεί πενταψήφιος φυσικός αριθμός της μορφής A = aaabb, όπου ab, ψηφία με a 0, ο οποίος είναι τετράγωνο φυσικού αριθμού, περιττός και διαιρείται με το 9. Κ Β E Γ x Πρόβλημα 4 Στο διπλανό σχήμα δίνεται Α ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και ΒΑΓ ˆ = 0. Η ΑΔ είναι παράλληλη προς τη ΒΓ και η ΓΔ είναι κάθετη προς την ΟΓ. Ο (α) Να υπολογίσετε το εμβαδόν του κυκλικού τομέα ΟΑΕΓ συναρτήσει της πλευράς ΒΓ = α του τριγώνου ΑΒΓ. (β) Να υπολογίσετε το εμβαδόν του Β Μ τριγώνου ΑΒΓ συναρτήσει της πλευράς ΒΓ = α. (γ) Να αποδείξετε ότι το τρίγωνο ΑΓΔ είναι ισοσκελές. Δ Ε Γ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

21 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Α τάξη Λυκείου Πρόβλημα Δύο παιδιά συζητούν για αλγεβρικά προβλήματα. Ο Γιάννης λέει στη Μαρία: Έχω σκεφτεί δύο ακέραιους αριθμούς x και y που είναι τέτοιοι ώστε, αν μειώσω τον x κατά 50 και αυξήσω τον y κατά 40, τότε το γινόμενό τους δεν μεταβάλλεται. Η Μαρία ρωτάει το Γιάννη: Αν αυξήσεις τον αριθμό x κατά 00 και μειώσεις τον αριθμό y κατά 0, τότε πάλι το γινόμενό τους δεν μεταβάλλεται; Ο Γιάννης απαντάει: Πράγματι, αυτό ισχύει. Η Μαρία καταλήγει: Τότε γνωρίζω τους αριθμούς που σκέφθηκες. Έχει δίκιο η Μαρία; Εσείς μπορείτε να βρείτε τους αριθμούς που σκέφθηκε ο Γιάννης; Πρόβλημα Αν α, βγ R, με ( α β)( β γ)( γ α) 0 τότε να υπολογίσετε την τιμή της παράστασης: ( α )( α + ) ( β )( β + ) ( γ )( γ + ) Α= + +. ( α β)( α γ) ( β α)( β γ) ( γ α)( γ β) Πρόβλημα Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Α= ˆ 45. Φέρουμε ευθεία ε κάθετη προς την ΑΓ στο Α η οποία τέμνει την προέκταση της ΓΒ στο Ε. Πάνω στην ευθεία ε παίρνουμε σημείο Δ τέτοιο ώστε ΑΔ = ΑΓ με το σημείο Α να βρίσκεται μεταξύ των Ε και Δ. Να υπολογίσετε συναρτήσει της πλευράς ΑΓ= β : (α) το εμβαδόν του τετραπλεύρου ΑΒΓΔ, (β) το μήκος του ευθύγραμμου τμήματος ΑΕ. Πρόβλημα 4 Να βρεθούν οι θετικοί ακέραιοι αριθμοί x,y που ικανοποιούν τη σχέση: 6 4 x +x y +x + y +y - 40 = 0 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

22 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Β τάξη Λυκείου Πρόβλημα Να βρεθούν οι πραγματικοί αριθμοί x, y που ικανοποιούν τη σχέση: x + x - x - x y -y +y +=0. Πρόβλημα Να βρεθούν όλες οι δυνατές τιμές των θετικών μονοψήφιων ακεραίων αριθμών κλμ,,, για τους οποίους η δευτεροβάθμια εξίσωση κx + λx+ μ = 0 έχει δύο ακέραιες ίσες λύσεις. Πρόβλημα Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ και ημιευθεία Αx // ΒΓ(η Α x βρίσκεται στο ίδιο ημιεπίπεδο με το σημείο Γ ως προς την ευθεία ΑΒ). Στην ημιευθεία Α x θεωρούμε τα σημεία Δ και Ε έτσι, ώστε το τετράπλευρο ΒΓΔΕ να είναι ρόμβος (το σημείο Ε βρίσκεται ανάμεσα στο Α και στο Δ ). Στο σημείο Δ θεωρούμε την κάθετη ευθεία στη ΔΓ που τέμνει την προέκταση της πλευράς ΒΑ στο Ζ. (α) Να αποδειχθεί ότι το τρίγωνο ΔΕΖ είναι ισόπλευρο. (β) Να αποδειχθεί ότι το Ε είναι έγκεντρο του τριγώνου ΑΓΖ. Πρόβλημα 4. * Αν xyz,,, να λυθεί το σύστημα: x y+ yz = xz 70 7 yz+ 4zx = 56xy + = 5z x 6xy 5 yz. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 Γ τάξη Λυκείου Πρόβλημα Έστω ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Α= ˆ 0. Στα σημεία Α και Γ θεωρούμε τις εφαπτόμενες του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ που τέμνονται στο Δ. (α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΑΓΔ είναι όμοια. (β) Να υπολογίσετε το εμβαδόν του τετραπλεύρου ΑΒΓΔ συναρτήσει της πλευράς ΒΓ = α του τριγώνου ΑΒΓ. Πρόβλημα (α) Να προσδιοριστούν οι παράμετροι λ, μ έτσι ώστε ο αριθμός να είναι ρίζα των εξισώσεων: ( ) λx μ x μx x λ + 4 = 0 και 4 = 0. (β) Για τις τιμές των λ, μ που βρήκατε στο ερώτημα (α), να λύσετε την εξίσωση λx ( μ+ 4) x 7 =. μx 4x λ 8 Πρόβλημα Αν για τη συνάρτηση f : ισχύει: f f( x) f( y) = f f( x) y, για κάθε, ( ) ( ) τότε να αποδείξετε ότι η συνάρτηση f είναι περιττή. xy, Πρόβλημα 4 Για κάθε τρεις μη μηδενικούς πραγματικούς αριθμούς ab, και διαφορετικοί μεταξύ τους ανά δύο, να αποδείξετε ότι: a+b b+c c+a + + a-b b-c c-a. c, που είναι ΚΑΛΗ ΕΠΙΤΥΧΙΑ

24 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 ( ) ( ) ( ) 007. Α= ( 5 00) ( 00 :0 76) ( ) ( ) 5 ( 0 76) ( ) = = + + = = Αν ω είναι ο αριθμός των μαθητών του Γυμνασίου, τότε ο ω είναι ΕΚΠ 6,8,0 = 0, κοινό πολλαπλάσιο των αριθμών 6, 8 και 0. Επειδή [ ] έπεται ότι ω { 0, 40,60, 480,... } και αφού 00 ω 400 < <, θα είναι ω = 60. Αν x, yz, είναι ο αριθμός των μαθητών της Α, Β και Γ τάξης, αντίστοιχα, τότε θα έχουμε x y z = = = λ και x+ y+ z = Άρα είναι x= 5 λ, y = 4 λ, z = λ και 5λ+ 4λ+ λ = 60 λ = 60 λ = 0. Άρα είναι: x= 5 0 = 50, y = 4 0 = 0, z = 0 = 90.. Ο έμπορος πλήρωσε για την αγορά 00 = 600 ευρώ. 0 Η απώλεια του σε κιλά ήταν 00 = 0 κιλά, οπότε του έμειναν =80 κιλά. Για να έχει κέρδος 0% επί της τιμής αγοράς πρέπει να εισπράξει = 70 ευρώ. 00 Άρα πρέπει να πουλήσει το κιλό 70 :80 = 4 ευρώ. 4. (α) Αν x =ΒΓ, y =ΑΔ και ΑΕ = υ, τότε x = y και ( x+ y) υ Ε =Ε= ( ΑΒΓΔ) y υ = Ε y υ = y υ = 00cm. Άρα έχουμε Ε( ΑΒΔ ) = y υ = 00 cm = 00 cm. (β) ( ΑΒΚΓ ) = ( ΑΒΓ ) = y υ = ( y υ) = 00 = 400 cm.

25 Διαφορετικά Το τετράπλευρο ΑΒΚΓ έχει καθέτους διαγώνιους, οπότε έχει εμβαδόν ( ΑΒΚΓ ) = ΒΓ ΑΚ = y υ = ( y υ) = 00 = 400 cm.

26 Γ ΓΥΜΝΑΣΙΟΥ Α= : : = :4 + 4 : = :( ) 4 + : = ( : + 4 ) : 4 4 = + 4 : = :6= ( ) ( ) ( ) ( ) ( ) ( x ) ( y ) x( y ) y( x ) x y ( xy x yx y) B= 4 + = + + = x y+ 5 xy+ x+ xy+ y = x+ 5. Α>Β > x+ 5 x> 7 x< 7.. (α) ΖΓ ˆx = ΑΖΓ ˆ (ως εντός εναλλάξ στις παράλληλες ΒΓ και ε ). Επειδή η δ είναι μεσοκάθετη της ΑΓ το τρίγωνο ΑΓΖ είναι ισοσκελές με ΖΓΑ ˆ = ΖΑΓ ˆ. Όμως, από την παραλληλία των ευθειών ε και ΒΓ προκύπτει ότι ΖΑΓ ˆ = Γ ˆ. Από το ισοσκελές τρίγωνο ΑΒΓ με Α= ˆ 40 προκύπτει ότι 80 ˆ ˆ ˆ Α Β=Γ= = = 70. Άρα έχουμε ΖΓΑ ˆ = ΖΑΓ ˆ = Γ ˆ = 70, οπότε θα είναι ˆ ΑΖΓ = = 40 ΖΑ ˆ x = 40. (β) Επειδή η δ είναι μεσοκάθετη της ΑΓ, το τρίγωνο ΚΑΓ είναι ισοσκελές με ΚΑ = ΚΓ, οπότε η ΚΕ είναι η διχοτόμος της γωνίας ΑΚΓ. Άρα έχουμε AKZ ˆ =ΓΚΖ ˆ. Επειδή είναι ε ΒΓ θα έχουμε AZΚ ˆ =ΓΚΖ ˆ, οπότε θα είναι και AKZ ˆ =ΑΖΚ ˆ, οπότε το τρίγωνο ΚΑΖ είναι ισοσκελές με ΚΑ = AΖ.. (α) Από τον κανόνα πολλαπλασιασμού δύο φυσικών αριθμών έπεται ότι το τελευταίο ψηφίο του γινομένου τους είναι το τελευταίο ψηφίο του γινομένου των ψηφίων των μονάδων τους. Θεωρώντας τα τετράγωνα των μονοψήφιων φυσικών αριθμών διαπιστώνουμε ότι αυτά λήγουν σε 0,, 4, 5, 6, 9, οπότε το τελευταίο ψηφίο κάθε τετραγώνου φυσικού αριθμού ανήκει Σ= 0,, 4,5, 6,9. στο σύνολο { } (β) Σύμφωνα με το πρώτο ερώτημα θα πρέπει b { 0,, 4,5, 6,9} και αφού ο αριθμός είναι περιττός πρέπει b {, 5, 9}. Επειδή ο Α διαιρείται με το 9 πρέπει να ισχύει ότι: a+ b= πολλαπλάσιο του 9. ()

27 4 Για b = λαμβάνουμε a + = πολ.9, αδύνατο. Για b = 5 λαμβάνουμε a + 0 = πολ.9, αδύνατο. Για b = 9 λαμβάνουμε a + 8 = πολ.9, οπότε προκύπτει ότι a {, 6,9}. Άρα είναι Α= 99 ή Α = ή Α = (α) Παρατηρούμε ότι ΒΟΓ ˆ = Α ˆ = 60, οπότε το τρίγωνο ΟΒΓ είναι 80 0 ισόπλευρο και ισχύει ότι R =ΒΓ= α. Επιπλέον ˆ ˆ Β=Γ= = 75. Άρα είναι ΑΟΓ ˆ = 75 = 50, οπότε θα έχουμε 50 5πα E κτομ. έ α ( ΟΑΕΓ ) = πα =. 60 (β) Επειδή είναι ΔΑΓ=Γ= ˆ ˆ 75 (εντός εναλλάξ στις παράλληλες ΑΔ και ΒΓ με τέμνουσα την ΑΓ) και ΑΓΔ= ˆ 90 ΟΓΑ= ˆ 90 ΟΑΓ=ΔΑΓ= ˆ ˆ 75, τα τρίγωνα ΑΒΓ και ΔΑΓ είναι όμοια. (γ) Επειδή είναι ΟΑ ΑΔ και ΑΔ ΒΓ θα είναι και ΟΑ ΒΓ, οπότε η ΟΑ περνάει από το μέσο Μ της πλευράς ΒΓ. Από το τρίγωνο ΟΜΓ έχουμε α α α ΟΜ = ΟΓ ΜΓ ΟΜ = α ΟΜ = ΟΜ =. 4 Άρα είναι ΑΜ = ΑΟ + ΟΜ = α + και α α ( + ) ( ΑΒΓ ) = α α + =. 4.

28 5 Α ΛΥΚΕΙΟΥ. Σύμφωνα με τη συζήτηση που είχε ο Γιάννης με τη Μαρία, αν x, y είναι οι αριθμοί, τότε θα ισχύουν: xy = ( x 50)( y + 40) 40x 50y = 000 x= 00. xy = ( x + 00)( y 0) 0x+ 00y = 000 y = 0. Το ελάχιστο κοινό πολλαπλάσιο των παρανομαστών είναι α β β γ γ α, ( )( )( ) 0 οπότε έχουμε ( β γ)( α ) ( γ α)( β ) ( α β)( γ ) Α= + + = ( α β)( β γ)( γ α) ( α β)( β γ)( γ α) ( α β)( β γ)( γ α) ( β γ) α + ( γ α) β + ( α β) γ + ( β γ + γ α + α β) = = ( α β)( β γ)( γ α) ( β γ) α + βγ( β γ) α( β γ ) = = ( α β)( β γ)( γ α) ( β γ)( α + βγ α( β + γ)) ( α β)( α γ) = = = =. ( α β)( β γ)( γ α) ( α β)( γ α). Δ Α 45 β Ζ Ε Β Γ (α) Το τρίγωνο ΑΓΔ είναι ορθογώνιο και ισοσκελές, οπότε ΑΓΔ ˆ = 45 Άρα είναι ˆ ΑΓΔ = 45 = ΒΑΓ ˆ, οπότε ΑΒ ΓΔ, αφού τεμνόμενες από την ΑΓ σχηματίζουν δύο εντός εναλλάξ γωνίες ίσες. Άρα το τετράπλευρο ΑΒΓΔ είναι τραπέζιο με βάσεις ΑΒ = β, ΓΔ β ΑΖ = =. Άρα έχει εμβαδόν ( ) ΓΔ = β + β = β και ύψος ( ) β + β β β + ΑΒΓΔ = = 4..

29 6 (β) Επειδή είναι ΑΒ ΓΔ τα τρίγωνα ΕΑΒ και ΕΔΓ είναι όμοια, οπότε, αν ΕΑ = x, θα έχουμε: x ΕΔ x x+ β = = x = x+ β x( ) = β ΑΒ ΔΓ β β ( ) β x = = β Η δεδομένη σχέση γράφεται διαδοχικά: Οι αριθμοί όμως x 6 4 x + x y + y + x + y = 40 ( x y ) ( x y ) = 4 ( x y ) ( x y ) = 4. + y + και x + y +, είναι θετικοί ακέραιοι με x + y + < x + y + και γινόμενο 4 = 4 = = 4 = 6 7. Επομένως θα πρέπει: x + y + = και x + y + = 4 () x x + y + = και x + y + = και x + y + = () + y + = 4 () x + y + = 6 και x + y + = 7 (4) Προφανώς οι σχέσεις (),(),() είναι αδύνατες και από τη σχέση (4), έχουμε: x + y = 5 που αληθεύει για x = και y =. Διαφορετικά, θα μπορούσαμε να θεωρήσουμε το τριώνυμο ω + ω 40= 0, όπου ω = x + y, η οποία, αφού xy>, 0 έχει τη μοναδική λύση x μόνο για x = και y =. + y = 5, που αληθεύει

30 7 Β ΛΥΚΕΙΟΥ. Ισοδύναμα από την δεδομένη ισότητα, έχουμε: x x + + x x y + y + y y + = 0 ( x ) + ( x y ) + ( y ) = 0 ( x 0 και x y 0 και y 0) = = =. ( x και y ) ή ( x και y ) = = = =. Για να έχει η εξίσωση διπλή λύση, πρέπει η διακρίνουσά της να είναι μηδέν. Δ=0 λ 4κμ = 0 λ = 4κμ. -λ Στη περίπτωση αυτή η διπλή λύση είναι: x = x = κ Ο αριθμός 4κμ είναι άρτιος. Άρα και ο λ είναι άρτιος, οπότε ο λ είναι άρτιος. Οι δυνατές τιμές που μπορεί να πάρει ο λ (δεδομένου ότι είναι μονοψήφιος θετικός ακέραιος) είναι: λ = ή λ = 4 ή λ = 6 ή λ = 8. Αν λ = τότε: 4= 4κμ κμ =, οπότε οι δυνατές τιμές για τα κ και μ είναι κ = και μ =. Αν λ = 4 τότε: 6 = 4κμ κμ = 4, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 4 ) ή ( κ = 4 και μ = ) ή ( κ = και μ = ). Αν λ = 6 τότε: 6 = 4κμ κμ = 9, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 9) ή ( κ = 9 και μ = ) ή ( κ = και μ = ). Αν λ = 8 τότε: 64 = 4κμ κμ = 6, οπότε οι δυνατές τιμές για τα κ και μ είναι ( κ = και μ = 8 ) ή ( κ = 8 και μ = ) ή ( κ = 4 και μ = 4 ). Άρα οι δυνατές τιμές για τη διατεταγμένη τριάδα ( κ, λμ, ) είναι: (,,), (,4,4), (,4,), (, 6, 9), (,6,), (,8,8), (4,8,4). Οι άλλες περιπτώσεις απορρίπτονται, διότι δεν δίνουν ακέραια λύση. Οι εξισώσεις που προκύπτουν, με την αντίστοιχη διπλή λύση είναι: x + x+ = 0 με διπλή λύση x = x =, x x + 4x+ 4= 0 με διπλή λύση x = x =, + 6x+ 9= 0 με διπλή λύση x = x =.. (α) Εφόσον το ΒΓΔΕ είναι ρόμβος, θα ισχύουν οι ισότητες: ΒΓ = ΓΔ = ΔΕ = ΒΕ ()

31 8 Θεωρούμε ΑΛ και ΕΚ κάθετες στη ΒΓ. Τότε ΑΛ = ΕΚ (διότι ΑΛΚΕ είναι ορθογώνιο παραλληλόγραμμο). ΒΓ Η ΑΛ είναι διάμεσος στο ορθογώνιο τρίγωνο ΑΒΓ, οπότε ΑΛ =. () ΒΓ ΒΕ Άρα ΑΛ = ΕΚ = =. Δηλαδή στο ορθογώνιο τρίγωνο ΒΕΚ, έχουμε: ΒΕ ΕΚ = οπότε Β ˆ = 0 o. Από το ρόμβο ΒΓΔΕ έχουμε Β ˆ ˆ =Δ = 0 o και επειδή ΓΔΖ ˆ = 90 o έχουμε τελικά ότι: Δ ˆ = 60 o () Το τετράπλευρο ΑΓΔΖ είναι εγγράψιμο (διότι Α=Δ= ˆ ˆ 90 o ) και η ΑΔ είναι διχοτόμος της γωνίας ΓΑΖ ˆ. Άρα το Δ είναι μέσο του τόξου ΓΖ, οπότε () ΔΓ = ΔΖ = ΔΕ () Από τις σχέσεις () και () συμπεραίνουμε ότι το τρίγωνο ΔΕΖ είναι ισόπλευρο. (β) Προφανώς η ΑΕ είναι διχοτόμος της γωνίας ΓΑΖ ˆ. Αρκεί να αποδείξουμε ότι η ΖΕ είναι διχοτόμος της γωνίας ΓΖΑ ˆ. Εφόσον το τρίγωνο ΔΕΖ είναι ισόπλευρο, θα ισχύει ΕΖ=ΕΒ και επειδή Β ˆ = 5 o, θα ισχύει: Ζ ˆ = 5 o (4)

32 9 Από το εγγράψιμο τετράπλευρο ΑΓΔΖ έχουμε ΑΖΓ ˆ = Δ ˆ = 0 o, οπότε θα είναι Ζ ˆ = 5 o. 4. Για xyz 0 το σύστημα είναι ισοδύναμο με το xy yz 7yz 4zx 5zx 6xy + = 70, + = 56, + = 5, z x x y y z το οποίο, αν θέσουμε xy yz zx = u, = v, = w z x y γίνεται u+ v = 70 () 7v+ 4w= 56 (). 5w+ 6u = 5 () Με πρόσθεση κατά μέλη των τριών εξισώσεων λαμβάνουμε 9 u+ v+ w = 78. ( ) u+ v+ w= 4. (4) Λόγω της (4) η εξίσωση () γίνεται 7v+ 4 4 u v = 56 ( ) 4u+ v= 88. (5) Από τις () και (5) λαμβάνουμε u =, v=, οπότε από την (4) προκύπτει ότι w = 8. Άρα έχουμε το σύστημα xy yz zx =, =, = 8 (6) z x y από το οποίο με πολλαπλασιασμό κατά μέλη των τριών εξισώσεων έχουμε xyz = 8. (7) Από τις (6) και (7) λαμβάνουμε x = 8 x = 6 x=± 4 8y = 8 y = 64 y =± 8, z = 8 z = 56 z =± 6 οπότε προκύπτουν συνολικά 8 τριάδες που είναι λύσεις του συστήματος: xyz,, = 4,8,6 ή 4, 8, 6 ή 4,8, 6 ή 4, 8,6 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ή 4, 8, 6 ή 4,8,6 ή 4, 8,6 ή 4,8, 6.

33 0 Γ ΛΥΚΕΙΟΥ. Α Δ Ο Β Μ Γ (α) Τα τρίγωνα ΑΒΓ και ΔΑΓ είναι ισοσκελή (ΔΑ = ΔΓ, ως εφαπτόμενες από το Δ στον περιγεγραμμένο κύκλο) και έχουν ˆΓ =ΓΑΔ, ˆ ως εντός εναλλάξ. Άρα είναι όμοια. (β) Παρατηρούμε ότι ΒΟΓ ˆ = Α ˆ = 60, οπότε το τρίγωνο ΟΒΓ είναι ισόπλευρο και ισχύει ότι R =ΒΓ= α. Έστω η ΑΟ τέμνει τη ΒΓ στο σημείο Μ. Επειδή είναι ΟΑ = ΟΒ και ΑΒ = ΑΓ η ΟΑ είναι η μεσοκάθετη της ΒΓ. Άρα είναι ΑΔ ΒΓ και το τετράπλευρο ΑΒΓΔ είναι τραπέζιο. Επιπλέον από το τρίγωνο ΑΜΓ έχουμε ΑΜ = α + και α α ΑΓ = α + + ΑΓ = α + 4 Επειδή τα ισοσκελή τρίγωνα ΑΒΓ και ΔΑΓ είναι όμοια ( ˆΓ =ΓΑΔ), ˆ θα έχουμε ΑΔ ΑΓ ΑΓ = ΑΔ= ΑΔ= α ( + ). ΑΓ ΒΓ ΒΓ Άρα είναι α + α( ) ( ) ( ) ( ) + α + α 9 + ΑΒΓΔ = = 5 4. (α) Για να είναι το κοινή ρίζα των δύο εξισώσεων πρέπει και αρκεί: 8λ ( μ + 4) = 0 λ =. 4μ 4 λ = 0 μ = (β) Για λ= και μ= η δεδομένη εξίσωση γίνεται: x 7x 7 =. x 4x 4 8 Όμως έχουμε τις παραγοντοποιήσεις

34 ( )( ) x 7x = x x + 4x+ ( )( ) x 4x 4= x x+. οπότε η εξίσωση είναι ισοδύναμη με την εξίσωση x + 4x+ 7 =, x,. x + 8 6x 9x 6 = 0, x, x= ή x=, x, 6 x =. 6. Για x= y = 0 από τη δοσμένη συναρτησιακή σχέση () έχουμε: ( ) ( ) f(0) f ( f(0) ) f f(0) f(0) = f f(0) 0 = () Από τη δοσμένη συναρτησιακή σχέση () θέτοντας όπου y το f ( x ) έχουμε: f ( f( x) f ( f( x) )) = f ( f( x) ) f( x) () Αν τώρα στη () θέσουμε x = 0 έχουμε: f ( f f ( f )) = f ( f ) f και σε συνδυασμό με την () καταλήγουμε ( ) Θέτοντας στην () όπου x = 0, έχουμε: (0) (0) (0) (0) f f(0) = f(0) = 0. ( (0) ( )) = ( (0)) και δεδομένου ότι ( ) f f f y f f y f f(0) = f(0) = 0, καταλήγουμε στη σχέση f f( y) = y. (4) ( ) Θέτοντας στην () όπου y το x έχουμε: f ( f( x) f( x) ) = f ( f( x) ) x f (0) = f ( f( x) ) x f ( f( x) ) = x (5) Αντικαθιστώντας στην (4) όπου y το f ( x ), έχουμε: f f ( f( x) ) = f( x) ( ) και σε συνδυασμό με την (5), καταλήγουμε στη σχέση f ( x) = f( x), για κάθε x, δηλαδή η f είναι περιττή. 4. Αν θέσουμε a+ b x =, τότε λαμβάνουμε a b a x+ = () b x

35 b c c a (είναι x, αφού b 0 ). Ομοίως, αν θέσουμε y = +, z = + b c c a λαμβάνουμε b y+ = c y () c z+ και =. a z () Από τις (), () και () με πολλαπλασιασμό κατά μέλη λαμβάνουμε ( x+ )( y+ )( z+ ) abc = = xy + yz + zx =. ( x )( y )( z ) bca Όμως έχουμε 0 x+ y+ z = x + y + z + xy+ yz+ zx = x + y + z ( ) ( ) x y z 0 x + y + z. + +

36 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 B ΓΥΜΝΑΣΙΟΥ. Να υπολογίσετε την τιμή της παράστασης: Α= : 4 + ( 5 ) Μονάδες 5. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του τριγώνου ΑΒΓ και διχοτόμος της γωνίας ΓAx ˆ. Δίνεται ακόμη ότι: ΒAΓ=6 ˆ και ΑΒ = ΑΔ. (α) Να βρείτε τις γωνίες ˆΒκαιΓˆ του τριγώνου ΑΒΓ. Μονάδες (β) Να εξηγήσετε γιατί η ΒΔ είναι διχοτόμος της γωνίας ΑΒΓ ˆ. Μονάδες Β Α x Γ Δ y. Αν για το θετικό ακέραιο αριθμό α ισχύει: 4 < <, 5 α 4 να βρεθεί η τιμή της παράστασης Α= α + 5(4 + α) + ( α 4) Μονάδες 5 4. Ένα Γυμνάσιο συμμετέχει στην παρέλαση για την επέτειο μιας Εθνικής Εορτής με το 60% του αριθμού των αγοριών και το 80% του αριθμού των κοριτσιών του. Τα αγόρια που συμμετέχουν, αν παραταχθούν σε τριάδες, τότε δεν περισσεύει κανείς, ενώ, αν παραταχθούν σε πεντάδες ή επτάδες, τότε και στις δύο περιπτώσεις περισσεύουν από τρεις. Όλα τα αγόρια του Γυμνασίου είναι περισσότερα από 00 και λιγότερα από 00. Αν το 80% των κοριτσιών είναι αριθμός διπλάσιος από τον αριθμό που αντιστοιχεί στο 60% του αριθμού των αγοριών, να βρείτε το συνολικό αριθμό των κοριτσιών και αγοριών του Γυμνασίου. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

37 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 Γ ΓΥΜΝΑΣΙΟΥ x ( ) + ( ) x. Δίνονται οι παραστάσεις: A =, B= ( ) 5 Αν είναι A = B, να προσδιορίσετε την τιμή του x. Μονάδες 5. Το σημείο Α ( λ +,4λ ) ), όπου λ θετικός ακέραιος, βρίσκεται στο πρώτο τεταρτημόριο ενός συστήματος ορθογωνίων αξόνων Ox y. Να βρεθούν: (α) ο θετικός ακέραιος λ, (β) το μήκος του ευθυγράμμου τμήματος ΟΑ και (γ) το εμβαδόν του τετραπλεύρου ΟΒΑΓ, όπου Β, Γ είναι τα ίχνη των καθέτων από το σημείο Α στους θετικούς ημιάξονες Ox και Oy, αντίστοιχα. Μονάδες 5. Στο παρακάτω σχήμα δίνονται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ= α, ΑΔ= α και τέσσερα ημικύκλια εξωτερικά του ορθογωνίου. Ο εξωτερικός κύκλος έχει κέντρο το σημείο τομής Ο των διαγωνίων του ορθογωνίου. Να υπολογιστεί συναρτήσει του α το εμβαδόν του γραμμοσκιασμένου χωρίου. Μονάδες 5 4. Αν ισχύει ν 45 ν 6 ν = 900, όπου ν θετικός ακέραιος, να βρεθεί η τιμή της παράστασης ν ν+ 00 ( ) ( ) 4 ( ) ν + Α= +. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

38 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 Α ΛΥΚΕΙΟΥ. Αν στο 8 ενός αριθμού x προσθέσουμε το 4 του αριθμού αυτού προκύπτει αριθμός μικρότερος κατά 55 του αριθμού x. Να βρεθεί ο αριθμός x. Μονάδες 5. Να προσδιορίσετε τους ακέραιους x, y και z που είναι τέτοιοι ώστε 0 x y z και xyz+ xy+ yz+ zx+ x+ y+ z = 44. Μονάδες 5. Να βρεθούν οι γωνίες των ισοσκελών τριγώνων τα οποία έχουν τη παρακάτω ιδιότητα: υπάρχει ευθύγραμμο τμήμα που συνδέει μία κορυφή με την απέναντι πλευρά ώστε να δημιουργούνται μέσα στο ισοσκελές τρίγωνο, δύο ισοσκελή τρίγωνα. (Να εξετάσετε όλες τις δυνατές περιπτώσεις). Μονάδες 5 4. Αν οι πραγματικοί αριθμοί ικανοποιούν τις ισότητες x y = z, y z = x, z x= y, να αποδείξετε ότι: (α) x + y + z = xyz. (β) Ένας τουλάχιστον από τους x, y, z ισούται με 0. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

39 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 Β ΛΥΚΕΙΟΥ. Δεκαπέντε θετικοί ακέραιοι αριθμοί, με ψηφία περισσότερα από δύο, έχουν ως τελευταίο διψήφιο τμήμα τους τον αριθμό 5. Να αποδείξετε ότι το άθροισμα τους είναι πολλαπλάσιο του 5. Μονάδες 5. Δίνεται τραπέζιο ΑΒΓΔ με ΑΔ ΒΓ και ˆ ˆ Γ=Δ= 90. Φέρουμε από το Α κάθετη προς τη ΒΓ που την τέμνει στο σημείο Ε και από το Ε κάθετη προς την διαγώνιο ΒΔ που την τέμνει στο σημείο Ζ. Να προσδιορίσετε το μέτρο της γωνίας ΑΖΓ ˆ. Μονάδες 5. Να προσδιορίσετε τις τριάδες ακέραιων ( x, yz, ) με x y z, που ικανοποιούν τις εξισώσεις: ( ) ( ) ( ) x y z y z x z x y + + =, x+ y+ z = 00. Μονάδες 5 4. Δίνεται ευθύγραμμο τμήμα ΑΒ. Θεωρούμε τυχόν σημείο Μ εκτός του ΑΒ και τέτοιο ώστε η κάθετη από το Μ προς την ευθεία ΑΒ να την τέμνει σε εσωτερικό σημείο του ευθύγραμμου τμήματος ΑΒ. Φέρουμε ευθύγραμμα τμήματα ΑΓ και ΒΔ έτσι ώστε ΑΓ ΑΜ και ΑΓ = ΑΜ, ΒΔ ΜΒ και ΒΔ =ΜΒ, και επιπλέον τα σημεία Γ, Μ και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Να αποδείξετε ότι το μέσον Κ του ευθύγραμμου τμήματος ΓΔ είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

40 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 Γ ΛΥΚΕΙΟΥ. Αν οι θετικοί ακέραιοι α και β έχουν 0 κοινούς θετικούς διαιρέτες, να προσδιορίσετε το πλήθος των κοινών θετικών διαιρετών των αριθμών Α= 4α + 5β και Β= α + 4β. Μονάδες 5. Να προσδιορίσετε το πλήθος και το άθροισμα των άρτιων θετικών ακέραιων που βρίσκο- νται μεταξύ των αριθμών Α= n n+ και B= n + n+, όπου n θετικός ακέραιος. Μονάδες 5. Να προσδιορίσετε τις τριάδες ακέραιων ( x, yz, ) με x y z που ικανοποιούν την εξίσωση: xy ( x y) + yz ( y z) + zx ( z x) = 6. Ποιες από τις τριάδες αυτές έχουν άθροισμα τετραγώνων ελάχιστο; Μονάδες 5 4. Δίνεται ευθύγραμμο τμήμα ΑΒ. Θεωρούμε τυχόν σημείο Μ εκτός του ΑΒ και τέτοιο ώστε η κάθετη από αυτό προς την ευθεία ΑΒ να την τέμνει σε εσωτερικό σημείο του ευθύγραμμου τμήματος ΑΒ. Φέρουμε ευθύγραμμα τμήματα ΑΓ και ΒΔ τέτοια ώστε ΑΓ ΑΜ και ΑΓ = ΑΜ, ΒΔ ΜΒκαι ΒΔ = ΜΒ και επιπλέον τα σημεία Μ, Γ και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Να αποδείξετε ότι το μέσον Κ του ευθύγραμμου τμήματος ΓΔ είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

41 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ. Να υπολογίσετε την τιμή της παράστασης: Α= : 4 + ( 5 ) Α= : 4 + ( 5 ) 49 0 = ( ) ( ) = + + = + + = Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του τριγώνου ΑΒΓ και διχοτόμος της γωνίας ΓAx ˆ. Δίνεται ακόμη ότι ΒAΓ=6 ˆ και ΑΒ = ΑΔ. (α) Να βρείτε τις γωνίες ˆΒκαιΓˆ του τριγώνου ΑΒΓ. (β) Να εξηγήσετε γιατί η ΒΔ είναι διχοτόμος της γωνίας ΑΒΓ ˆ. 4 Σχήμα (α) Επειδή η Αy είναι διχοτόμος της γωνίας ΓAˆ x θα είναι ΓΑΔ ˆ = ΔΑ ˆx. Όμως είναι ΓΑΔ ˆ + ΔΑ ˆx = 80 ΒΑΓ ˆ = 80 6 = 8, οπότε καθεμία από τις γωνίες ΓΑ ˆΔ και ΔΑˆx είναι 59. Επειδή είναι Αy ΒΓ έχουμε τις ισότητες γωνιών 0 Β=ΔΑ ˆ ˆ x = 59 και Γ= ˆ 0 ΓΑΔ= ˆ 59. (β) Επειδή είναι ΑΒ = ΑΔ. έπεται ότι το τρίγωνο ΑΒΔ είναι ισοσκελές με ΑΒΔ ˆ = ΑΔΒ. ˆ () Λόγω της παραλληλίας των ευθειών ΒΓ και Αy έχουμε ότι ΑΔΒ ˆ = ΔΒΓ ˆ (εντός εναλλάξ γωνίες) () Από τις () και () έπεται ότι: ΑΒΔ ˆ = ΔΒΓ ˆ, οπότε η ΒΔ είναι διχοτόμος της γωνίας ΑΒΓ ˆ.

42 . Αν για το θετικό ακέραιο αριθμό α ισχύει: σης Α= α + 5(4 + α) + ( α 4) < <, να βρεθεί η τιμή της παράστα 5 α 4 Έχουμε: < α α < 4 0 < α < 8 < < 0, οπότε θα είναι α = 9, αφού α θετικός ακέραιος. Άρα είναι: Α= 9 + 5(4 + 9) + (9 4) + 99 = = Ένα Γυμνάσιο συμμετέχει στην παρέλαση για την επέτειο μιας Εθνικής Εορτής με το 60% του αριθμού των αγοριών και το 80% του αριθμού των κοριτσιών του. Τα αγόρια που συμμετέχουν, αν παραταχθούν σε τριάδες, τότε δεν περισσεύει κανείς, ενώ, αν παραταχθούν σε πεντάδες ή επτάδες, τότε και στις δύο περιπτώσεις περισσεύουν από τρεις. Όλα τα αγόρια του Γυμνασίου είναι περισσότερα από 00 και λιγότερα από 00. Αν το 80% των κοριτσιών είναι αριθμός διπλάσιος από τον αριθμό που αντιστοιχεί στο 60% του αριθμού των αγοριών, να βρείτε το συνολικό αριθμό των κοριτσιών και αγοριών του Γυμνασίου. Αν είναι Α ο αριθμός των αγοριών που συμμετέχουν στην παρέλαση, τότε ο Α είναι πολλαπλάσιο του και επιπλέον έχουμε Α = πολ.5 + Α = πολ.5, Α = πολ.7 + Α = πολ.7 οπότε ο αριθμός Α είναι κοινό πολλαπλάσιο των αριθμών 5 και 7. Τότε ο αριθμός Α θα είναι πολλαπλάσιο του ΕΚΠ(5,7)=5, δηλαδή θα είναι ένας από του αριθμούς 5, 70, 05, 40,..., Επομένως ο αριθμός Α θα είναι κάποιος από τους αριθμούς 8, 7, 08, 4,... Αν Α είναι ο αριθμός των αγοριών του Γυμνασίου, τότε από την υπόθεση είναι <Α< < Α< <Α < 0, οπότε οι αποδεκτές τιμές για τον αριθμό Α είναι οι 7 και 08. Επειδή ο αριθμός Α είναι και πολλαπλάσιο του, έπεται ότι Α = 08, οπότε ο αριθμός των αγοριών του Γυμνασίου είναι: 00 Α= 08 = Από την υπόθεση έχουμε ότι τα κορίτσια που συμμετείχαν στην παρέλαση ήταν 08 = 6, οπότε ο αριθμός Κ των κοριτσιών του Γυμνασίου είναι: 00 Κ= 6 = Άρα συνολικά το Γυμνάσιο έχει 80+70=450 μαθητές και μαθήτριες.

43 . Δίνονται οι παραστάσεις: 4 Γ ΓΥΜΝΑΣΙΟΥ x ( ) + ( ) x A =, B= ( ) 5 Αν είναι A = B, να προσδιορίσετε την τιμή του x. Επειδή Επίσης έχουμε ( ) ( ) ( ) = = 0 έχουμε =, οπότε: Επομένως έχουμε x A= = + x = x ( ) ( ) ( ) 4 ( ) + x + x x B= + = + = x Α=Β x= 5 + x= 0 + x x= 0.. Το σημείο Α ( λ +,4λ ) ), όπου λ θετικός ακέραιος, βρίσκεται στο πρώτο τεταρτημόριο ενός συστήματος ορθογωνίων αξόνων Ox y. Να βρεθούν: (α) ο θετικός ακέραιος λ, (β) το μήκος του ευθυγράμμου τμήματος ΟΑ, (γ) το εμβαδόν του τετραπλεύρου ΟΒΑΓ, όπου Β, Γ είναι τα ίχνη των καθέτων από το σημείο Α προς τους θετικούς ημιάξονες Ox και Oy, αντίστοιχα. (α) Σύμφωνα με τις υποθέσεις πρέπει να συναληθεύουν οι ανισότητες: λ+ > 0 και 4λ > 0 λ < και λ >, 4 από τις οποίες, αφού ο λ είναι θετικός ακέραιος, έπεται ότι λ =. (β) Για λ = είναι Α (, ), οπότε (γ) ΟΑ = + = 0. ΕΟΑΒΓ= ( ) =. Στο παρακάτω σχήμα δίνονται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ= α, ΑΔ= α και τέσσερα ημικύκλια εξωτερικά του ορθογωνίου. Ο εξωτερικός κύκλος έχει κέντρο το σημείο τομής Ο των διαγωνίων του ορθογωνίου. Να υπολογιστεί συναρτήσει του α το εμβαδόν του γραμμοσκιασμένου χωρίου. Από το σχήμα διαπιστώνουμε ότι: 0

44 4 Ο μεγάλος κύκλος έχει ακτίνα α α, τα μικρά ημικύκλια έχουν ακτίνα και τα μεγάλα ημικύκλια έχουν ακτίνα α. Το εμβαδόν του γραμμοσκιασμένου χωρίου προκύπτει από το εμβαδόν του μεγάλου κύ- α 9πα κλου π =, αν αφαιρέσουμε το εμβαδόν του ορθογωνίου ΑΒΓΔ που είναι α, 4 τα εμβαδά των δύο μικρών ημικυκλίων ημικυκλίων α πα π = και τα εμβαδά των δύο μεγάλων 4 Σχήμα πα = πα. Άρα το ζητούμενο εμβαδόν είναι: 9πα πα 4πα 8α Ε= πα α = = ( π ) α ν ν Αν ισχύει = 900, όπου ν θετικός ακέραιος, να βρεθεί η τιμή της παράστασης ν 6 00 ( ) ν ( ) ν + 4 ( ) ν + Α= +. Έχουμε ν ν ν ν ν ν = ν ν = = ( ) ν ν ν 0 = 5 0 = 0 0 =, από την οποία προκύπτει ότι ν = 0 ν =, αφού για κάθε άλλη τιμή του ν η τιμή της δύναμης 0 ν δεν μπορεί να είναι. Άρα έχουμε: + + Α= 00 ( ) ( ) + 4( ) = = = ( )

45 5 Α ΛΥΚΕΙΟΥ. Αν στο 8 ενός αριθμού x προσθέσουμε το 4 του αριθμού αυτού προκύπτει αριθμός μικρότερος κατά 55 του αριθμού x. Να βρεθεί ο αριθμός x. Σύμφωνα με την υπόθεση θα έχουμε την εξίσωση x x x x 5x = x x = 55 = 55 x= = Να προσδιορίσετε τους ακέραιους xy, και z που είναι τέτοιοι ώστε: 0 x y z, xyz+ xy+ yz+ zx+ x+ y+ z = 44. Η τελευταία εξίσωση γράφεται: xyz+ xy+ yz+ zx+ x+ y+ z = 44 xyz + xy + yz + zx + x + y + z + = 45 xy( z + ) + x( z + ) + y( z + ) + ( z + ) = 45 ( xy x y ) z ( x )( y )( z ) ( + ) = = 45. () Επειδή οι x, yz, είναι μη αρνητικοί ακέραιοι και x y z, έπεται ότι: x + y+ z+. () Από τις () και () και αφού 45= 5 προκύπτουν οι περιπτώσεις ( x+, y+, z+ ) = (,,5) ή(,5,9 ) ή(,,5) ή (,, 45) xyz,, = 0,, 4 ή 0, 4, 8 ή,, 4 ή 0,0, 44 ). ( ) ( ) ( ) ( ) (. Να βρεθούν οι γωνίες των ισοσκελών τριγώνων που έχουν τη παρακάτω ιδιότητα: υπάρχει ευθύγραμμο τμήμα που συνδέει μία κορυφή με την απέναντι πλευρά ώστε να δημιουργούνται μέσα στο ισοσκελές τρίγωνο, δύο ισοσκελή τρίγωνα. (Να εξετάσετε όλες τις δυνατές περιπτώσεις) Έστω ισοσκελές τρίγωνο ΑΒΓ ( ΑΒ = ΑΓ ). η περίπτωση. Θεωρούμε σημείο Δ στη πλευρά ΒΓ ώστε τα τρίγωνα ΑΔΒ και ΑΔΓ να είναι ισοσκελή. Διακρίνουμε τις υποπεριπτώσεις: Αν είναι ΒΑΔ ˆ = Βˆ και ΓΑΔ ˆ = ΓΔΑ ˆ τότε ισχύουν οι ισότητες των γωνιών (σχ. ) : Α ˆ ˆ ˆ =Β=Γ= ˆx και Α ˆ ˆ ˆ =Δ = x, (ως εξωτερική γωνία του τριγώνου ΑΒΔ, οπότε από τη σχέση Α+Β+Γ= ˆ ˆ ˆ 80 καταλήγουμε στην εξίσωση: o o 5 xˆ = 80 xˆ = 6. Στη περίπτωση αυτή είναι Α= ˆ 08 o και Β=Γ= ˆ ˆ 6 o.

46 6 Στην περίπτωση που είναι πάλιν ισοσκελή τα τρίγωνα ΑΔΒ και ΑΔΓ με ίσες γωνίες ΒΑΔ ˆ = ΒΔΑ ˆ και ΓΑΔ ˆ = Γˆ, τότε προκύπτουν οι ίδιες γωνίες για το τρίγωνο ΑΒΓ. Στην περίπτωση που είναι πάλιν ισοσκελή τα τρίγωνα ΑΔΒ και ΑΓΔ με ίσες γωνίες ΒΑΔ ˆ = ΒΔΑ ˆ και ΓΑΔ ˆ = ΓΔΑ ˆ, τότε προκύπτουν οι γωνίες ˆ 0 Α= 90 και Β=Γ= ˆ ˆ 45, οπότε το τρίγωνο ΑΒΓ είναι ορθογώνιο ισοσκελές. Πράγματι, από τις ισότητες ˆB= BAˆ Δ και ˆΓ =ΔΑΓ ˆ έπεται ότι: ˆ ˆ ˆ ο B 80 ˆ ˆ ˆ ο +Γ=Α Α=Α Α= 90, οπότε θα είναι B ˆ =Γ= ˆ 45 ο. Σχήμα α Σχήμα β η περίπτωση. Θεωρούμε σημείο Δ στη πλευρά ΑΓ ώστε τα τρίγωνα ΑΔΒ και ΑΓΔ να είναι ισοσκελή και διακρίνουμε τις υποπεριπτώσεις: Αν ΑΒΔ ˆ = Α ˆ και ΒΔΓ ˆ = Γˆ, τότε (σχ. 4) ισχύουν οι ισότητες των γωνιών: Α=Β ˆ ˆ ˆ =Β = ˆx και Δ ˆ ˆ ˆ =Γ= x, αφού η γωνία ˆΔ είναι εξωτερική στο τρίγωνο ΔΑΒ, οπότε xˆ +Β ˆ ˆ ˆ ˆ =Β=Γ= x Β = x. Από τη σχέση Α+Β+Γ= ˆ ˆ ˆ 80 0 καταλήγουμε στην ε- ξίσωση: o o 5xˆ = 80 xˆ = 6. Σχήμα 4 Στη περίπτωση αυτή είναι: Α= ˆ 6 o και Β=Γ= ˆ ˆ 7 o. Αν ΑΒΔ ˆ = Α ˆ = x και ΒΔΓ ˆ = ΓΒΔ ˆ = y, τότε θα έχουμε y = x και x+ y = π.οπότε λαμβάνουμε τελικά τις γωνίες π ˆ ˆ π ˆΑ=, Β=Γ=. 7 7 Σχήμα 5

47 7 4. Αν οι πραγματικοί αριθμοί x, y και z ικανοποιούν τις ισότητες x y z y z x z x y να αποδείξετε ότι: (α) x + y + z = xyz. (β) Ένας τουλάχιστον από τους x, y, zισούται με 0. =, =, =, (α) Με πρόσθεση κατά μέλη των τριών δεδομένων ισοτήτων λαμβάνουμε: x + y + z x+ y+ z = x + y + z ( ) x+ y+ z = 0, () από την οποία προκύπτει άμεσα το ερώτημα (α), αφού τότε είναι z = ( x+ y) και ( ) ( ) x + y + z = x + y + x+ y ( ) x y x y xy x y = xy z = xyz. = + + (β) Από την ισότητα x+ y+ z = 0 προκύπτει ότι z = x y, οπότε η ισότητα x y = z γίνεται x y = ( x+ y) y= xy+ y y ( y+ x+ ) = 0 y= 0ή y= x. Για y = 0 λαμβάνουμε x + z = 0 z = x, οπότε η δεύτερη και η τρίτη των δεδομένων σχέσεων γίνονται: x = x x= 0ή x=, οπότε έχουμε τις τριάδες ( xyz,, ) = ( 0,0,0) ή (, 0, ). Για y = x από την () λαμβάνουμε z = x y = x+, οπότε με αντικατάσταση των yz, στις αρχικές σχέσεις προκύπτει η εξίσωση x( x+ ) = 0 x= 0 ή x=. Έτσι λαμβάνουμε και τις τριάδες ( xyz,, ) = ( 0,,) ή (,, 0). Από την εύρεση όλων των δυνατών τριάδων προέκυψε ότι σε κάθε περίπτωση ένας τουλάχιστον από τους x, yz, ισούται με 0. z ος τρόπος για το (β) Οι δεδομένες ισότητες x y = z, y z = x, z x= y με πολλαπλασιασμό επί και x, αντίστοιχα, γίνονται x z y = y, y x z = z, z y x = x, ( ) ( ) ( ) από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: x + y + z = 0. Λόγω του (α) λαμβάνουμε xyz = 0, δηλαδή ένας τουλάχιστον από τους x, yz, ισούται με 0. y,

48 8 Β ΛΥΚΕΙΟΥ. Δεκαπέντε θετικοί ακέραιοι αριθμοί, με ψηφία περισσότερα από, έχουν το τελευταίο διψήφιο τμήμα τους τον αριθμό 5. Να αποδείξετε ότι το άθροισμα τους είναι πολλαπλάσιο του 5. Κάθε θετικός ακέραιος που τελειώνει σε 5 είναι της μορφής: 00 x + 5, όπου x μη αρνητικός ακέραιος. Άρα το άθροισμα των δεκαπέντε θετικών ακεραίων θα είναι: = (00x + 5 ) + (00x + 5 ) + + (00x + 5 ) = 00( x + x + + x ) = S 5 5 [ ] = 5 4( x + x + + x ) = 5 4( x + x + + x ) + 9, 5 5 δηλαδή είναι πολλαπλάσιο του 5. Παρατήρηση Η κεντρική ιδέα της άσκησης είναι ότι: ο θετικός ακέραιος που το τελευταίο διψήφιο τμήμα του είναι αβ, έχει τη μορφή 00 x + αβ. Με όμοιο τρόπο καταλήγουμε στο συμπέρασμα ότι: ο θετικός ακέραιος που το τελευταίο τριψήφιο τμήμα του είναι αβγ, έχει τη μορφή 000 x + αβγ.. Δίνεται τραπέζιο ΑΒΓΔ με ΑΔ ΒΓ και ˆ ˆ Γ=Δ= 90. Φέρουμε το ύψος ΑΕ και από το Ε κάθετη προς την διαγώνιο ΒΔ που την τέμνει στο σημείο Ζ. Να προσδιορίσετε το μέτρο της γωνίας ΑΖΓ ˆ. ( ος τρόπος) Επειδή είναι ˆ ˆ ˆ ΑΕΓ = Γ = Δ = 90 το τετράπλευρο ΑΕΓΔ είναι ορθογώνιο, οπότε οι διαγώνιοι του είναι ίσες και διχοτομούνται, δηλαδή το σημείο Κ είναι μέσον των ΑΓ και ΕΔ και ΑΓ =ΕΔ. () Σχήμα 6 Επειδή είναι ΕΖ ΒΔ το τρίγωνο ΕΖΔ είναι ορθογώνιο και η ΖΚ είναι η διάμεσος αυτού προς την υποτείνουσα. Άρα είναι ΕΔ ΖΚ =. ()

49 ΑΓ Από τις () και () έπεται ότι ΖΚ =, δηλαδή η διάμεσος του τριγώνου ΑΖΓ προς την πλευρά ΑΓ ισούται με το μισό της πλευράς ΑΓ. Επομένως είναι ˆ ΑΖΓ = Σχήμα 7 ος Τρόπος Το τετράπλευρο ΑΔΓΕ είναι ορθογώνιο παραλληλόγραμμο, οπότε θα είναι εγγεγραμμένο σε κύκλο με κέντρο το σημείο τομής των διαγωνίων του O. Εφόσον ΕΖΔ ˆ = ΕΑΔ ˆ = 90 o, το τετράπλευρο ΕΖΑΔ είναι εγγράψιμο και κατά συνέπεια τα σημεία ΑΔΓΕΖ,,,, είναι ομοκυκλικά. Άρα ΑΖΓ ˆ = 90 o (διότι βαίνει στη διάμετρο ΑΓ ).. Βρείτε τις τριάδες θετικών ακέραιων ( x, yz, ) με x y z που ικανοποιούν τις εξισώσεις: ( ) ( ) ( ) x y z y z x z x y + + =, x+ y+ z = 00. Έχουμε x y z + y z x + z x y = x y x z+ y z y x+ z x z y= ( ) ( ) ( ) ( xy yx) ( xz yz) ( zx zy) + = ( ) ( )( ) ( ) xy x y z x y x + y + z x y = ( x y) xy z ( x y) z ( x y)( xy zx zy z ) + + = + = ( x y)( y z)( x z) =. Από την τελευταία εξίσωση προκύπτει ότι οι ακέραιοι x y, y z, x z είναι διάφοροι από το 0. Επιπλέον, από την υπόθεση x y z έπεται ότι x y 0 και x z y z > 0 και αφού ( x y) + ( y z) = x z, έπεται ότι οι δυνατές τιμές για τις διαφορές x y, y z, x z είναι: x y =, y z =, x z =.

50 0 Επειδή η τρίτη εξίσωση προκύπτει με πρόσθεση κατά μέλη της πρώτης και της δεύτερης, κάθε λύση του συστήματος της πρώτης και δεύτερης εξίσωσης είναι και λύση της τρίτης εξίσωσης, οπότε από το προηγούμενο σύστημα λαμβάνουμε: x y =, y z = x = y+, z = y, όπου y θετικός ακέραιος. Έτσι έχουν προκύψει οι τριάδες θετικών ακέραιων ( xyz) ( k kk ),, = +,,, όπου k θετικός ακέραιος. Από την εξίσωση x+ y+ z = 00 λαμβάνουμε: ( k + ) + k + ( k ) = 00 k = 00 k = 00, οπότε η ζητούμενη τριάδα είναι μόνον η xyz,, = 0, 00, 99. ( ) ( ) 4. Δίνεται ευθύγραμμο τμήμα ΑΒ. Θεωρούμε τυχόν σημείο Μ εκτός του ΑΒ και τέτοιο ώστε η κάθετη από το Μ προς την ευθεία ΑΒ να την τέμνει σε εσωτερικό σημείο του ευθύγραμμου τμήματος ΑΒ. Φέρουμε ευθύγραμμα τμήματα ΑΓ και ΒΔ τέτοια ώστε ΑΓ ΑΜ και ΑΓ = ΑΜ, ΒΔ ΜΒ και ΒΔ =ΜΒ, και επιπλέον τα σημεία Γ, Μ και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Να αποδείξετε ότι το μέσον Κ του ευθύγραμμου τμήματος ΓΔ είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. Από τα σημεία Γ, Μ και Δ φέρουμε καθέτους ΓΕ, ΜΗ και ΔΖ προς την ευθεία ΑΒ. Τότε οι οξείες γωνίες ΜΑΗ ˆ και ΑΓΕ ˆ έχουν πλευρές κάθετες, οπότε είναι ίσες. Για τον ίδιο λόγο είναι ίσες και οι γωνίες ΜΒΗ ˆ και ΒΔΖ ˆ. Έτσι από την υπόθεση ΑΓ =ΑΜ προκύπτει ότι τα ορθογώνια τρίγωνα ΑΗΜ, ΓΕΑ είναι ίσα, οπότε θα έχουμε: ΓΕ =ΑΗ () ΕΑ=ΜΗ. () Σχήμα 8 Ομοίως από την υπόθεση ΒΔ = ΜΒ και ΒΔ ΜΒ προκύπτει ότι τα ορθογώνια τρίγωνα ΜΗΒ, ΒΖΔ είναι ίσα, οπότε θα έχουμε: ΔΖ =ΗΒ () ΒΖ=ΜΗ. (4)

51 Έστω ότι η κάθετη από το μέσον Κ της ΓΔ τέμνει την ευθεία ΑΒ στο σημείο Ο. Τότε η ΚΟ θα είναι η διάμεσος του τραπεζίου ΓΕΖΔ, οπότε θα ισχύει: ΓΕ+ΔΖ ΟΚ =. (5) Λόγω των () και () η σχέση (5) γίνεται ΓΕ + ΔΖ ΑΗ + ΗΒ ΑΒ ΟΚ = = =. (6) Επιπλέον, το μέσον Ο της ΕΖ είναι και μέσον της ΑΒ, αφού από τις σχέσεις () και (4) προκύπτει ότι ΕΑ = ΒΖ, οπότε θα έχουμε Ο Α=ΟΕ ΑΕ=ΟΖ ΒΖ=ΟΒ. (7) Επομένως το σημείο Κ βρίσκεται πάνω στη μεσοκάθετη του ευθύγραμμου τμήματος ΑΒ σε απόσταση από το μέσον Ο ίση προς το μισό του ΑΒ. Άρα είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. ος τρόπος Θεωρούμε την ευθεία ΑΒ ως άξονα των πραγματικών αριθμών στο μιγαδικό επίπεδο και το μέσον του ευθύγραμμου τμήματος ΑΒ ως την αρχή των αξόνων. Έστω ότι το σημείο Μ είναι η εικόνα του μιγαδικού αριθμού z, το σημείο Β είναι η εικόνα του πραγματικού αριθμού a, οπότε το σημείο Α θα είναι η εικόνα του πραγματικού αριθμού a. Τότε στο διάνυσμα ΑΜ αντιστοιχίζεται ο μιγαδικός αριθμός z+ aκαι επειδή είναι ΑΓ ΑΜ, ΑΓ = ΑΜ έπεται ότι ( ΑΜ, ΑΓ ) = 90, οπότε στο διάνυσμα ΑΓ αντιστοιχίζεται ο μιγαδικός αριθμός i z+ a). Επομένως στο διάνυσμα ΟΓ = ΟΑ + ΑΓ, άρα και στο σημείο Γ, αντιστοιχίζεται ο ( ( ) μιγαδικός αριθμός a+ i z+ a. Σχήμα 9 Με το ίδιο σκεπτικό, αλλά με την παρατήρηση ότι ( ) ΒΜ, ΒΔ = 90, καταλήγουμε ότι στο σημείο Δ αντιστοιχίζεται ο μιγαδικός αριθμός a i( z a). Επομένως το μέσον Κ του ευθύγραμμου τμήματος ΓΔ είναι εικόνα του μιγαδικού αριθμού a+ i( z+ a) + a i( z a) = ai, οπότε το σημείο Κ είναι σταθερό, δηλαδή ανεξάρτητο του μιγαδικού αριθμού z, άρα ανεξάρτητο από τη θέση του σημείο Μ.

52 Γ ΛΥΚΕΙΟΥ. Αν οι θετικοί ακέραιοι α και β έχουν 0 κοινούς θετικούς διαιρέτες, να προσδιορίσετε το πλήθος των κοινών θετικών διαιρετών των αριθμών Α= 4α + 5β και Β= α + 4β. Θα αποδείξουμε ότι τα σύνολα των θετικών ακέραιων κοινών διαιρετών των αριθμών α, β και των αριθμών Α και Β ταυτίζονται. Έστω ότι ο θετικός ακέραιος δ είναι κοινός διαιρέτης των αριθμών α, β. Τότε από τις σχέσεις δ α και δ β λαμβάνουμε ότι ο δ διαιρεί και κάθε γραμμικό συνδυασμό τους, οπότε δ (4α + 5 β) =Α και δ (α + 4 β) =Β, δηλαδή ο δ είναι κοινός διαιρέτης των Α και Β. Αντίστροφα, έστω ότι ο θετικός ακέραιος δ είναι κοινός διαιρέτης των ακεραίων Α και Β. Τότε από τις υποθέσεις δ Α= 4α + 5β και δ Β= α + 4β έπεται ότι δ Α Β= α + β, oπότε προκύπτει ότι: δ 5( Α Β) Α= α και δ Α 4( Α Β ) = β, οπότε ο δ είναι κοινός διαιρέτης και των αριθμών α και β. Επομένως και οι αριθμοί Α και Β έχουν 0 κοινούς θετικούς ακέραιους διαιρέτες.. Να προσδιορίσετε το πλήθος και το άθροισμα των άρτιων θετικών ακέραιων που βρίσκονται μεταξύ των αριθμών Α= n n+ και B= n + n+, όπου n θετικός ακέραιος. Έχουμε Α = n(n - ) + και Β= n(n + ) +, οπότε και οι δύο αριθμοί είναι περιττοί, αφού τα γινόμενα διαδοχικών ακέραιων n(n - ) και n(n + ) είναι άρτιοι ακέραιοι. Επιπλέον, είναι Β Α = n>0, οπότε Α < Β. Έστω Α +, Α +,, Α + (κ - ), όπου κ θετικός ακέραιος, οι άρτιοι ακέραιοι που βρίσκονται μεταξύ των περιττών Α και Β. Τότε πρέπει Α+(κ-) = Β, δηλαδή Β - Α = κ n = κ κ = n. Επομένως μεταξύ των αριθμών Α και Β βρίσκονται n άρτιοι ακέραιοι, οι οποίοι είναι οι Α +, Α +,, Α + (n - ), ενώ το άθροισμά τους είναι ( + n ) n Σ = na + [ (n - )] = n n + n+ = n + n.. Να προσδιορίσετε τις τριάδες ακέραιων ( x, yz, ) με x y z που ικανοποιούν την εξίσωση: xy ( x y) + yz ( y z) + zx ( z x) = 6. Ποιες από τις τριάδες αυτές έχουν άθροισμα τετραγώνων ελάχιστο; Το πρώτο μέλος της δεδομένης εξίσωσης γράφεται:

53 ( ) ( ) ( ) xy x y yz y z zx z x x y xy y z yz z x zx + + = + + ( ) ( ) ( ) = xy x y + x y z x y z ( x y) xy z xz yz ( x y)[ x( y z) z( y z) ] ( x y) ( y z) ( x z). = + = = Άρα η δεδομένη εξίσωση γίνεται: ( x y)( y z)( x z) = 6. Από την τελευταία μορφή προκύπτει ότι οι ακέραιοι x y, y z, x z είναι διάφοροι από το 0. Επιπλέον από την υπόθεση x y z έπεται ότι x y 0 και x z y z > 0, και α- φού οι θετικοί διαιρέτες του 6 είναι οι,,, 6, έπεται ότι οι δυνατές τιμές για τις διαφορές x y, y z, x z, είναι: x y =, y z =, x z = () ή x y =, y z =, x z = () ή x y =, y z =, x z = 6 () Επειδή η τρίτη εξίσωση προκύπτει με πρόσθεση κατά μέλη της πρώτης και της δεύτερης, η περίπτωση () δεν είναι αποδεκτή. Τα συστήματα () και () είναι αποδεκτά, αφού κάθε λύση του συστήματος της πρώτης και δεύτερης εξίσωσης είναι και λύση της τρίτης εξίσωσης, οπότε: Από το σύστημα () λαμβάνουμε: x y =, y z = x = y+, z = y, όπου y θετικός ακέραιος. Έτσι έχουν προκύψει οι τριάδες θετικών ακέραιων ( xyz,, ) = ( k+, kk, ), όπου k θετικός ακέραιος. Από το σύστημα () λαμβάνουμε τελικά: ( xyz,, ) = ( k+, kk, ), όπου k θετικός ακέραιος. Στην πρώτη περίπτωση οι τριάδες ( xyz,, ) = ( k+, kk, ), k, έχουν άθροισμα τετραγώνων S = ( k+ ) + k + ( k ) = k k+ 5, που είναι τριώνυμο ως προς k και έχει ελάχιστο για k =. Λόγω της μονοτονίας της συνάρτησης S( k) = k k+5 εξετάζουμε τις τιμές της στους γειτονικούς ακέραιους του και έχουμε ( ) και S 0 = 5 S ( ) = 6, οπότε η ελάχιστη τιμή του S λαμβάνεται για κ=0 από την τριάδα ( xyz,, ) = (,0, ). Στην δεύτερη περίπτωση οι τριάδες ( xyz,, ) = ( k+, kk, ), k, έχουν άθροισμα τετραγώνων S = ( k+ ) + k + ( k ) = k + k+ 5, που είναι τριώνυμο ως προς k και έχει ελάχιστο για k =. Λόγω της μονοτονίας της συνάρτησης S k = k + k+5 εξετάζουμε τις τιμές της στους γειτονικούς ακέραι- ( )

54 4 ους του και έχουμε και για κ=0 από την τριάδα ( ) S ( 0) = 5 ( ) S = 6, οπότε η ελάχιστη τιμή του S λαμβάνεται ( ) xyz,, =,0,. Επομένως η ελάχιστη τιμή του αθροίσματος των τετραγώνων των μελών των τριάδων που ικανοποιούν την δεδομένη εξίσωση είναι 5 και λαμβάνεται από τις τριάδες,,,0, xyz,, =,0,. ( xyz ) = ( ) και ( ) ( ) 4. Δίνεται ευθύγραμμο τμήμα ΑΒ. Θεωρούμε τυχόν σημείο Μ εκτός του ΑΒ και τέτοιο ώστε η κάθετη από το αυτό προς την ευθεία ΑΒ να την τέμνει σε εσωτερικό σημείο του ευθύγραμμου τμήματος ΑΒ. Φέρουμε ευθύγραμμα τμήματα ΑΓ και ΒΔ τέτοια ώστε ΑΓ ΑΜ και ΑΓ = ΑΜ, ΒΔ ΜΒκαι ΒΔ = ΜΒ και επιπλέον τα σημεία Μ, Γ και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Να αποδείξετε ότι το μέσον Κ του ευθύγραμμου τμήματος ΓΔ είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. Από τα σημεία Γ, Μ και Δ φέρουμε καθέτους ΓΕ, ΜΗ και ΔΖ προς την ευθεία ΑΒ. Τότε οι οξείες γωνίες ΜΑΗ ˆ και ΑΓΕ ˆ έχουν πλευρές κάθετες, οπότε είναι ίσες. Για τον ίδιο λόγο είναι ίσες και οι γωνίες ΜΒΗ ˆ και ΒΔΖ ˆ. Έτσι τα ορθογώνια τρίγωνα ΑΗΜ, ΓΕΑ είναι ό- μοια, οπότε θα έχουμε: ΓΕ ΑΕ ΑΓ = = =, ΑΗ ΜΗ ΑΜ οπότε προκύπτουν οι ισότητες: ΓΕ = ΑΗ () ΕΑ= ΜΗ. () Σχήμα 0

55 Ομοίως τα ορθογώνια τρίγωνα ΜΗΒ, ΒΖΔ είναι όμοια, οπότε ομοίως θα έχουμε: ΔΖ = ΗΒ () ΒΖ= ΜΗ. (4) Έστω ότι η κάθετη από το μέσον Κ της ΓΔ τέμνει την ευθεία ΑΒ στο σημείο Ο. Τότε η ΚΟ θα είναι η διάμεσος του τραπεζίου ΓΕΖΔ, οπότε θα ισχύει: Λόγω των () και () η σχέση (5) γίνεται ΓΕ+ΔΖ ΟΚ =. (5) ΓΕ + ΔΖ ΑΗ + ΗΒ ΑΒ ΟΚ = = = =ΑΒ. (6) Επιπλέον, το μέσον Ο της ΕΖ είναι και μέσον της ΑΒ, αφού από τις σχέσεις () και (4) προκύπτει ότι ΕΑ = ΒΖ, οπότε θα έχουμε Ο Α=ΟΕ ΑΕ=ΟΖ ΒΖ=ΟΒ. (7) Επομένως το σημείο Κ βρίσκεται πάνω στη μεσοκάθετη του ευθύγραμμου τμήματος ΑΒ σε απόσταση από το μέσον Ο ίση προς το ΑΒ. Άρα είναι σταθερό σημείο, δηλαδή είναι ανεξάρτητο από τη θέση του σημείου Μ. Παρατήρηση Το πρόβλημα αυτό μπορεί να λυθεί με χρήση της γεωμετρικής αναπαράστασης των μιγαδικών αριθμών. 5

56 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a Μονάδες 5 ΘΕΜΑ ο Έστω α θετικός ακέραιος τον οποίο διαιρούμε με 4. (i) Ποιες είναι οι δυνατές μορφές του παραπάνω θετικού ακέραιου α ; (ii) Ποιες είναι οι δυνατές τιμές που μπορεί να πάρει ο αριθμός α, αν είναι περιττός, μεγαλύτερος από 9 και μικρότερος από 50, και διαιρούμενος με το 4 δίνει υπόλοιπο. Μονάδες ΘΕΜΑ ο Δίνεται ένα τρίγωνο ABΓ, του οποίου οι γωνίες ˆΒ και ˆΓ έχουν άθροισμα 0 40 και είναι ανάλογες με τους αριθμούς και 6, αντίστοιχα. (α) Να βρεθούν οι γωνίες του τριγώνου. (β) Να υπολογίσετε τη γωνία που σχηματίζουν το ύψος και η διχοτόμος του τριγώνου ΑΒΓ που αντιστοιχούν στην πλευρά του ΒΓ. Μονάδες 5 ΘΕΜΑ 4 ο Από τους μαθητές ενός Γυμνασίου, το 4 ασχολείται με το στίβο, το 5 ασχολείται με το μπάσκετ, το 8 ασχολείται με το βόλεϊ και περισσεύουν και 80 μαθητές που δεν ασχολούνται με κανένα από αυτά τα αθλήματα. Δεδομένου ότι οι μαθητές του Γυμνασίου οι ασχολούμενοι με τον αθλητισμό, ασχολούνται με ένα μόνο άθλημα, εκτός από μαθητές που ασχολούνται και με το μπάσκετ και με το βόλεϊ, να βρείτε: (α) Ποιος είναι ο αριθμός των μαθητών του Γυμνασίου; (β) Πόσοι είναι οι μαθητές του Γυμνασίου που ασχολούνται μόνο με το μπάσκετ; Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

57 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο Αν ν είναι φυσικός αριθμός διαφορετικός από το μηδέν, να υπολογίσετε την αριθμητική τιμή της παράστασης: v+ v v ( ) ( ) A = 4 ( ) Μονάδες 5 ΘΕΜΑ ο O θετικός ακέραιος α είναι περιττός και όταν διαιρεθεί με το 5 αφήνει υπόλοιπο. Να βρείτε το τελευταίο ψηφίο του αριθμού α. Μονάδες 5 ΘΕΜΑ ο Δίνονται δυο ευθείες ε, ε, οι οποίες τέμνονται στο σημείο Α. Η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει κλίση 4, ενώ η ευθεία ε είναι παράλληλη προς την ευθεία ( η ): y = x και διέρχεται από το σημείο Γ(0,6). (α) Να βρείτε τις εξισώσεις των παραπάνω ευθειών καθώς και το κοινό τους σημείο Α. (β) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή του συστήματος ορθογωνίων αξόνων Ο xy, Α είναι το κοινό σημείο των ευθειών ε, ε και Β είναι το σημείο όπου η ευθεία ε τέμνει τον άξονα x x. Μονάδες 5 ΘΕΜΑ 4 ο Τρεις κύκλοι έχουν το ίδιο κέντρο Ο και ακτίνες r, r, r με 0 < r< r< r. Έστω Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο με ακτίνες r, r, και Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο με ακτίνες r, r. Αν είναι Ε( Δ ) r r = r r και r = r, να βρείτε το λόγο Ε Δ και Ε( Δ ) είναι τα εμβαδά των κυκλικών δακτυλίων Δ και Δ, αντίστοιχα. ΚΑΛΗ ΕΠΙΤΥΧΙΑ Ε( Δ ), όπου ( ) Μονάδες 5

58 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Το τετράγωνο ενός θετικού αριθμού είναι μεγαλύτερο από το δεκαπλάσιο του αριθμού κατά 75. Να βρεθεί ο αριθμός. Μονάδες 5 ΘΕΜΑ ο Αν οι αριθμοί μ, ν είναι θετικοί ακέραιοι και ισχύει ότι μ ν+ μ ν+, μ ν να αποδείξετε ότι ο ακέραιος Α= + είναι πολλαπλάσιο του 4. Μονάδες 5 ΘΕΜΑ ο Δίνεται τρίγωνο ΑΒΓ και έστω ΑΔ ύψος του. (α) Αν υπάρχουν σημεία Ε και Ζ πάνω στις πλευρές ΑΒ και ΑΓ, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ = ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (β) Αν υπάρχουν σημεία Ε και Ζ στις προεκτάσεις των πλευρών ΒΑ και ΓΑ ( προς το μέρος του Α), αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ=ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. Μονάδες 5 ΘΕΜΑ 4 ο. Μία βρύση Α γεμίζει (λειτουργώντας μόνη της) μία δεξαμενή σε τρεις ώρες. Μία δεύτερη βρύση Β γεμίζει (λειτουργώντας μόνη της) την ίδια δεξαμενή σε τέσσερις ώρες. Μία τρίτη τέλος βρύση Γ αδειάζει (λειτουργώντας μόνη της) την ίδια δεξαμενή, όταν βέβαια είναι γεμάτη, σε έξι ώρες. Ένας αυτόματος μηχανισμός ανοίγει με τυχαία σειρά και τις τρεις βρύσες με τον εξής τρόπο: ανοίγει μία βρύση, μετά από δύο ώρες ανοίγει μία άλλη και τέλος μετά από μία ώρα ανοίγει και την άλλη βρύση. Ένας άλλος μηχανισμός μετρά το χρόνο που χρειάζεται να γεμίσει η δεξαμενή και ξεκινά τη λειτουργία του μόλις πέσει νερό μέσα στη δεξαμενή. Ποια είναι εκείνη η σειρά με την οποία, αν ανοίξει τις βρύσες ο μηχανισμός, o αριθμός των ωρών που θα χρειαστούν για να γεμίσει η δεξαμενή θα είναι ακέραιος αριθμός; Ποιος είναι σε κάθε περίπτωση αυτός ο ακέραιος αριθμός; ΚΑΛΗ ΕΠΙΤΥΧΙΑ Μονάδες 5

59 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Β ΛΥΚΕΙΟΥ ΘΕΜΑ ο Αν α, β είναι θετικοί πραγματικοί αριθμοί, να αποδείξετε ότι: 4 αβ α + β +. α + β α β Μονάδες 5 ΘΕΜΑ ο Δίνεται οξυγώνιο τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ). Αν Α, Β, Γ είναι τα μέσα των πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα και Α, Β, Γ είναι τα μέσα των ΟΑ, ΟΒ, ΟΓ αντίστοιχα, να αποδείξετε ότι το εξάγωνο ΑΒΓ ΑΒΓ έχει τις πλευρές του ίσες και ότι οι διαγώνιές του ΑΑ, ΒΒ και ΓΓ περνάνε από το ίδιο σημείο. Μονάδες 5 ΘΕΜΑ ο Αν για τους πραγματικούς αριθμούς x, y με x 009 και y 009 ισχύει ότι: x + y x y+ 009 = +, να βρεθεί η τιμή της παράστασης x y+ Α=. ΘΕΜΑ 4 ο Να λυθεί το σύστημα: στο σύνολο των πραγματικών αριθμών. ( x+ y) = z x y ( y+ z) = x y z ( Σ), ( z+ x) = y z x Μονάδες 5 Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

60 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο. Να αποδείξετε ότι δεν υπάρχουν θετικοί ακέραιοι x, y που να επαληθεύουν την εξίσωση ΘΕΜΑ ο Για τη συνάρτηση για κάθε ( ) x + x x + x 0y = 05 f : ισχύει ότι: ( ( )) ( ) ( ) ( ( ) ( )) f x f y f y f x = f f x f y, xy,. Να αποδείξετε ότι f ( x f ( x)) = 0, για κάθε x. Μονάδες 5 Μονάδες 5 ΘΕΜΑ ο Δίνονται τρεις θετικοί ακέραιοι αριθμοί με δεκαδική αναπαράσταση της μορφής α α, όπου α είναι θετικός μονοψήφιος ακέραιος και μεταξύ του πρώτου και ν ψηϕί α του τελευταίου ψηφίου του αριθμού α 00 00α, μεσολαβούν ν το πλήθος μηδενικά. Να αποδείξετε ότι: ή ένας από αυτούς θα διαιρείται με το ή το άθροισμα κάποιων από αυτούς θα διαιρείται με το. Μονάδες 5 ΘΕΜΑ 4 ο. Δίνεται τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ) και έστω Α, Β, Γ τα μέσα των R R πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα. Θεωρούμε τους κύκλους C( Α, ), C( Β, ) και R C( Γ, ). Να αποδείξετε ότι οι κύκλοι C, C, C περνάνε από το ίδιο σημείο (έστω Ν ) και ότι τα δεύτερα κοινά σημεία τους είναι τα μέσα Α, Β, Γ των ΟΑ, ΟΒΟΓ, αντίστοιχα. Στη συνέχεια να αποδείξετε ότι οι ΑΑ, ΒΒ, ΓΓ και ΟΝ περνάνε από το ίδιο σημείο. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

61 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5. Είναι a = 4 = = = και οπότε η παράσταση Α γίνεται: A = a: b b. 5a b = 5+ = 5 = 5 = 5 4=, a A= a: b b = : = : = = =. ΘΕΜΑ ο Έστω α θετικός ακέραιος τον οποίο διαιρούμε με 4. (i) Ποιες είναι οι δυνατές μορφές του παραπάνω θετικού ακέραιου α; (ii) Ποιες είναι οι δυνατές τιμές που μπορεί να πάρει ο αριθμός α, αν είναι περιττός μεγαλύτερος από 9 και μικρότερος από 50, και διαιρούμενος με το 4 δίνει υπόλοιπο. (i) (ii) Οι δυνατές μορφές του ακέραιου αριθμού α είναι οι εξής: α = 4ρ, όπου ρ θετικός ακέραιος, ή α = 4ρ + ή α = 4ρ + ή α = 4ρ + όπου ρ μη αρνητικός ακέραιος. Σύμφωνα με την υπόθεση είναι α = 4ρ +, οπότε έχουμε: 9 < 4ρ + < 50 8< 4ρ < 49 9,5 < ρ <, 5 Επομένως, αφού ο ρ είναι μη αρνητικός ακέραιος, έπεται ότι ρ = 0 ή ρ = ή ρ = και α = 4 ή α = 45 ή α=49.

62 ΘΕΜΑ ο 0 Δίνεται ένα τρίγωνο ABΓ του οποίου οι γωνίες ˆΒ και ˆΓ έχουν άθροισμα 40 και είναι ανάλογες με τους αριθμούς και 6, αντίστοιχα. α) Να βρεθούν οι γωνίες του τριγώνου. β) Να υπολογίσετε τη γωνία που σχηματίζουν το ύψος και η διχοτόμος του τριγώνου ΑΒΓ που αντιστοιχούν στην πλευρά του ΒΓ. α) Κατ αρχή έχουμε: ˆ ( ˆ ˆ) Α= Β+Γ = = Βˆ Γˆ Σύμφωνα με τις υποθέσεις έχουμε: και ˆ ˆ 40 6 Βˆ Γˆ = = λ Β= ˆ λ Γ= ˆ λ λ+ λ = λ = Άρα είναι: Β= ˆ 0 και Γ= ˆ 0. 0 = Β+Γ=, οπότε θα έχουμε: 0 0, 6 και Σχήμα β) Έστω ΑΔ το ύψος και ΑΕ η διχοτόμος της γωνίας Α του τριγώνου ΑΒΓ. Τότε το σημείο Γ βρίσκεται μεταξύ των σημείων Β και Δ, αφού διαφορετικά το τρίγωνο ΑΓΔ 0 θα είχε άθροισμα γωνιών μεγαλύτερο των 80. Έτσι έχουμε: ˆ ˆ ˆ ˆ ( 90 ˆ Α ΔΑΕ = ΔΑΓ + ΓΑΕ = ΔΓΑ ) +. () 0 Επειδή είναι ˆ Α= 40, ΔΓΑ ˆ = 80 0 = 60, από τη σχέση () λαμβάνουμε ΔΑΕ ˆ = ΘΕΜΑ 4 ο Από τους μαθητές ενός Γυμνασίου, το 4 ασχολείται με το στίβο, το 5 ασχολείται με το μπάσκετ, το 8 ασχολείται με το βόλεϊ και περισσεύουν και 80 μαθητές που δεν ασχολούνται με κανένα από αυτά τα αθλήματα. Δεδομένου ότι οι μαθητές του Γυμνασίου οι ασχολούμενοι με τον αθλητισμό, ασχολούνται με ένα μόνο άθλημα, εκτός από μαθητές που ασχολούνται και με το μπάσκετ και με το βόλεϊ, να βρείτε: α) Ποιος είναι ο αριθμός των μαθητών του Γυμνασίου;

63 β) Πόσοι είναι οι μαθητές του Γυμνασίου που ασχολούνται μόνο με το μπάσκετ; ( ος τρόπος) α) Έχουμε + + =. Όμως στα των μαθητών του Γυμνασίου έχουν υπολογιστεί δύο φορές οι μαθητές που ασχολούνται με μπάσκετ και βόλεϊ. Άρα οι =68 μαθητές είναι τα = των μαθητών του Γυμνασίου. Έτσι όλο το σχολείο έχει : : = 68 = 4 40 = 60 μαθητές β) Μόνο με το μπάσκετ ασχολούνται 60 = = 0 μαθητές. 5 ος τρόπος α) Αν x είναι ο αριθμός των μαθητών του Σχολείου, τότε, σύμφωνα με τα δεδομένα του προβλήματος, έχουμε την εξίσωση: x x x = x, η οποία είναι ισοδύναμη με την εξίσωση 0x+ 8x+ 5x = 40x 7x = 70 x= 60. x 60 β) = = 0 μαθητές ασχολούνται μόνο με το μπάσκετ. 5 5 Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο Αν ν είναι θετικός ακέραιος, να υπολογίσετε την αριθμητική τιμή της παράστασης: v+ v v ( ) ( ) A= 4 ( ) v+ v ( ) v ( ) ( ) v ( ) A= 4 ( ) + 7 = 4 ( ) ν ν v 7 ( ) 7 ν ( ) = 4() = 4 ( ) =, οπότε διακρίνουμε τις περιπτώσεις: Αν ν άρτιος, τότε Α= =. 5 5 Αν ν περιττός, τότε Α=. ΘΕΜΑ ο O θετικός ακέραιος α είναι περιττός και όταν διαιρεθεί με το 5 δίνει υπόλοιπο. Να βρείτε το τελευταίο ψηφίο του αριθμού α. ν

64 Αφού ο α διαιρούμενος με το 5 αφήνει υπόλοιπο, θα είναι της μορφής α = 5λ +, όπου λ μη αρνητικός ακέραιος. Όμως, αν ο λ ήταν άρτιος, τότε ο α επίσης θα ήταν άρτιος, που αντίκειται στην υπόθεση. Άρα ο λ είναι περιττός, δηλαδή είναι λ = κ +, όπου κ μη αρνητικός ακέραιος. Επομένως, έχουμε α = 5 ( κ + ) + = 0κ + 7, σχέση που δείχνει ότι ο θετικός ακέραιος α διαιρούμενος με το 0 αφήνει υπόλοιπο 7, δηλαδή με άλλα λόγια, το τελευταίο ψηφίο του α είναι 7. Διαφορετικά θα μπορούσαμε να πούμε ότι ο α έχει κ δεκάδες και 7 μονάδες, οπότε το τελευταίο του ψηφίο είναι 7. ΘΕΜΑ ο Δίνονται δυο ευθείες ε, ε οι οποίες τέμνονται στο σημείο Α. Η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει κλίση 4, ενώ η ευθεία ε είναι παράλληλη προς την ευθεία ( η ): y = x και διέρχεται από το σημείο Γ(0,6). α) Να βρείτε τις εξισώσεις των παραπάνω ευθειών καθώς και το κοινό τους σημείο Α. β) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή συστήματος ορθογωνίων αξόνων Ο xy, Α το κοινό σημείο των ευθειών και Β το σημείο όπου η ευθεία ε τέμνει τον άξονα x x. α) Η ευθεία ε έχει εξίσωση y = 4x, ενώ η ευθεία ε έχει εξίσωση y = x+ β, αφού είναι παράλληλη με την (η). Όμως διέρχεται από το σημείο Β(0,6), οπότε θα ισχύει 6= 0+ β β = 6. Άρα η εξίσωση της ευθείας ε είναι y = x+ 6. Λύνοντας το σύστημα των εξισώσεων των δύο ευθειών βρίσκουμε ότι το κοινό σημείο τους είναι το Α,. ( ) Σχήμα β) Η ευθεία Β, 0, οπότε η τη βάση του τριγώνου έχει μήκος, ενώ το ύψος του ίσο με. Άρα έχουμε: ε τέμνει τον άξονα των x στο σημείο ( ) 4

65 Ε(ΟΑΒ) = 8 = τ.μ. ΘΕΜΑ 4 ο Τρεις κύκλοι έχουν το ίδιο κέντρο Ο και ακτίνες r, r, r με 0 < r< r< r. Έστω Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r και Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r. Αν Ε( Δ ) είναι r r = r r και r = r, να βρείτε το λόγο Ε Δ και Ε( Δ ) είναι τα εμβαδά των δακτυλίων Δ και Δ, αντίστοιχα. Ε( Δ ), όπου ( ) Έχουμε ( ) ( ) ( ) ( ) Σχήμα ( )( ) ( )( ) Ε Δ π r r r r r + r r + r = = = Ε Δ π r r r r r + r r + r, () r+ r αφού δίνεται ότι r r = r r. Από την ίδια σχέση προκύπτει ότι r =, οπότε, r+ r λόγω τη σχέσης r = r λαμβάνουμε r = = r. Έτσι η σχέση () γίνεται Ε( Δ ) r + r r r = = = =. Ε( Δ ) r + r r+ r 5r 5 r+ r Διαφορετικά, θα μπορούσαμε να βρούμε πρώτα τη σχέση r = = r και στη συνέχεια να εργαστούμε με το λόγο ( ) ( ) ( ) Ε Δ π r r π r r r = = = =. Ε( Δ) π ( r r ) π ( r) ( r) 5r 5 5

66 Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Το τετράγωνο ενός θετικού αριθμού είναι μεγαλύτερο από το δεκαπλάσιο του αριθμού κατά 75. Να βρεθεί ο αριθμός. Αν x είναι ο ζητούμενος αριθμός, τότε από τα δεδομένα του προβλήματος θα ικανοποιεί την εξίσωση x 0x= 75 x 0x 75 = 0 x= 5 ή x= 5. Επειδή ο ζητούμενος αριθμός είναι θετικός, η μοναδική λύση του προβλήματος είναι ο αριθμός 5. ΘΕΜΑ ο Αν οι αριθμοί μ και ν είναι θετικοί ακέραιοι και ισχύει ότι μ ν+ μ+ ν , μ ν Α= + είναι πολλαπλάσιο του 4. να αποδείξετε ότι ο ακέραιος. Η δεδομένη σχέση γράφεται στη μορφή μ ν+ μ+ ν μ ν+ μ+ ν μ ν+ ( ) ( ) ( ) ( ) ( ) από την οποία προκύπτει ότι μ ν+ μ ν 4 = 0 = μ ν 4= 0. Επομένως έχουμε μ ν ν 4 ν ν 4 ν ν Α= + = + + = ( + ) = 7 = 4, που είναι πολλαπλάσιο του 4, αφού ο ν είναι θετικός ακέραιος. ΘΕΜΑ ο Δίνεται τρίγωνο ΑΒΓ και έστω ΑΔ ύψος του. (α) Αν υπάρχουν σημεία Ε και Ζ των πλευρών ΑΒ και ΑΓ, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ = ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (β) Αν υπάρχουν σημεία Ε και Ζ στις προεκτάσεις των πλευρών ΑΒ και ΑΓ προς το μέρος του Α, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ=ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (α) Τα τρίγωνα ΑΔΕ και ΑΔΖ έχουν δύο πλευρές τους ίσες μία προς μία ( ΑΔ = ΑΔ, ΔΕ = ΔΖ ) και τις περιεχόμενες γωνίες των ίσων πλευρών ίσες, ΑΔΕ ˆ = ΑΔΖ ˆ. Άρα τα τρίγωνα είναι ίσα, οπότε θα έχουν και ΔΑΕ ˆ = ΔΑΖ ˆ, δηλαδή η ΑΔ είναι διχοτόμος της γωνίας ˆΑ του τριγώνου ΑΒΓ. Στη συνέχεια συγκρίνουμε τα τρίγωνα ΑΔΒ και ΑΔΓ, τα οποία είναι ορθογώνια με ˆ ˆ ΑΔΒ = ΑΔΓ = 90 και έχουν την πλευρά ΑΔ κοινή και τις οξείες γωνίες 6

67 ΔΑΒ ˆ και ΔΑΓ ˆ ίσες. Άρα τα τρίγωνα ΑΔΒ και ΑΔΓ είναι ίσα, οπότε θα έχουν και ΑΒ = ΑΓ, δηλαδή το τρίγωνο ΑΒΓ είναι ισοσκελές Σχήμα 4 Σχήμα 5 (β) Ομοίως όπως στο ερώτημα (α) τα τρίγωνα ΑΔΕ και ΑΔΖ είναι ίσα, οπότε θα έχουν ΔΑΕ ˆ = ΔΑΖ ˆ. Επειδή οι γωνίες ΓΑΕ ˆ και ΒΑΖ ˆ είναι ίσες ως κατά κορυφή, έπεται ότι: ΔΑΕ ˆ ΓΑΕ ˆ = ΔΑΖ ˆ ΒΑΖ ˆ ΔΑΓ ˆ = ΔΑΒ ˆ, οπότε και στην περίπτωση αυτή προκύπτει ότι η ΑΔ είναι διχοτόμος της γωνίας ˆΑ του τριγώνου ΑΒΓ. Στη συνέχεια προχωράμε όπως στο ερώτημα (α). Εναλλακτικά, θα μπορούσαμε να προχωρήσουμε ως εξής: 7

68 Από την ισότητα των τριγώνων ΑΔΕ και ΑΔΖ προκύπτει και η ισότητα ˆ ˆ ΔΖΑ = ΔΕΑ, οπότε εύκολα προκύπτει ότι τα τρίγωνα ΒΔΕ και ΔΓΖ είναι ίσα, οπότε θα είναι ΔΒ = ΔΓ, η ευθεία ΑΔ είναι μεσοκάθετη της πλευράς ΒΓ. Άρα είναι ΑΒ = ΑΓ. Και στις δύο περιπτώσεις μπορούμε να χρησιμοποιήσουμε το γνωστό θεώρημα της Γεωμετρίας, βάσει του οποίου, αν σε ένα τρίγωνο ένα ύψος του είναι και διχοτόμος, τότε το τρίγωνο είναι ισοσκελές. ΘΕΜΑ 4 ο Μία βρύση Α γεμίζει (λειτουργώντας μόνη της) μία δεξαμενή σε τρεις ώρες. Μία δεύτερη βρύση Β γεμίζει (λειτουργώντας μόνη της) την ίδια δεξαμενή σε τέσσερις ώρες. Μία τρίτη τέλος βρύση Γ αδειάζει (λειτουργώντας μόνη της) την ίδια δεξαμενή (όταν βέβαια είναι γεμάτη) σε έξι ώρες. Ένας αυτόματος μηχανισμός ανοίγει με τυχαία σειρά και τις τρεις βρύσες με τον εξής τρόπο: ανοίγει μία βρύση, μετά από δύο ώρες ανοίγει μία άλλη και τέλος μετά από μία ώρα ανοίγει και την άλλη βρύση. Ένας άλλος μηχανισμός μετρά το χρόνο που χρειάζεται να γεμίσει η δεξαμενή και ξεκινά τη λειτουργία του μόλις πέσει νερό μέσα στη δεξαμενή. Ποια είναι εκείνη η σειρά με την οποία αν ανοίξει τις βρύσες ο μηχανισμός, o αριθμός των ωρών που θα χρειαστούν (για να γεμίσει η δεξαμενή) να είναι ακέραιος αριθμός; Ποιος είναι σε κάθε περίπτωση αυτός ο ακέραιος αριθμός; Έστω x, ο αριθμός των ωρών που χρειάζονται για να γεμίσει η δεξαμενή. Τότε οι δυνατοί τρόποι με τους οποίους μπορεί να ανοίξει τις βρύσες ο μηχανισμός (μαζί με τις αντίστοιχες εξισώσεις που δημιουργούνται) είναι: x x x () Α-Β-Γ + = 5x = x = x x x 4 () Β-Α-Γ + = 5x = x = x x x 7 () Α-Γ-Β + = 5x = x = x x x (4) Β-Γ-Α + = 5x = + 4 x = x x x (5) Γ-Β-Α + = 5 x = x = 5 x x x (6) Γ-Α-Β + = 5 x = + x = 4 6 Ένας τρόπος ανοίγματος είναι Β-Γ-Α με αντίστοιχη διάρκεια x = 4 ώρες (περίπτωση (4)). Ένας δεύτερος τρόπος ανοίγματος είναι Γ-Α-Β με αντίστοιχη διάρκεια x = ώρες (περίπτωση (6)). Στη περίπτωση (4) (που ανοίγει πρώτα η βρύση Β), ο χρόνος αρχίζει να μετράει με το άνοιγμα της βρύσης Β. 8

69 Αν λοιπόν υποθέσουμε ότι ο απαιτούμενος χρόνος για να γεμίσει η δεξαμενή είναι x x ώρες, τότε η βρύση Β θα έχει γεμίσει τα της δεξαμενής. Στη συνέχεια ανοίγει η 4 x βρύση Γ η οποία θα λειτουργήσει x ώρες και θα αδειάσει τα της δεξαμενής. 6 Τέλος θα ανοίξει η βρύση Α η οποία θα λειτουργήσει x ώρες και θα γεμίσει τα x της δεξαμενής. Με αυτό τον τρόπο προκύπτει η εξίσωση (4). Στη περίπτωση (6) (που ανοίγει πρώτα η βρύση Γ), ο χρόνος αρχίζει να μετράει με το άνοιγμα της βρύσης Α (διότι ο μηχανισμός χρονομέτρησης αρχίζει μόλις πέσει νερό στη δεξαμενή). Αν λοιπόν υποθέσουμε ότι ο απαιτούμενος χρόνος για να γεμίσει η δεξαμενή είναι x x ώρες, τότε η βρύση Α θα έχει γεμίσει τα της δεξαμενής. Στη συνέχεια ανοίγει η x βρύση Β η οποία θα λειτουργήσει x ώρες και θα γεμίσει τα της δεξαμενής. 4 x Τέλος η βρύση Γ θα λειτουργήσει x ώρες, και θα αδειάσει τα της δεξαμενής. Με 6 αυτό τον τρόπο προκύπτει η εξίσωση (6). Ανάλογα εξηγούνται και οι υπόλοιπες περιπτώσεις. Β ΛΥΚΕΙΟΥ ΘΕΜΑ ο ( Αν α, β είναι θετικοί πραγματικοί αριθμοί, να αποδείξετε ότι: 4 αβ α + β +. α + β α β Έχουμε + αβ α β, () που ισχύει γιατί είναι ισοδύναμη με την αληθή ανισότητα ( α β ) 0. Επιπλέον έχουμε 4 + α + β α β, () η οποία ισχύει γιατί γράφεται ως 4 4 α + β + 4αβ ( α + β) 0 ( α β). α + β α β α + β αβ Με πολλαπλασιασμό κατά μέλη των δύο ανισοτήτων () και () λαμβάνουμε τη ζητούμενη ανισότητα 4 αβ α + β +. α + β α β 9

70 ΘΕΜΑ ο. Δίνεται οξυγώνιο τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ). Αν Α, Β, Γ είναι τα μέσα των πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα και Α, Β, Γ είναι τα μέσα των ΟΑ, ΟΒ, ΟΓ αντίστοιχα, να αποδείξετε ότι το εξάγωνο ΑΒΓ ΑΒΓ έχει τις πλευρές του ίσες και ότι οι διαγώνιές του ΑΑ, ΒΒ και ΓΓ περνάνε από το ίδιο σημείο. Εφόσον Ο είναι το κέντρο του περιγεγραμμένου στο τρίγωνο κύκλου, θα ισχύει: ΟΑ = ΟΒ = ΟΓ = R. Σχήμα 6 Το ευθύγραμμο τμήμα ΑΒ συνδέει τα μέσα των πλευρών του τριγώνου ΟΑΓ, άρα: ΟΓ R ΑΒ = = (). Το ευθύγραμμο τμήμα ΑΒ συνδέει τα μέσα των πλευρών του τριγώνου ΟΒΓ, άρα: ΟΓ R ΑΒ = = (). R Με όμοιο τρόπο αποδεικνύουμε ότι όλες οι πλευρές του πολυγώνου είναι ίσες με. Χρησιμοποιώντας τις σχέσεις () και () συμπεραίνουμε ότι το τετράπλευρο ΑΒΑΒ είναι παραλληλόγραμμο, οπότε οι διαγώνιές του θα διχοτομούνται στο σημείο Κ. 0

71 Με όμοιο τρόπο συμπεραίνουμε ότι το τετράπλευρο ΑΓΑΓ είναι παραλληλόγραμμο, οπότε και σε αυτή τη περίπτωση οι διαγώνιες θα διχοτομούνται στο σημείο Κ. ΘΕΜΑ ο. Αν για τους πραγματικούς αριθμούς x, y με x 009 και y 009 ισχύει ότι: x + y x y+ 009 = +, να βρεθεί η τιμή της παράστασης x y+ Α=. Οι άρρητες παραστάσεις ορίζονται γιατί δίνεται ότι: x 009 και y 009. Αν θέσουμε x 009 = a και y+ 009 = b, τότε λαμβάνουμε x= a και y = b 009, από τις οποίες προκύπτει η εξίσωση x + y = a + b. Τότε η δεδομένη ισότητα γίνεται: a + b a+ b= + a + b a b+ = 0 a + b = 0 a = b = 0 a = b=, ( ) ( ) οπότε θα είναι x= 00, y = 008 και Α= 00. ΘΕΜΑ 4 ο Να λυθεί το σύστημα: ( x+ y) = z x y ( y+ z) = x y z ( Σ) ( z+ x) = y z x στο σύνολο των πραγματικών αριθμών. Θέτουμε x + y = α, y + z = β και z + x = γ, οπότε το δοσμένο σύστημα γίνεται: α + α = β α ( α + ) = β β + β = γ β( β + ) = γ γ + γ = α γ ( γ + ) = α Από τη τελευταία έκφραση του συστήματος συμπεραίνουμε ότι έχει τη προφανή λύση: α = β = γ = 0. Θα αποδείξουμε ότι το σύστημα δεν έχει άλλη λύση. Αν αβγ 0 τότε πολλαπλασιάζοντας τις σχέσεις έχουμε: αβγ ( α + )( β + )( γ + ) = αβγ ( α + )( β + )( γ + ) =. Η τελευταία ισότητα δεν είναι δυνατό να ισχύει, οπότε καταλήγουμε σε άτοπο. Αν υποθέσουμε ότι α = 0 τότε θα ισχύει: β = γ = 0. Αν υποθέσουμε ότι β = 0 τότε θα ισχύει: α = γ = 0. Αν υποθέσουμε ότι γ = 0 τότε θα ισχύει: α = β = 0.

72 Αποδείξαμε λοιπόν ότι το σύστημα δεν έχει άλλη λύση εκτός από την α = β = γ = 0. Άρα το αρχικό σύστημα γίνεται: x+ y = 0 y+ z = 0 x = y = z = 0. + = 0 z x Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να αποδείξετε ότι δεν υπάρχουν θετικοί ακέραιοι x, y που να επαληθεύουν την εξίσωση x + x x + x 0y = 05. ( ) Η δεδομένη εξίσωση είναι ισοδύναμη με την x( x+ ) y = 40. () Επειδή για όλους τους θετικούς ακέραιους, x x+ και y είναι άρτιοι x y οι αριθμοί ( ) θετικοί ακέραιοι και η διαφορά τους x( x ) y + θα είναι άρτιος θετικός ακέραιος, οπότε δεν είναι δυνατόν να ισούται με 40. ΘΕΜΑ ο Για τη συνάρτηση f : ισχύει ότι: ( ( )) ( ( )) ( ( ) ( )) f x f y f y f x = f f x f y, για κάθε xy,. Να αποδείξτε ότι f( x f( x)) = 0,για κάθε x. Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου y το x και παίρνουμε: f ( x f ( x) ) f ( x f ( x) ) = f ( f ( x) f ( x) ), οπότε θα είναι f (0 ) = 0. Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου x το 0 και παίρνουμε: f ( 0 f ( y) ) f ( y f ( 0) ) = f ( f ( 0) f ( y) ) και χρησιμοποιώντας την ισότητα f (0 ) = 0, καταλήγουμε: f ( f ( y) ) f ( y) = f ( f ( y) ) f ( f ( y) ) = f ( y). Θέτουμε (στη τελευταία ισότητα) όπου y το x και έχουμε τη σχέση: f ( f ( x) ) = f ( x). () Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου y το 0 και παίρνουμε: f ( x f ( 0) ) f ( 0 f ( x) ) = f ( f ( x) f ( 0) ) και χρησιμοποιώντας την ισότητα f (0 ) = 0, καταλήγουμε: f x f f x = f f x. () ( ) ( ( )) ( ( ))

73 ( έχουμε: ( ( )) ( ) Από τις σχέσεις ( ) και ) f f x = f x, για κάθε x R. Θέτουμε τέλος στη δοσμένη συναρτησιακή σχέση όπου y το f ( x ) και f x f x =, για κάθε x R. χρησιμοποιώντας τη προηγούμενη ισότητα έχουμε ( ( )) 0 ΘΕΜΑ ο. Δίνονται τρεις θετικοί ακέραιοι αριθμοί της μορφής α α, όπου α είναι ν ψηφία θετικός μονοψήφιος ακέραιος και μεταξύ του πρώτου και του τελευταίου ψηφίου του αριθμού α 00 00α, μεσολαβούν ν το πλήθος μηδενικά. Να αποδείξετε ότι: ή ένας από αυτούς θα διαιρείται με το ή το άθροισμα κάποιων από αυτούς θα διαιρείται με το. Πρώτα θα αποδείξουμε ότι κάθε αριθμός της μορφής α α διαιρείται με το ν ψηφία. Πράγματι, κάθε αριθμός της παραπάνω μορφής γράφεται; 0 ν ν + α 00 00α = α α 0 = + = α + α 0 ν = ν = + + α ( 0 ) = ν ν = α( + 0 )( ) = α κ. Έστω τώρα α, α, α τρεις οποιοιδήποτε θετικοί ακέραιοι αριθμοί. της μορφής α α. Θα αποδείξουμε ότι: ή ένας από αυτούς θα διαιρείται με το ή το ν ψηφία άθροισμα κάποιων από αυτούς θα διαιρείται με το. () Αν κάποιος από τους αριθμούς α, α, α διαιρείται με το, τότε προφανώς θα ισχύει η πρόταση. Έστω ότι το δεν διαιρεί κανένα από τους αριθμούς α, α, α. Τότε υπάρχουν οι παρακάτω δυνατές περιπτώσεις: ) Αν όλοι οι αριθμοί είναι της μορφής k +, τότε προφανώς α + α + α = m ) Αν όλοι οι αριθμοί είναι της μορφής k +, τότε προφανώς α + α + α = n Σε όλες τις άλλες περιπτώσεις ένας τουλάχιστον αριθμός θα είναι της μορφής k + και ένας τουλάχιστον της μορφής k +, οπότε το άθροισμα αυτών των δύο αριθμών θα είναι προφανώς πολλαπλάσιο του τρία. Επειδή καθένας από τους αριθμούς α, α, α της μορφής α 00 00α διαιρείται με το, έπεται ότι και το άθροισμα οσωνδήποτε από αυτούς θα διαιρείται με το. Λαμβάνοντας υπόψιν τις προηγούμενες προτάσεις, καταλήγουμε στο ζητούμενο. ΘΕΜΑ 4 ο. Δίνεται τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ) και έστω Α, Β, Γ τα μέσα R των πλευρών του ΒΓ, ΑΓΑΒ, αντίστοιχα. Θεωρούμε τους κύκλους C( Α, ), R R C( Β, ) και C( Γ, ). Αποδείξτε ότι οι κύκλοι C, C, C περνάνε από το ίδιο κ

74 σημείο (έστω Ν ) και ότι τα δεύτερα κοινά σημεία τους είναι τα μέσα Α, Β, Γ των ΟΑ, ΟΒ, ΟΓ αντίστοιχα. Στη συνέχεια να αποδείξτε ότι οι ΑΑ, ΒΒ, ΓΓ και ΟΝ περνάνε από το ίδιο σημείο. Το τρίγωνο ΑΒΓ είναι όμοιο με το τρίγωνο ΑΒΓ. Ο λόγος ομοιότητας των δύο τριγώνων είναι λ =, οπότε ο περιγεγραμμένος κύκλος του τριγώνου ΑΒΓ θα έχει ακτίνα R. Σχήμα 7 Οι κύκλοι τώρα που έχουν κέντρα τις κορυφές του τριγώνου ΑΒΓ και ακτίνα R θα περνάνε από το περίκεντρο Ν του τριγώνου ΑΒΓ. (Το σημείο Ν είναι το κέντρο του κύκλου του Euler του τριγώνου ΑΒΓ ) Αν Α,Β,Γ είναι τα μέσα των ΟΑ,ΟΒ,ΟΓ αντίστοιχα, τότε: R ΑΒ = ΑΓ = ΒΑ = ΒΓ = ΓΑ = ΓΒ =. (Τα παραπάνω τμήματα ΑΒ,Α Γ,ΒΑ,ΒΓ,ΓΑ,ΓΒ είναι διάμεσοι προς την υποτείνουσα των ορθογωνίων τριγώνων ΟΑΒ, ΟΑΓ, ΟΒΑ, ΟΒΓ, ΟΓ Α και ΟΓ Β.) R Άρα τα δεύτερα κοινά σημεία των κύκλων C(Α, ), R R C(Β, ) και C(Γ, ) είναι τα σημεία Α, Β,Γ. 4

75 Τα τετράπλευρα ΓΝΒΑ και ΟΒΑΓ είναι ρόμβοι με πλευρές μήκους R και οι πλευρές του ενός τετραπλεύρου, είναι παράλληλες με τις πλευρές του άλλου ( ΑΒ = // ΒΑ, ΓΑ = // ΑΓ,.). Από τα παραπάνω προκύπτει ότι: Το τετράπλευρο ΑΟΑΝ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΑΑ περνά από το μέσο Κ του ΟΝ που είναι μέσο και του ΑΑ. Το τετράπλευρο ΓΑ ΓΑ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΓΓ περνά από το μέσο Κ του ΑΑ που είναι μέσο και του ΓΓ. Τέλος το τετράπλευρο Β ΓΒ Γ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΒΒ και περνά από το μέσο Κ του ΓΓ που είναι μέσο και του ΒΒ. 5

76 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405, Ιστοσελίδα: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 5 Ιανουαρίου 0 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 6 Φεβρουαρίου 0 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στη 8 η Βαλκανική Μαθηματική Ολυμπιάδα (Ρουμανία, Μάιος 0), στην 5 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Κύπρος, Ιούνιος 0) και στην 5 η Διεθνή Μαθηματική Ολυμπιάδα (Ολλανδία, Ιούλιος 00). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμαι τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόριος Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

77 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου. Έστω x = 4 :4+ 5 και y = (α) Να βρεθούν οι αριθμοί x και y. (β) Να προσδιορίσετε το μεγαλύτερο ακέραιο Α του οποίου οι αριθμοί x και y είναι πολλαπλάσια.. Έστω α, β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και διαιρέτη τον β δίνει πηλίκο 6. Να βρεθεί ο αριθμός α, αν επιπλέον γνωρίζετε ότι ο α είναι πολλαπλάσιο του 7, ενώ ο αριθμός β είναι ο μέγιστος κοινός διαιρέτης των αριθμών 6, και 48.. Δίνεται τρίγωνο ΑΒΓ. Οι διχοτόμοι των γωνιών Β και Γ τέμνονται στο σημείο Ι. Η παράλληλη από το σημείο Ι προς την πλευρά ΑΒ τέμνει την πλευρά ΒΓ στο Δ ενώ η παράλληλη από το σημείο Ι προς την πλευρά ΑΓ τέμνει την πλευρά ΒΓ στο σημείο Ε. Αν είναι ΙΔΓ ˆ = 70 0 και ΙΕΓ ˆ = 0 0, να βρεθούν: α) η γωνία ˆΑ του τριγώνου ΑΒΓ. β) oι γωνίες ΒΙΔ ˆ και ΕΙΓ ˆ. 4. Ένας αγρότης καλλιέργησε δύο κτήματα με ελαιόδενδρα. Το ένα κτήμα είναι δικό του και έχει 80 ελαιόδενδρα, ενώ το άλλο το μισθώνει και έχει 0 ελαιόδενδρα. Η συνολική παραγωγή λαδιού ήταν 600 κιλά λάδι. Αν είχε συμφωνήσει να δώσει στον ιδιοκτήτη του μισθωμένου κτήματος το 0% της παραγωγής λαδιού του μισθωμένου κτήματος, πόσα κιλά λάδι θα πάρει ο ιδιοκτήτης του μισθωμένου κτήματος σε καθεμία από τις παρακάτω περιπτώσεις: α. Καθένα από τα ελαιόδενδρα των δύο κτημάτων παράγει τα ίδια κιλά λάδι. β. Κάθε ελαιόδενδρο του μισθωμένου κτήματος έχει απόδοση σε λάδι ίση με το 50% της απόδοσης σε λάδι κάθε ελαιόδενδρου του κτήματος του αγρότη. Κάθε θέμα βαθμολογείται με 5 μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

78 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 ( ). Αν x+ y = και Γ Γυμνασίου y w=, να βρεθεί η τιμή της παράστασης: 5 5 Α= 7x+ 0y w 87.. Να βρείτε έναν τετραψήφιο φυσικό αριθμό, αν γνωρίζετε ότι ισχύουν όλα τα παρακάτω: (α) Το ψηφίο των μονάδων του είναι πολλαπλάσιο του 4, (β) Το ψηφίο των δεκάδων του είναι το μισό του ψηφίου των μονάδων του, (γ) Το ψηφίο των εκατοντάδων του είναι διαιρέτης του 5, (δ) Το ψηφίο των χιλιάδων του είναι ίσο με το ψηφίο των εκατοντάδων του μειωμένο κατά.. Δίνεται τρίγωνο ΑΒΓ με Α= ˆ 0 0. Στο εσωτερικό της γωνίας Α φέρουμε ημιευθείες Α x και Αy κάθετες στις πλευρές ΑΓ και ΑΒ, αντίστοιχα που τέμνουν την πλευρά ΒΓ στα σημεία Δ και Ε, αντίστοιχα. Αν ΑΔΒ ˆ = 0 0, ΑΕΔ ˆ = 60 0 και το ύψος ΑΗ έχει μήκος μονάδες μήκους, τότε: α. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισόπλευρο. β. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. γ. Να βρείτε το λόγο των περιμέτρων των τριγώνων ΑΒΓ και ΑΔΕ. 4. Στο παρακάτω σχήμα το τετράγωνο ΑΒΓΔ έχει πλευρά ρ.ονομάζουμε Χ το χωρίο που αποτελείται από τα τέσσερα κυκλικά τμήματα του κύκλου C ( Ο, ΟΑ ) που ορίζονται από τις χορδές ΑΒ, ΒΓ, ΓΔ και ΔΑ. Επίσης ονομάζουμε Χ το χωρίο που βρίσκεται εξωτερικά του κύκλου C ( Ο,ρ) και εσωτερικά του τετραγώνου ΑΒΓΔ. α. Να βρείτε το εμβαδόν του κυκλικού δακτυλίου Δ( Ο,ρ, ΟΑ ) που ορίζεται από τους κύκλους C ( Ο,ρ) και C ( ΟΟΑ, ). β. Να αποδείξετε ότι τα εμβαδά Ε( Χ) και Ε( Χ) των Ε( Χ ) χωρίων Χ και Χ, αντίστοιχα, έχουν λόγο Ε Χ μεγαλύτερο του 5. ( ) γ. Να προσδιορίσετε την ακτίνα x του κύκλου C( Ο, x) που χωρίζει τον κυκλικό δακτύλιο Δ( Ο,ρ, ΟΑ ) σε δύο κυκλικούς δακτύλιους ίσου εμβαδού. Κάθε θέμα βαθμολογείται με 5 μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

79 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 Ιστοσελίδα: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 Α Λυκείου. Να προσδιορίσετε τους ακέραιους που είναι λύσεις του συστήματος εξίσωσης-ανίσωσης ( ) x x x x x 5x = 4, + < Αν α, βγ, είναι πραγματικοί αριθμοί, με κατάλληλο χωρισμό των όρων της σε ομάδες, να παραγοντοποιήσετε την παράσταση: Α= α + αβ+ αβ αβγ αβγ βγ αγ + βγ.. Να λύσετε το σύστημα: x 4 5, x = = + x. y y 4. Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και το ύψος του ΑΔ. Από τυχόν σημείο Ε του ύψους ΑΔ θεωρούμε ευθεία ( ε) παράλληλη στη ΒΓ. Πάνω στην ευθεία (ε) θεωρούμε δύο διαφορετικά μεταξύ τους σημεία Μ, Ν έτσι ώστε ΕΜ = ΕΝ και ΜΒ < ΜΓ. Να αποδείξετε ότι τα ευθύγραμμα τμήματα ΜΓ και ΝΒ τέμνονται πάνω στο ύψος ΑΔ. Κάθε θέμα βαθμολογείται με 5 μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

80 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 Ιστοσελίδα: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 Β Λυκείου. Αν για τους πραγματικούς αριθμούς x, yz, ισχύουν οι ισότητες x y z x = y z x y = να αποδείξετε ότι z x y z =, x+ y+ z = 6 και να προσδιορίσετε τους αριθμούς x, yz.,. Δίνεται οξυγώνιο τρίγωνο ΑΒΓ και οι κύκλοι c (, ) Α ΑΒ (με κέντρο το σημείο Α και ακτίνα R =ΑΒ) και c ( ΑΑΓ, ) (με κέντρο το σημείο Α και ακτίνα R = ΑΓ ). Ο κύκλος c ( Α, ΑΒ ) τέμνει την ευθεία ΒΓ στο σημείο Ε και την ευθεία ΑΒ στο σημείο Δ. Ο κύκλος c ( Α, ΑΓ ) τέμνει την ευθεία ΒΓ στο σημείο Κ και την ευθεία ΑΓ στο σημείο Ν. α. Να αποδείξετε ότι το τετράπλευρο ΔΕΚΝ είναι ορθογώνιο. β. Αν το τρίγωνο ΑΒΓ είναι ισοσκελές με ΓΑ=ΓΒ και Γ= ˆ 0 o, να αποδείξετε ότι το τετράπλευρο ΔΕΚΝ είναι τετράγωνο.. Αν για τους θετικούς πραγματικούς αριθμούς x, y ισχύει ότι x+ y = 4, να αποδείξετε ότι: Πότε ισχύει η ισότητα; ( x+ ) ( y+ ) x + 5. y 4. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α= ˆ 90 o ) και έστω Ε το μέσο της διχοτόμου ΒΔ. Η εφαπτομένη του περιγεγραμμένου κύκλου του τριγώνου ΑΕΒ στο σημείο Α τέμνει την πλευρά ΒΓ στο σημείο Μ. Να αποδείξετε ότι η ευθεία ΜΕ και η διχοτόμος της γωνίας ˆΓ, τέμνονται πάνω στον περιγεγραμμένο κύκλο του τριγώνου ΑΒΓ. Κάθε θέμα βαθμολογείται με 5 μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

81 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 Γ Λυκείου. Να λυθεί στους πραγματικούς αριθμούς η εξίσωση x + x+ x + x+ = 7 x. ( ) ( ) ( ). Δίνεται οξυγώνιο τρίγωνο ΑΒΓ. Το ύψος του ΑΔ τέμνει τον περιγεγραμμένο κύκλο του στο σημείο Ζ και ο περιγεγραμμένος κύκλος του τριγώνου ΒΔΖ τέμνει την ευθεία ΑΒ στο σημείο Ε. Αν η ευθεία ΕΔ τέμνει την ευθεία ΑΓ στο Κ και η ευθεία ΖΚ τέμνει την ευθεία ΒΓ στο σημείο Λ, να αποδείξετε ότι το σημείο Δ είναι το μέσο του ευθύγραμμου τμήματος ΒΛ.. Σε τουρνουά τένις συμμετέχουν m, όπου m θετικός ακέραιος, αθλητές οι οποίοι έχουν βαθμολογηθεί και καταταγεί ανάλογα με την γενικότερη επίδοση τους. Το τουρνουά διεξάγεται σε γύρους. Στον πρώτο γύρο ο πρώτος αθλητής αγωνίζεται με τον τελευταίο αθλητή, ο δεύτερος αγωνίζεται με τον προτελευταίο και η διαδικασία συνεχίζεται μέχρι να αγωνιστούν όλοι οι αθλητές. Οι νικητές του πρώτου γύρου κατατάσσονται ξανά και συμμετέχουν στον δεύτερο γύρο ακολουθώντας ανάλογη διαδικασία με αυτή του πρώτου γύρου. Η διαδικασία συνεχίζεται μέχρι να ανακηρυχτεί ο πρωταθλητής. Σε κάθε νικητή του πρώτου γύρου δίνονται 0 βαθμοί, σε κάθε νικητή του δεύτερου γύρου δίνονται 0 βαθμοί, σε κάθε νικητή του τρίτου γύρου δίνονται 0 βαθμοί κ.ο.κ. α. Αν ο θετικός ακέραιος m είναι πολλαπλάσιο του, να αποδείξετε ότι το συνολικό πλήθος των αγώνων είναι πολλαπλάσιο του 7. β. Αν ο πρωταθλητής συγκέντρωσε συνολικά 0 βαθμούς, να βρείτε τον αριθμό των αθλητών που συμμετείχαν. 4. Μια ευθεία εφάπτεται των κύκλων c(o,r) και c(o,r) στα διακεκριμένα σημεία A και B, αντιστοίχως. Αν το M είναι κοινό σημείο των δύο κύκλων c(o,r), c(o,r) και ισχύει ότι r < r, να αποδείξετε ότι MA < MB. Κάθε θέμα βαθμολογείται με 5 μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

82 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 00 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 5. Έστω x = 4 :4+ και y= (α) Να βρεθούν οι αριθμοί x και y. (β) Να προσδιορίσετε το μεγαλύτερο θετικό ακέραιο Α, του οποίου οι αριθμοί x και y είναι πολλαπλάσια. (α) Έχουμε 5 x = 4 :4+ = 9 4 8:4+ = 9 :4+ = 9 8+ =. y = = = = 99. (β) Για την εύρεση του Α αρκεί να βρούμε το μέγιστο κοινό διαιρέτη των ΜΚΔ,99 =, έπεται ότι θα είναι Α =. αριθμών x, y. Επειδή είναι ( ). Έστω α,β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και διαιρέτη τον β δίνει πηλίκο 6. Να βρεθεί ο αριθμός α, αν επιπλέον γνωρίζετε ότι ο α είναι πολλαπλάσιο του 7, ενώ ο αριθμός β είναι ο μέγιστος κοινός διαιρέτης των αριθμών 6, και 48. Με τη γνωστή διαδικασία της διαίρεσης των δεδομένων ακέραιων με τον μικρότερό τους, βρίσκουμε το ΜΚΔ των αριθμών 6, και 48. Έχουμε , οπότε είναι β= ΜΚΔ( 6,, 48) = Από την υπόθεση έχουμε: α = 86 + υ = 48 + υ, όπου υ ακέραιος με δυνατές τιμές από 0 μέχρι και 7. Δοκιμάζοντας τις δυνατές τιμές του υ στην παραπάνω σχέση διαπιστώνουμε ότι μόνο για υ =, ο αριθμός α = 49 που προκύπτει, είναι πολλαπλάσιο του 7. Άρα έχουμε α = 49 καιβ = 8.

83 . Δίνεται τρίγωνο ΑΒΓ. Οι διχοτόμοι των γωνιών Β και Γ τέμνονται στο σημείο Ι. Η παράλληλη από το σημείο Ι προς την πλευρά ΑΒ τέμνει την πλευρά ΒΓ στο Δ ενώ η παράλληλη από το σημείο Ι προς την πλευρά ΑΓ τέμνει την πλευρά ΒΓ στο 0 σημείο Ε. Αν είναι ΙΔΓ ˆ 0 = 70 και ΙΕΓ ˆ = 0, να βρεθούν: α) η γωνία ˆΑ του τριγώνου ΑΒΓ. β) oι γωνίες ΒΙΔ ˆ και ΕΙΓ ˆ. o α. Εφόσον ΙΔ //ΑΒ θα ισχύει: ˆΒ= Δˆ = 70,(ως εντός εκτός επί τα αυτά των παραλλήλων ΙΔ,ΑΒ τεμνομένων από την ΒΔ ). o o o Επειδή είναι ΙΕ //ΑΓ, θα ισχύει: Γˆ = Εˆ = 80 0 = 50. (Οι γωνίες Γ, ˆ Ε ˆ είναι παραπληρωματικές ως εντός και επί τα αυτά των παραλλήλων ΙΕ,ΑΓ τεμνομένων από την ΕΓ ). Οι γωνίες Α,Β,Γ ˆ ˆ ˆ είναι γωνίες του τριγώνου ΑΒΓ, οπότε θα ισχύει: ˆ ˆ ˆ o ˆ o ˆ ˆ o o o o Α+ Β+ Γ= 80 Α = 80 Β Γ= = 60. β. Επειδή η ΙΔ είναι διχοτόμος της γωνίας ˆΒ o ˆΒ 70 o, θα ισχύει: ˆΒ = = = 5. o Επίσης, επειδή ΙΔ //ΑΒ, θα ισχύει: ˆI ˆ = Β = 5, γιατί οι γωνίες ˆI,Β ˆ είναι εντός εναλλάξ στις παράλληλες ΙΔ,ΑΒ που τέμνονται από την IΒ. Σχήμα Εφόσον ΙΓ διχοτόμος της γωνίας ˆΓ o ˆΓ 50 o, θα ισχύει: ˆΓ = = = 5. o Επίσης είναι ΙE//ΑΓ, οπότε θα ισχύει: ˆI ˆ = Γ = 5, αφού οι γωνίες ˆI,Γ ˆ είναι εντός εναλλάξ στις παράλληλες ΙE,ΑΓ που τέμνονται από την ΙΓ. 4. Ένας αγρότης καλλιέργησε δύο κτήματα με ελαιόδενδρα. Το ένα κτήμα είναι δικό του και έχει 80 ελαιόδενδρα, ενώ το άλλο το μισθώνει και έχει 0 ελαιόδενδρα. Η συνολική παραγωγή λαδιού ήταν 600 κιλά λάδι. Αν είχε συμφωνήσει να δώσει στον ιδιοκτήτη του μισθωμένου κτήματος το 0% της παραγωγής λαδιού του μισθωμένου κτήματος, πόσα κιλά λάδι θα πάρει ο ιδιοκτήτης του μισθωμένου κτήματος σε καθεμία από τις παρακάτω περιπτώσεις: α. Καθένα από τα ελαιόδενδρα των δύο κτημάτων παράγει τα ίδια κιλά λάδι.

84 β. Κάθε ελαιόδενδρο του μισθωμένου κτήματος έχει απόδοση σε λάδι ίση με το 50% της απόδοσης σε λάδι κάθε ελαιόδενδρου του κτήματος του αγρότη. α. Επειδή θεωρούμε ότι τα 0+80=00 ελαιόδενδρα των δύο κτημάτων είναι της ιδίας απόδοσης σε λάδι, έπεται ότι το λάδι που παράγεται από κάθε ελαιόδενδρο είναι 600:00= κιλά. Επομένως τα 0 ελαιόδενδρα του μισθωμένου κτήματος παρήγαγαν 0 = 560 κιλά λάδι. 0 Άρα ο ιδιοκτήτης του μισθωμένου κτήματος θα πάρει 560 = 56 κιλά λάδι. 00 β. Αν υποθέσουμε ότι τα ελαιόδενδρα του κτήματος του αγρότη παράγουν x κιλά λάδι το καθένα, τότε κάθε ελαιόδενδρο του μισθωμένου κτήματος θα παράγει 50 x x = κιλά λάδι. Σύμφωνα με τα δεδομένα του προβλήματος θα έχουμε την 00 εξίσωση x x + 0 = x + 80x = x = 600 x = = Επομένως τα ελαιόδενδρα του μισθωμένου κτήματος θα παράγουν 0 = 5 κιλά λάδι το καθένα, οπότε το μισθωμένο κτήμα θα παράγει συνολικά 0 5 = κιλά λάδι και ο ιδιοκτήτης του θα πάρει 800 = 80 κιλά λάδι. 00

85 4 Γ ΓΥΜΝΑΣΙΟΥ Αν x+ y= ( ) και y w = 5 5 παράστασης: Α = 7x + 0y w 87. Έχουμε x+ y= ( ) = 4= και, να βρεθεί η τιμή της y w = = = = = =. 5 Άρα είναι: Α = 7x+ 0y w 87= 7x+ 7y+ y w 87 = 7 x + y + y w 87 = = = 0. ( ) ( ). Να βρείτε έναν τετραψήφιο φυσικό αριθμό, αν γνωρίζετε ότι ισχύουν όλα τα παρακάτω: (α) Το ψηφίο των μονάδων του είναι πολλαπλάσιο του 4, (β) Το ψηφίο των δεκάδων του είναι το μισό του ψηφίου των μονάδων του, (γ) Το ψηφίο των εκατοντάδων του είναι διαιρέτης του 5, (δ) Το ψηφίο των χιλιάδων του είναι ίσο με το ψηφίο των εκατοντάδων του μειωμένο κατά. Έστω xyzw = 000 x + 00 y + 0 z + w ο ζητούμενος τετραψήφιος φυσικός αριθμός. Τότε, σύμφωνα με το (α) θα είναι w = 0 ή 4 ή 8, οπότε σύμφωνα με το (β) θα είναι z= 0 ή ή 4, αντίστοιχα. Επίσης, σύμφωνα με το (γ) θα είναι y= ή 5. Έτσι οι δυνατές μορφές του αριθμού είναι: x00, x4, x48, x500, x54, x548. Λαμβάνοντας υπόψη και το (δ) καταλήγουμε στους αριθμούς 4500, 454, 4548, αφού το πρώτο ψηφίο τετραψήφιου φυσικού αριθμού δεν μπορεί να είναι το 0.. Δίνεται τρίγωνο ΑΒΓ με ˆΑ = 0 0. Στο εσωτερικό της γωνίας Α φέρουμε ημιευθείες Αx και Αy κάθετες στις πλευρές ΑΓ και ΑΒ, αντίστοιχα, που τέμνουν την 0 πλευρά ΒΓ στα σημεία Δ και Ε, αντίστοιχα. Αν ΑΔΒ ˆ 0 = 0, ΑΕΔ ˆ = 60 και το ύψος ΑΗ έχει μήκος μονάδες μήκους, τότε: α. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισόπλευρο. β. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. γ. Να βρείτε το λόγο των περιμέτρων των τριγώνων ΑΒΓ και ΑΔΕ..

86 5 o α. Η γωνία ˆΔ είναι παραπληρωματική της γωνίας Δˆ ˆ = ΑΔΒ= 0, οπότε θα o o είναι ˆΔ = 60. Από τα δεδομένα όμως έχουμε ότι ˆΕ = 60. Άρα το τρίγωνο ΑΔΕ είναι ισόπλευρο. Σχήμα β. Εφόσον οι ημιευθείες ΑΔ (Αx) και ΑE (Αy) είναι κάθετες προς τις ΑΓ και 0 o ΑΒ, θα ισχύει: Αˆ ˆ ˆ = Α = ΑΒΓ 90 = 0 90 = 0. Τα τρίγωνα ΑΒΔ και ΑΓΕ έχουν: ΑΔ = ΑΕ (από το ισόπλευρο τρίγωνο ΑΔΕ ), ˆ ˆ o o Δ = Ε = 0 και Αˆ ˆ = Α = 0. Επομένως τα τρίγωνα ΑΒΔ, ΑΓΕ είναι ίσα και συνεπώς ΑΒ = ΑΓ. Στο ίδιο συμπέρασμα καταλήγουμε από τα ορθογώνια τρίγωνα ΑΕΒ και ΑΔΓ που έχουν ΑΕΒ ˆ = 60 = ΑΔΓ ˆ 0, οπότε θα είναι Βˆ = Γˆ = 0, δηλαδή ΑΒΓ ισοσκελές. γ. Έστω μ το μήκος της πλευράς του ισοπλεύρου τριγώνου ΑΔΕ και κ το μήκος των ίσων πλευρών του ισοσκελούς τριγώνου ΑΒΓ. Από το ορθογώνιο τρίγωνο ΑHΔ έχουμε: μ μ ΑΔ = ΑΗ + ΔΗ δηλαδή μ = + ( ) = μ = Από το ορθογώνιο τρίγωνο ΑHΒ έχουμε: μ = +, δηλαδή κ = + ( ) ΑΒ ΑΗ ΗΒ κ = 48 κ = 4. Η περίμετρος του τριγώνου ΑΒΓ είναι + 8. Η περίμετρος του τριγώνου ΑΔΕ είναι, οπότε ο λόγος του θα είναι + 4. Στο παρακάτω σχήμα το τετράγωνο ΑΒΓΔ έχει πλευρά ρ.ονομάζουμε Χ το χωρίο που αποτελείται από τα τέσσερα κυκλικά τμήματα του κύκλου C( Ο,ΟΑ ) που ορίζονται από τις χορδές ΑΒ, ΒΓ, ΓΔ και ΔΑ. Επίσης ονομάζουμε Χ το χωρίο που βρίσκεται εξωτερικά του κύκλου C( Ο,ρ) και εσωτερικά του τετραγώνου ΑΒΓΔ. α. Να βρείτε το εμβαδόν του κυκλικού δακτυλίου Δ( Ο,ρ,ΟΑ ) που ορίζεται από τους κύκλους C( Ο,ρ ) και C( Ο,ΟΑ ). β. Να αποδείξετε ότι τα εμβαδά Ε( Χ) και Ε( Χ) των χωρίων Χ και Χ,.

87 6 Ε( Χ ) αντίστοιχα έχουν λόγο μεγαλύτερο του Ε( Χ ) 5. γ. Να προσδιορίσετε την ακτίνα x του κύκλου C( Ο,x ) που χωρίζει τον κυκλικό δακτύλιο Δ( Ο,ρ,ΟΑ ) σε δύο κυκλικούς δακτύλιους ίσου εμβαδού. Σχήμα (α) Από το ορθογώνιο και ισοσκελές τρίγωνο ΟΑΕ με εφαρμογή του Πυθαγόρειου θεωρήματος λαμβάνουμε ΟΑ = ρ + ρ ΟΑ = ρ ΟΑ= ρ, οπότε είναι ( ( )) ( ) ΕΔΟ,ρ, ΟΑ = π ρ πρ = πρ πρ = πρ. (β) Το εμβαδόν του χωρίου Χπροκύπτει από το εμβαδόν του κυκλικού δίσκου κέντρου Ο και ακτίνας ρ, αν αφαιρέσουμε το εμβαδόν του τετράγωνο ΑΒΓΔ. Άρα είναι ( ) ( ) ( ) ( ) Ε Χ = π ρ ρ = πρ 4ρ = π 4 ρ. Το εμβαδόν του χωρίου Χ προκύπτει από το εμβαδόν του τετράγωνο ΑΒΓΔ, αν αφαιρέσουμε το εμβαδόν του κυκλικό δίσκου κέντρου Ο και ακτίνας ρ, δηλαδή ( ) ( ) ( ) ( ) = ( ) και ισχύει ότι: Ε Χ = ρ πρ = 4ρ πρ = 4 π ρ. Ε Χ π 4 Άρα είναι Ε Χ 4 π Ε( Χ ) π 4 7 = > 5π ( 4) > ( 4 π) π > 7 π >,04, Ε Χ 4 π 5 ( ) το οποίο είναι αληθές, αφού είναι π,4. (γ) Θα πρέπει να είναι ρ < x < ρ και τα εμβαδά των δύο κυκλικών δακτύλιων που ορίζονται να είναι ίσα, δηλαδή π ( ρ ) x = π( x ρ ) ρ x = x ρ. ρ x = ρ x = x = ρ.

88 7 Α ΛΥΚΕΙΟΥ. Να προσδιορίσετε τους ακέραιους που είναι λύσεις του συστήματος εξίσωσηςανίσωσης x x x( x ) x 5x = 4, + <. 4 4 Η εξίσωση x 5x = 4είναι ισοδύναμη με την εξίσωση x( x 5) = 4. Επειδή ζητάμε ακέραιες λύσεις της εξίσωσης, συμπεραίνουμε ότι ο x πρέπει να είναι διαιρέτης του 4. Επομένως θα είναι x { ±, ±, ± 7, ± 4}. Με δοκιμές διαπιστώνουμε ότι οι λύσεις της εξίσωσης είναι οι ακέραιοι 7 και -. Διαφορετικά, θα μπορούσαμε να γράψουμε την εξίσωση στη μορφή τριωνύμου x 5x 4= 0, με α =, β = 5, γ = 4, οπότε είναι Δ= β 4αγ =8 και οι ρίζες της εξίσωσης είναι x = 7 ή x =. Στη συνέχεια επιλύουμε την ανίσωση του συστήματος x x x( x ) + < x + x < x x x < x <. 4 4 Επομένως η ζητούμενη ακέραια λύση του συστήματος είναι η x =.. Αν οι α,β, γ είναι πραγματικοί αριθμοί, με κατάλληλο χωρισμό των όρων της σε ομάδες, να παραγοντοποιήσετε την παράσταση: Α= α + α β+ αβ αβγ αβ γ β γ α γ + β γ. Α= α + α β+ αβ αβγ αβ γ β γ α γ + β γ ( α α β αβ ) ( αβγ αβ γ β γ ) ( α γ β γ ) α ( α αβ β ) β γ ( α αβ β ) γ ( α β γ ) ( α αβ β)( α βγ) γ ( α βγ) ( α β γ )( α αβ β γ ) α ( βγ) ( α β) γ = = = + + = + + = + β γ α β γ. = ( α+ βγ)( α βγ) ( α+ + )( + ). Να λύσετε το σύστημα: x 4 x 5 x =, = +. y y Αν θέσουμε = w και απαλείψουμε παρονομαστές, το σύστημα γίνεται: y

89 8 x 8w = x = + 8w x = + 8w x = + 8w x 4w = x = + 4w + 8w = + 4w 8w 4w = x = + 8 x = + x = 4 x = + 8w 4. 4w = w = w = w = Άρα το σύστημα έχει μοναδική λύση ( x, y) = 4, 4. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ) και το ύψος του ΑΔ. Από τυχόν σημείο Ε του ύψους ΑΔ θεωρούμε ευθεία (ε) παράλληλη στη ΒΓ. Πάνω στην ευθεία (ε) θεωρούμε δύο διαφορετικά μεταξύ τους σημεία Μ, Ν έτσι ώστε ΕΜ = ΕΝ και ΜΒ < ΜΓ. Να αποδείξετε ότι τα ευθύγραμμα τμήματα ΜΓ και ΝΒ τέμνονται πάνω στο ύψος ΑΔ. Τα ορθογώνια τρίγωνα ΑΔΒ και ΑΔΓ είναι ίσα διότι έχουν τις υποτείνουσες (ΑΒ = ΑΓ) και δύο οξείες γωνίες (Βˆ = Γ) ˆ ίσες. Άρα ΔΒ = ΔΓ, δηλαδή το Δ είναι μέσο της ΒΓ. Τα τρίγωνα τώρα ΕΔΒ και ΕΔΓ είναι ορθογώνια και έχουν τις κάθετες πλευρές τους ίσες (ΕΔ κοινή και από τη προηγούμενη ισότητα ΔΒ = ΔΓ ). Άρα τα τρίγωνα είναι ίσα, οπότε θα έχουν Ε ˆ ˆ = Ε και ΕΒ = ΕΓ. Από την τελευταία ισότητα γωνιών, προκύπτει Ε ˆ ˆ = Ε4 γιατί οι γωνίες Ε ˆ ˆ, Ε 4 είναι συμπληρωματικές των ίσων γωνιών Ε ˆ ˆ, Ε. Σχήμα 4 Τα τρίγωνα ΕΜΒ και ΕΝΓ είναι ίσα γιατί έχουν:. ΕΜ = ΕΝ (από τα δεδομένα της άσκησης).. ΕΒ = ΕΓ (από την ισότητα των ορθογωνίων τριγώνων ΕΔΒ και ΕΔΓ ).

90 9 ˆ = ˆ (συμπληρωματικές των ίσων γωνιών Ε ˆ ˆ, Ε ). Άρα θα έχουν ΜΒ = ΝΓ και ΕΜΒ ˆ = ΕΝΓ ˆ.. Ε Ε4 Τα τρίγωνα ΜΝΒ και ΜΝΓ είναι ίσα διότι έχουν:. ΜΝ = ΜΝ (η πλευρά ΜΝ είναι κοινή).. ΜΒ = ΝΓ (από την ισότητα των τριγώνων ΕΜΒ και ΕΝΓ ).. ΕΜΒ ˆ = ΕΝΓ ˆ (από την ισότητα των τριγώνων ΕΜΒ και ΕΝΓ ). Άρα θα έχουν και ΜΓ = ΝΒ. Τα τρίγωνα τέλος ΜΒΓ και ΝΒΓ είναι ίσα γιατί έχουν:. ΒΓ = ΒΓ (η πλευρά ΒΓ είναι κοινή). ΜΒ = ΝΓ (από την ισότητα των τριγώνων ΕΜΒ και ΕΝΓ ). ΜΒΓ ˆ = ΜΒΕ ˆ + ΕΒΓ ˆ = ΝΓΕ ˆ + ΕΓΒ ˆ = ΝΓΒ ˆ Άρα θα έχουν και Β ˆ ˆ = Γ. Αν τώρα συμβολίσουμε με Τ το σημείο τομής των ΜΓ και ΝΒ, σε συνδυασμό με την ισότητα Β ˆ ˆ = Γ, συμπεραίνουμε ότι η ΤΔ είναι το ύψος του ισοσκελούς τριγώνου ΤΒΓ, δηλαδή η ΤΔ είναι κάθετη προς τη ΒΓ στο σημείο Δ. Άρα το σημείο Τ, θα ανήκει στο ύψος ΑΔ.

91 0 Β ΛΥΚΕΙΟΥ. Αν για τους πραγματικούς αριθμούς x,y,z ισχύουν οι ισότητες x y z = x = y z x y = z x y z, να αποδείξετε ότι x+ y+ z= 6 και να προσδιορίσετε τους αριθμούς x,y,z. Από τις δεδομένες ισότητες προκύπτει ότι πρέπει να αληθεύουν οι περιορισμοί: x, y και z, αλλά και οι περιορισμοί x y+ z, y z+ x και z x+ y. Στη συνέχεια με ύψωση στο τετράγωνο των δύο μελών των δεδομένων εξισώσεων λαμβάνουμε x y z= x 4x+ 4 4x y z = 4 y z x = y 4y + 4 x + 4y z = 4, () z x y= z 4z+ 4 x y+ 4z= 4 από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: x+ y+ z= 6. Οι αριθμοί x,y,z προκύπτουν από τις εξισώσεις του συστήματος (), αν τις γράψουμε στη μορφή 5x ( x + y + z) = 4 5x 6 = 4 x = 5y ( x + y + z) = 4 5y 6 = 4 y =. 5z ( x + y + z) = 4 5z 6 = 4 z = Διαφορετικά, αν υποθέσουμε ότι μία τουλάχιστον από τις ανισότητες x, y και z αληθεύει μόνον ως γνήσια ανισότητα, έστω x >, τότε με πρόσθεση αυτών κατά μέλη προκύπτει ότι x+ y+ z> 6, που είναι άτοπο. Άρα θα είναι x = y= z=.. Δίνεται οξυγώνιο τρίγωνο ΑΒΓ και οι κύκλοι c(α,αβ) (με κέντρο το σημείο Α και ακτίνα R = ΑΒ ) και c(α,αγ)(με κέντρο το σημείο Α και ακτίνα R = ΑΓ ). Ο κύκλος c(α,αβ) τέμνει την ευθεία ΒΓ στο σημείο Ε και την ευθεία ΑΒ στο σημείο Δ. Ο κύκλος c(α,αγ) τέμνει την ευθεία ΒΓ στο σημείο Κ και την ευθεία ΑΓ στο σημείο Ν. α. Να αποδείξετε ότι το τετράπλευρο ΔΕΚΝ είναι ορθογώνιο. β. Αν το τρίγωνο ΑΒΓ είναι ισοσκελές με ΓΑ = ΓΒ και ότι το τετράπλευρο ΔΕΚΝ είναι τετράγωνο. ˆΓ 0 o =, να αποδείξετε

92 α. Η ΒΔ (από την κατασκευή) είναι διάμετρος του κύκλου c(α,αβ), οπότε Α o είναι το μέσο του ΒΔ και ΒΕΔ ˆ = 90. Η ΓΝ (από την κατασκευή) είναι διάμετρος του κύκλου c(α,αγ), οπότε Α είναι o το μέσο του ΓΝ και ΓΚΝ ˆ = 90. Από τις προηγούμενες παρατηρήσεις συμπεραίνουμε ότι το τετράπλευρο ΝΔΓΒ είναι παραλληλόγραμμο, γιατί οι διαγώνιες του διχοτομούνται, οπότε ΝΔ = //ΒΓ. o Από την ισότητα ΒΕΔ ˆ = ΓΚΝ ˆ = 90 προκύπτει ότι οι ευθείες ΝΚ και ΔΕ είναι κάθετες προς την ευθεία ΒΓ, οπότε θα είναι ΝΚ //ΔΕ. Από τις προηγούμενες παραλληλίες συμπεραίνουμε ότι το τετράπλευρο ΔΕΚΝ o είναι παραλληλόγραμμο και από την ισότητα ΒΕΔ ˆ = ΓΚΝ ˆ = 90 καταλήγουμε στο ότι το τετράπλευρο ΔΕΚΝ είναι ορθογώνιο. Σχήμα 5. β. Στο ορθογώνιο τρίγωνο ΝΚΓ ισχύει ˆΓ = 0 o, οπότε η κάθετη πλευρά απέναντι από τη γωνία Γ θα ισούται με το μισό της υποτείνουσας. Άρα θα έχουμε ΝΓ ΚΝ = = ΑΓ = ΒΓ, οπότε, λόγω της ισότητας ΝΔ = ΒΓ, συμπεραίνουμε ότι ΚΝ = ΝΔ, δηλαδή δύο διαδοχικές πλευρές του ορθογώνιου ΔΕΚΝ είναι ίσες, οπότε αυτό είναι τετράγωνο.. Αν για τους θετικούς πραγματικούς αριθμούς x,y ισχύει ότι x+ y= 4, να αποδείξετε ότι: Πότε ισχύει η ισότητα; Αρκεί να αποδείξουμε ότι: ( x + ) ( y + ) x + 5. y

93 4x + 4x + 4y + 4y + 5 x + y ήαρκεί: 4( x + y) x y ή αρκεί: +. x y Η τελευταία ανισότητα μπορεί να προκύψει με διάφορους τρόπους. Ένας από αυτούς είναι μέσω της σχέσης ( x+ y) + 4, x y αν θέσουμε x+ y= 4, η οποία αληθεύει γιατί x y x y ( x+ y) + = = 4. x y y x y x Η ισότητα ισχύει για x = y=. Διαφορετικά, αρκεί να γράψουμε x+ y + xy 4 x( 4 x) 4 x 4x+ 4 0 x y xy x 0, που ισχύει. ( ) Στην τελευταία σχέση η ισότητα ισχύει για x = y=, οπότε και η ζητούμενη σχέση αληθεύει ως ισότητα για x = y=. o 4. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (Αˆ = 90 ) και έστω Ε το μέσο της διχοτόμου ΒΔ. Η εφαπτομένη του περιγεγραμμένου κύκλου του τριγώνου ΑΕΒ στο σημείο Α τέμνει την ευθεία ΒΓ στο σημείο Μ. Να αποδείξετε ότι η ευθεία ΜΕ και η διχοτόμος της γωνίας ˆΓ, τέμνονται πάνω στον περιγεγραμμένο κύκλο του τριγώνου ΑΒΓ. Επειδή E είναι το μέσο της υποτείνουσας ΒΔ του ορθογωνίου τριγώνου AΒΔ, θα ισχύει:

94 Σχήμα 6 ΕΑ = ΕΒ. Άρα το σημείο Ε ανήκει στη μεσοκάθετη της πλευράς ΑΒ και ˆΒ Αˆ ˆ = Β =. Επειδή η ΒΔ είναι διχοτόμος της γωνίας ˆΒ ˆΒ, θα ισχύει Βˆ ˆ = Β = και αφού ˆ ˆ ˆΒ ˆΒ Α = Β =, καταλήγουμε στην ισότητα Αˆ = Βˆ =. Άρα η ΓΒ είναι εφαπτόμενη στον περιγεγραμμένο κύκλο του τριγώνου ΑΕΒ και κατά συνέπεια ΜΑ = ΜΒ, δηλαδή το σημείο Μ ανήκει στη μεσοκάθετη της πλευράς ΑΒ. Στο ίδιο συμπέρασμα μπορούμε να καταλήξουμε ως εξής: Οι γωνίες ΜΑΕ ˆ ˆΒ και ˆΒ = είναι και οι δύο οξείες και η ΜΑΕ ˆ είναι γωνία ˆΒ χορδής εφαπτομένης, ενώ η ˆΒ = είναι εγγεγραμμένη στο τόξο ΑΕ του ˆΒ περιγεγραμμένου κύκλου του τριγώνου ΑΕΒ. Επομένως θα είναι ΜΑΕ ˆ =, οπότε ΜΑΒ ˆ = Βˆ και το τρίγωνο ΑΜΒ είναι ισοσκελές με ΜΑ = ΜΒ, δηλαδή το σημείο Μ ανήκει στη μεσοκάθετη της πλευράς ΑΒ. Το σημείο Μ είναι το μέσο της υποτείνουσας ΒΓ, οπότε είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ. Τελικά η ΜΕ είναι η μεσοκάθετη της πλευράς ΑΒ, οπότε θα διέρχεται από το μέσο Κ του τόξου ΑΒ, από το οποίο διέρχεται και η διχοτόμος της γωνίας ˆΓ.

95 4 Γ ΛΥΚΕΙΟΥ. Να λυθεί στους πραγματικούς αριθμούς η εξίσωση ( x x ) ( x x ) 7( x ) =. ( ος τρόπος) Αν θέσουμε a = x + x+, b= x + x+, τότε γίνεται: a b= x και η εξίσωση ( ) ( )( ) ( ) ( )( ) ( a b)( 6a 5ab + 6b ) = 0 a b 7 a b a b a ab b 7 a b = + + = a b a + ab + b 7a + 4ab 7b = 0 a b 0 ή a 5ab b 0 = + = a = b ή a = b ή a = b x = 0 ή x = 0 ή x + x = 0 x = ή x = ή x = ή x = 0 ή x = x = (τριπλή ρίζα) ή x = 0 ή x =. ος τρόπος Παρατηρούμε ότι και στους τρεις όρους των δύο μελών της εξίσωσης υπάρχει ο κοινός παράγοντας ( x+ ), οπότε η εξίσωση είναι ισοδύναμη με την εξίσωση ( ) ( ) ( ) ( ) x + x + x + 7 x = 0 x = (τριπλή ρίζα) = x = (τριπλή ρίζα) ή 7x 7x = 0 x = (τριπλή ρίζα) ή x = 0 ή x =. ή 8x x 6x x 6x x 8 7x x x 7 0. Δίνεται οξυγώνιο τρίγωνο ΑΒΓ. Το ύψος του ΑΔ τέμνει τον περιγεγραμμένο κύκλο στο σημείο Ζ και ο περιγεγραμμένος κύκλος του τριγώνου ΒΔΖ τέμνει την ευθεία ΑΒ στο σημείο Ε. Αν η ευθεία ΕΔ τέμνει την ευθεία ΑΓ στο Κ και η ευθεία ΖΚ την ΒΓ στο σημείο Λ, να αποδείξετε ότι το σημείο Δ είναι το μέσο του ευθύγραμμου τμήματος ΒΛ. Από το εγγεγραμμένο τετράπλευρο ΑΒΖΓ έχουμε: Βˆ = Γˆ ˆ + Γ. Από το εγγεγραμμένο τετράπλευρο ΑΒΔΖΕ έχουμε: ˆΒ ˆ = Δ.

96 5 Σχήμα 7 Από τις δύο προηγούμενες ισότητες γωνιών προκύπτει Δˆ = Γˆ ˆ + Γ, οπότε το τετράπλευρο ΔΚΓΖ είναι εγγράψιμο. Άρα Γ ˆ ˆ = Ζ. Από το εγγεγραμμένο τετράπλευρο ΑΒΖΓ έχουμε: Ζ ˆ ˆ = Γ. Από τις δύο τελευταίες ισότητες έχουμε: Ζ ˆ ˆ = Ζ, δηλαδή στο τρίγωνο ΒΖΛ η ΖΔ είναι ύψος και διχοτόμος. m. Σε τουρνουά τένις συμμετέχουν, όπου m θετικός ακέραιος, αθλητές οι οποίοι έχουν βαθμολογηθεί και καταταγεί ανάλογα με την γενικότερη επίδοση τους. Το τουρνουά διεξάγεται σε γύρους. Στον πρώτο γύρο ο πρώτος αθλητής αγωνίζεται με τον τελευταίο αθλητή, ο δεύτερος αγωνίζεται με τον προτελευταίο και η διαδικασία συνεχίζεται μέχρι να αγωνιστούν όλοι οι αθλητές. Οι νικητές του πρώτου γύρου κατατάσσονται ξανά και συμμετέχουν στον δεύτερο γύρο ακολουθώντας ανάλογη διαδικασία με αυτή του πρώτου γύρου. Η διαδικασία συνεχίζεται μέχρι να ανακηρυχτεί ο πρωταθλητής. Σε κάθε νικητή του πρώτου γύρου δίνονται 0 βαθμοί, σε κάθε νικητή του δεύτερου γύρου δίνονται 0 βαθμοί, σε κάθε νικητή του τρίτου γύρου δίνονται 0 βαθμοί κλπ. α. Αν ο θετικός ακέραιος m είναι πολλαπλάσιο του, να αποδείξετε ότι το συνολικό πλήθος των αγώνων είναι πολλαπλάσιο του 7. β. Αν ο πρωταθλητής συγκέντρωσε συνολικά 0 βαθμούς, να βρεθεί ο αριθμός των αθλητών που συμμετείχαν. Από την ανάλυση των κανόνων διεξαγωγής του τουρνουά μπορούμε να συμπεράνουμε τα παρακάτω: Στο ο γύρο συμμετέχουν m ανακηρύσσονται νικητές. m αθλητές, γίνονται m αγώνες και

97 6 Στο ο m γύρο συμμετέχουν m αθλητές, γίνονται αγώνες και m ανακηρύσσονται νικητές. Στο ο m γύρο συμμετέχουν m αθλητές, γίνονται αγώνες και m ανακηρύσσονται νικητές και ακολουθώντας ανάλογη διαδικασία στο m ο γύρο m m βρίσκουμε ότι συμμετέχουν + m m 0 = = αθλητές, γίνεται = = αγώνας m m 0 και ανακηρύσσεται = = νικητής. Από τα προηγούμενα συμπεραίνουμε ότι: m m m m Συνολικά γίνονται m γύροι και = αγώνες. Στους υπολογισμούς χρησιμοποιούμε την ταυτότητα: n n n α (α )(α = + α + + α+ ). α. Αν τώρα ο θετικός ακέραιος m είναι πολλαπλάσιο του, τότε m= k, όπου k θετικός ακέραιος, και το συνολικό πλήθος των αγώνων γράφεται: ( ) k m k k k k 8 (8 )(8 = = = = ) = 7n, όπου n θετικός ακέραιος. β. Ο πρωταθλητής έχει παίξει και στους m γύρους, οπότε οι βαθμοί που θα συγκεντρώσει είναι: m(m + ) (m 0) = 0( m) = 0 = 5m(m + ). Άρα προκύπτει η εξίσωση: 5m(m + ) = 0 m(m + ) = 4 m = 6, δηλαδή συμμετείχαν 6 = 64 αθλητές. 4. Μια ευθεία εφάπτεται των κύκλων c = (O,r) και c = (O,r) στα διακεκριμένα σημεία A και B αντιστοίχως. Αν το M είναι κοινό σημείο των c,c και ισχύει r < r, να αποδείξετε ότι MA < MB. ΜΟˆ Α ΜΟˆ Β Είναι MA = r ημ και MΒ = r ημ, οπότε ΜΟˆ Α r ημ ΜΑ =. () ΜΒ ΜΟˆ B r ημ Σχήμα 8

98 7 ΜΟˆ Α Η γωνία ισούται πάντοτε με μια από τις δύο γωνίες υπό της χορδής ΜΑ και της εφαπτομένης ΑΒ, και επειδή αυτές οι δύο είναι παραπληρωματικές μεταξύ τους, τα ημίτονα και των τριών γωνιών είναι ίσα. Καθώς ΜΑΒ ˆ είναι μια από τις γωνίες υπό της χορδής ΜΑ και της εφαπτομένης ΑΒ θα έχουμε ΜΟˆ Α ημ ημ(μαβ) ˆ ΜΟˆ = Α. Ομοίως, ισχύει ότι ημ ημ(μβα) ˆ = και η σχέση () γράφεται ΜΑ r ˆ ημ(μαβ) = () ΜΒ r ˆ ημ(μβα) ημ(μαβ) ˆ ΜB Από το θεώρημα ημιτόνων στο τρίγωνο ΜΑΒ έχουμε ημ(μβα) ˆ = ΜA, οπότε η σχέση () δίνει ΜΑ r ΜΑ r MB = = < MA< MB. ΜΒ r MA ΜΒ r Σημείωση Η προηγούμενη λύση αφορά τεμνόμενους κύκλους, αλλά και κύκλους εφαπτόμενους εξωτερικά. Τα σημεία A,B,M πάντοτε δημιουργούν τρίγωνο, αφού τα A,B είναι διακεκριμένα από την υπόθεση, και το M δεν μπορεί να ταυτιστεί με κανένα από τα A,B (αφού σε διαφορετική περίπτωση η ευθεία AB θα είχε με κάποιον από τους δοσμένους κύκλους δύο τουλάχιστον κοινά σημεία και δεν θα ήταν εφαπτομένη του).

99 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405, Ιστοσελίδα: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΝΟΕΜΒΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις Ιανουαρίου 0 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Μαρτίου 0 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην 9 η Βαλκανική Μαθηματική Ολυμπιάδα (Τουρκία, Μάιος 0), στην 6 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ιούνιος 0) και στην 5 η Διεθνή Μαθηματική Ολυμπιάδα (Αργεντινή, Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και να την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γρηγόριος Καλογερόπουλος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών

100 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 7 7 : Πρόβλημα Αν ο είναι πρώτος φυσικός αριθμός και το κλάσμα 0 παριστάνει φυσικό αριθμό, να βρείτε όλες τις δυνατές τιμές της παράστασης: :. 9 5 Πρόβλημα Τρεις αριθμοί α, β, γ είναι ανάλογοι με τους αριθμούς, 9, αντίστοιχα. Αν πάρουμε τον αριθμό γ ως μειωτέο και τον αριθμό α ως αφαιρετέο, τότε προκύπτει διαφορά ίση με 56. Να βρεθούν οι αριθμοί α, β και γ. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο με και η διχοτόμος του. Προεκτείνουμε τη διχοτόμο ΑΔ κατά το ευθύγραμμο τμήμα ΔΗ έτσι ώστε ΑΔ = ΔΗ. Από το σημείο Η φέρνουμε ευθεία παράλληλη προς την πλευρά ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο Ε και την πλευρά ΒΓ στο σημείο Ζ.. Να αποδείξετε ότι : ˆ 90.. Να βρείτε τη γωνία ˆ, αν γνωρίζετε ότι : ˆ ˆ 0 0. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

101 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: , Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αν 5, 7 0 :0 0 :0 και να βρείτε την τιμή της παράστασης: 6 Πρόβλημα Να βρεθούν οι ακέραιοι που επαληθεύουν και τις δύο ανισώσεις: x x x 5 x 9 και x Πρόβλημα Στο ορθοκανονικό σύστημα συντεταγμένων y x, όπου, με εξίσωση y x Oxy δίνεται ότι η ευθεία με εξίσωση πραγματικοί αριθμοί, είναι παράλληλη με την ευθεία και περνάει από το σημείο,8 (α) Να βρείτε τους πραγματικούς αριθμούς και.. (β) Να επαληθεύσετε ότι τα σημεία 4, 4 και, ανήκουν στην ευθεία και να αποδείξετε ότι το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. Πρόβλημα 4 Στο διπλανό σχήμα τα τετράπλευρα ΑΒΓΔ και ΕΖΗΘ είναι τετράγωνα. Το τετράγωνο ΕΖΗΘ έχει πλευρές που εφάπτονται του κύκλου C, στα σημεία Α, Β, Γ και Δ. (α) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του κύκλου C, και εξωτερικά του τετραγώνου ΑΒΓΔ. (β) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του τετραγώνου ΕΖΗΘ και εξωτερικά του κύκλου C,. 4 (γ) Να αποδείξετε ότι. (Θεωρείστε ότι,45). Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

102 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 Α ΛΥΚΕΙΟΥ Πρόβλημα Να βρείτε τις ακέραιες λύσεις του συστήματος: x 0 x 7x 0 0 x x x x. 5 Πρόβλημα Να απλοποιηθεί η παράσταση: x x x x x 4 x x x x x Πρόβλημα (α) Αν ακέραιος, να λύσετε την εξίσωση: x x x x. 4 4 (β) Για ποιες τιμές του ακέραιου η παραπάνω εξίσωση έχει ακέραιες λύσεις; Πρόβλημα 4 Δίνεται οξυγώνιο ισοσκελές τρίγωνο ΑΒΓ (ΑΒ ΑΓ ). Κύκλος με κέντρο την κορυφή Α και ακτίνα τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Δ, αντίστοιχα. Οι ευθείες ΒΔ, ΓΕ τέμνουν για δεύτερη φορά το κύκλο στα σημεία K, N αντίστοιχα. Αν T είναι το σημείο τομής των ΒΔ, ΓΕ και S το σημείο τομής των ΔΝ, ΕΚ, να αποδείξετε ότι τα σημεία Α,S και T βρίσκονται επάνω στην ίδια ευθεία. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

103 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 Β ΛΥΚΕΙΟΥ Πρόβλημα (α) Να απλοποιήσετε την παράσταση: x x x x 4 x, x x. (β) Να υπολογίσετε την τιμή της αριθμητικής παράστασης: , 00 χωρίς την εκτέλεση των σημειούμενων πράξεων. Πρόβλημα Να αποδείξετε ότι η εξίσωση, x a x b c με άγνωστο το x, έχει ρίζες στο, για όλες τις τιμές των παραμέτρων abc,,, c 0. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: y x x, z y y, x z z. Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο c(o,r). Οι διχοτόμοι των γωνιών ˆΑ, ˆΒ και ˆΓ, τέμνουν το κύκλο c(o,r) στα σημεία Δ, Ε και Ζ αντίστοιχα. Από το σημείο Ζ, θεωρούμε παράλληλη στην ΑΓ, που τέμνει την ΒΓ στο σημείο M. Από το σημείο Ε, θεωρούμε παράλληλη στην ΑΒ, που τέμνει την ΒΓ στο σημείο Ν. Να αποδείξετε ότι: α) Τα τετράπλευρα ΒΜΟΖ και ΓΝΟ Ε είναι εγγράψιμα σε κύκλους, έστω (c ) και (c ), αντίστοιχα. β) Το δεύτερο κοινό σημείο, έστω Κ, των κύκλων (c ) και (c ) ανήκει στο κύκλο με κέντρο το σημείο Δ και ακτίνα ΔΙ, όπου Ι το έκκεντρο του τριγώνου ΑΒΓ. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

104 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 Γ ΛΥΚΕΙΟΥ Πρόβλημα Να λυθεί στους πραγματικούς αριθμούς η εξίσωση x x x x 6 x Πρόβλημα Να προσδιορίσετε την τιμή της παραμέτρου,, αν το σύστημα έχει λύση στο x y x y, x y ( Σ ), για κάθε τιμή της παραμέτρου. Πρόβλημα Η ακολουθία a, n n 0,,,... είναι τέτοια ώστε η ακολουθία d, n an an με n,,.,... είναι αριθμητική πρόοδος με διαφορά a a0.. Να προσδιορίσετε, συναρτήσει των a, 0 και n τον γενικό όρο a n και το άθροισμα S n a 0 a a n.. Αν είναι a0 και a 7, να προσδιορίσετε τον ελάχιστο θετικό ακέραιο n για τον οποίο συναληθεύουν οι ανισώσεις: a 0 και 80. n Sn Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο (c) και Δ τυχόν σημείο της πλευράς ΒΓ. Η διχοτόμος της γωνίας ˆΒ, τέμνει τον κύκλο (c) στο σημείο Σ, τη διχοτόμο της γωνίας ΑΔΒ ˆ στο σημείο Κ και τη διχοτόμο της γωνίας ΑΔˆ Γ στο σημείο M. Η διχοτόμος της γωνίας ˆΓ, τέμνει τον κύκλο (c) στο σημείο Τ, τη διχοτόμο της γωνίας ΑΔΓ ˆ στο σημείο Λ και τη διχοτόμο της γωνίας ΑΔˆ Β στο σημείο N. Να αποδείξετε ότι: α) Τα σημεία Α,Ι,Λ,Μ και Α,Ι,Κ, Ν, όπου Ι το έκκεντρο του τριγώνου ΑΒ Γ, είναι ομοκυκλικά σε δύο διαφορετικούς κύκλους, έστω (c ) και (c ), αντίστοιχα. β) Αν η ΑΔ ταυτιστεί με το ύψος του τριγώνου ΑΒΓ που αντιστοιχεί στη κορυφή Α, τότε οι κύκλοι (c ) και (c ) είναι ίσοι μεταξύ τους. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

105 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 7 7 Α= + : Α = = + + = + = Πρόβλημα Αν ο ν είναι πρώτος φυσικός αριθμός και το κλάσμα 0 ν αριθμό, να βρείτε όλες τις δυνατές τιμές της παράστασης: ν ν Β= :. ν 9 5 παριστάνει φυσικό Επειδή το κλάσμα 0 ν παριστάνει φυσικό αριθμό και ο αριθμός ν είναι πρώτος φυσικός αριθμός, έπεται ότι οι δυνατές τιμές του ν είναι ν = ή ν = 5. Για ν =,έχουμε: Για ν = 5, έχουμε: 0 0 Β= : = : = : = 9= Β= : = : = : = = =

106 Πρόβλημα Τρεις αριθμοί α, β, γ είναι ανάλογοι με τους αριθμούς, 9, αντίστοιχα. Αν πάρουμε τον αριθμό γ ως μειωτέο και τον αριθμό α ως αφαιρετέο, τότε προκύπτει διαφορά ίση με 56. Να βρεθούν οι αριθμοί α, β και γ. α β γ Από την πρώτη υπόθεση του προβλήματος έχουμε ότι: = = = ω, οπότε θα 9 είναι α = ω, β = 9ω και γ = ω. Έτσι από τη δεύτερη υπόθεση του προβλήματος προκύπτει η εξίσωση γ α = 56 ω ω = 56 8ω = 56 ω = 7. Άρα είναι: α = 7 =, β = 9 7 = 6 και γ = 7 = 77. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο ΑΒΓ με ΑΒ<ΑΓ και η διχοτόμος του ΑΔ. Προεκτείνουμε τη διχοτόμο ΑΔ κατά το ευθύγραμμο τμήμα ΔΗ έτσι ώστε ΑΔ = ΔΗ. Από το σημείο Η φέρνουμε ευθεία παράλληλη προς την πλευρά ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο Ε και την πλευρά ΒΓ στο σημείο Ζ.. Να αποδείξετε ότι : ΑΔΕ ˆ = 90. Να βρείτε τη γωνία ΕΔΖ ˆ, αν γνωρίζετε ότι :. Επειδή η ΑΔ είναι διχοτόμος της γωνίας ˆ Αˆ, θα ισχύει: ˆ ˆ Α Α = Α =. Από την παραλληλία των ΑΒ και ZH, συμπεραίνουμε ότι Αˆ = Ηˆ (εντός εναλλάξ). Άρα θα ισχύει Αˆ = Ηˆ, οπότε το τρίγωνο ΑΕΗ είναι ισοσκελές. To Δ είναι το μέσο της βάσης ΑΗ του ισοσκελούς τριγώνου ΑΕΗ, οπότε η διάμεσος ΕΔ θα είναι και ύψος του ισοσκελούς τριγώνου ΑΕΗ, δηλαδή θα είναι ΕΔ ΑΗ και ˆ ΑΔΕ = 90. ˆ ˆ 0 0 Β Γ=.. Επειδή ΓΔΕ=ΑΔΕ= ˆ ˆ 90, θα ισχύει: o o Ε ˆ ˆ ˆ = 90 Δ = 90 Δ. Σχήμα Η ˆΔ είναι εξωτερική στο τρίγωνο ΑΔΓ, δηλαδή παραπληρωματική της γωνίας ΑΔΓ ˆ Αˆ, οπότε θα είναι Δˆ = + Γˆ. Από τις δύο τελευταίες ισότητες γωνιών έχουμε: o o o ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Α ˆ Α Β Γ Α ˆ Β Γ 0 o Ε = 90 Δ = 90 Γ = + + Γ = = = 0.

107 Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα 5 7 Ανα = 0 :0, β = 0 :0 και0 000 να βρείτε την τιμή της παράστασης: 6αβγ Α= αβ + βγ + γα Έχουμε: α = 0 :0 = 0 = 0, β = 0 :0 = 0 = 0 καιγ = = 0 0 = 0. Άρα η παράσταση γίνεται: ( 0 ) Α= = = = ( 0 ) = ( 0 ) = = = = Πρόβλημα Να βρεθούν οι ακέραιοι που επαληθεύουν και τις δύο ανισώσεις: x x x 5 x 9 και x Λύνουμε καθεμία από τις ανισώσεις. Έχουμε: x x 5 x x x ( x 5) 8 x x+ 5 8 x. 4 4 x x 6 x 6 x 9 x 9 x 9 x x x x 6 x 9 x 6 x 9 x x x 6 ( x 9) 8x x 6 x+ 9 8x 9 x x x. Επομένως οι δύο ανισώσεις συναληθεύουν όταν x, οπότε οι ακέραιοι που συναληθεύουν τις δύο ανισώσεις είναι οι, και. Πρόβλημα Στο ορθοκανονικό σύστημα συντεταγμένων Oxy δίνεται ότι η ευθεία ( ) εξίσωση y = ( λ ) x+ μ, όπου, ευθεία ( δ ) με εξίσωση y = λx και περνάει από το σημείο Κ (,8). (α) Να βρείτε τους πραγματικούς αριθμούς λ και μ. ε με λ μ πραγματικοί αριθμοί, είναι παράλληλη με την

108 (β) Να επαληθεύσετε ότι τα σημεία Λ( 4, 4) και Μ(, ) ανήκουν στην ευθεία ( ε ) και να αποδείξετε ότι το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. (α) Επειδή είναι ( ε ) ( δ ), οι δύο ευθείες θα έχουν ίσους συντελεστές διεύθυνσης, οπότε προκύπτει η εξίσωση λ = λ λ =. Έτσι η εξίσωση της ε γίνεται y x μ Κ,8 ευθείας ( ) = +. Επιπλέον, από την υπόθεση, το σημείο ( ) ανήκει στην ευθεία ( ε ), οπότε θα ισχύει: 8= + μ μ = 4 μ =. Άρα έχουμε: λ =, μ = και ( ε ) : y = x+ 4. (β) Επειδή ισχύουν ( 4) + 4= 4 και ( ) + 4=, τα σημεία Λ( 4, 4) και Μ(, ) επαληθεύουν την εξίσωση της ευθείας ( ε ), οπότε αυτά είναι σημεία της ευθείας ( ε ). Επιπλέον, παρατηρούμε οι αποστάσεις του σημείου Μ από τα σημεία Κ και Λ είναι ίσες. Πράγματι, έχουμε ΜΚ = ( + ) + ( 8 ) = 9+ 6 = 45 ( ) ( ) ΜΛ = = 9+ 6 = 45 Επομένως το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. Πρόβλημα 4 Στο διπλανό σχήμα τα τετράπλευρα ΑΒΓΔ και ΕΖΗΘ είναι τετράγωνα. Το τετράγωνο ΕΖΗΘ έχει πλευρές που C Ο, ρ στα σημεία Α, Β, Γ και Δ. εφάπτονται του κύκλου ( ) (α) Να βρείτε το άθροισμα Σ των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του κύκλου C ( Ο, ρ ) και εξωτερικά του τετραγώνου ΑΒΓΔ. (β) Να βρείτε το άθροισμα Σ των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του τετραγώνου ΕΖΗΘ C Ο, ρ. και εξωτερικά του κύκλου ( ) Σ 4 (γ) Να αποδείξετε ότι <. (Θεωρείστε ότι π =,45). Σ. Επειδή είναι ΟΑ = ΟΒ, ΟΑ ΕΖκαι ΟΒ ΖΗ, έπεται ότι το τετράπλευρο ΟΑΖΒ είναι τετράγωνο, οπότε το τρίγωνο ΑΟΒ είναι ορθογώνιο στο Ο. Επομένως, από το Πυθαγόρειο θεώρημα στο τρίγωνο ΟΑΒ λαμβάνουμε: ΑΒ = ρ + ρ ΑΒ = ρ ΑΒ = ρ. Άρα το εμβαδόν του τετραγώνου είναι: ρ. Το εμβαδόν του κύκλου είναι πρ, οπότε το άθροισμα Σ, θα είναι: Σ = πρ ρ = ( π ) ρ

109 Σχήμα. Επειδή είναι ΟΑ ΕΖ και ΟΓ ΗΘ, έπεται ότι η ΑΓ είναι διάμετρος του κύκλου C ( Ο, ρ ). Άρα το τετράπλευρο ΑΓΗΖ είναι ορθογώνιο, οπότε ΖΗ = ρ. Επομένως το εμβαδόν του τετραγώνου ΕΖΗΘ είναι ίσο με 4ρ. Άρα έχουμε: Σ = 4ρ πρ = ( 4 π ) ρ.. Σύμφωνα με τα προηγούμενα έχουμε: Σ 4 ( π ) ρ 4 < < ( π ) < 4( 4 π) π 6 < 6 4π Σ ( 4 π) ρ 7π < π < =,48..., που ισχύει. 7

110 Α ΛΥΚΕΙΟΥ. Να βρείτε τις ακέραιες λύσεις του συστήματος: ( x 0)( x 7x+ 0) = 0 x + x x( x+ ) + < 5 Έχουμε x 0 x 7x+ 0 = 0 x 0 = 0 ή x 7x+ 0= 0 ( )( ) x= x x+ = 0 ή Η εξίσωση x 7x+ 0= 0, έχει το πρώτο μέλος της τριώνυμο με α =, β = 7, γ = 0, οπότε είναι Δ= β 4αγ = 9 και οι ρίζες της εξίσωσης είναι x = ή x = 5. Διαφορετικά μπορούμε να πούμε ότι η εξίσωση x 7x+ 0= 0είναι ισοδύναμη με την εξίσωση x( x 7) = 0. Επειδή ζητάμε ακέραιες λύσεις της εξίσωσης, συμπεραίνουμε ότι ο x πρέπει να είναι διαιρέτης του 0. Επομένως θα είναι x { ±, ±, ± 5, ± 0}. Με δοκιμές διαπιστώνουμε ότι οι λύσεις της εξίσωσης είναι οι ακέραιοι και 5. Στη συνέχεια επιλύουμε την ανίσωση του συστήματος x + x x( x+ ) + < 5x x < 5x + 5x x>. 5 Επομένως οι ζητούμενες ακέραιες λύσεις του συστήματος είναι: x = 5 ή x = 0.. Να απλοποιηθεί η παράσταση: Αν θέσουμε ( ) ( ) x ( x) ( + x ) + ( + x) ( x + ) 4 + x + + x + x + x Α ( x) = x + ( + x) + x( + x) Β ( x) = Γ ( x) = + x + ( + x) τότε η παράσταση Α( x ) είναι ίση με τη διαφορά Β( x) Γ( ) ( ) ( ) x ( x) ( x + x) + ( x + x) + ( x + x+ ) ( + x ) + ( + x) ( x + ) και, x. Έχουμε: ( ) + x + + x+ x + x + x + x+ x + x Β ( x) = = x + + x+ x x + + x + x + x x + x + x + x+ x + x + x + x+ x + x + x + x + x+ = = = + x+ x + x+ x + x+ x = = = x + x+ + x+ x x + x+..

111 Άρα έχουμε: ( ) ( ) ( x + ) ( x + ) ( + ) + ( + ) ( x+ )( x + ) x x x x x x x x Γ ( x) = = = x x x x = = = x +. x + x + ( ) ( ) ( ) ( ) Α x =Β x Γ x = x + x+ x+ = x.. (α) Αν κ ακέραιος, να λύσετε την εξίσωση: κ x x ( κ x ) + = κ ( x + ). 4 4 (β) Για ποιες τιμές του ακέραιου κ η παραπάνω εξίσωση έχει ακέραιες λύσεις; (α) Η εξίσωση είναι ισοδύναμη με την κx+ x= 4κ( x+ ) ( κx ) κx+ x= 4κx+ 8κ κx+ κx+ x= 8κ + κ + x = 8κ +. () ( ) Διακρίνουμε τώρα τις περιπτώσεις:. Αν κ =, τότε η εξίσωση γίνεται 0 x = 5 και είναι αδύνατη. κ, δηλαδή, αν ο κ είναι ακέραιος διαφορετικός από το,. Αν { } 8κ + τότε η εξίσωση έχει μοναδική λύση x = κ +. (β) Η εξίσωση έχει ακέραιες λύσεις, όταν είναι 8κ + 8κ ( κ + ) 5 x= x= x= κ + κ + κ x = 8 κ + κ + κ +,, 5,5 κ, 0, 6, 4. { } { } Όλες οι τιμές που βρήκαμε για το κ είναι δεκτές, αφού είναι διαφορετικές του -. Πρόβλημα 4 Δίνεται οξυγώνιο ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ ). Κύκλος με κέντρο την κορυφή Α και ακτίνα ρ <ΑΒ τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Δ, αντίστοιχα. Οι ευθείες ΒΔ, ΓΕ τέμνουν για δεύτερη φορά το κύκλο στα σημεία K,N αντίστοιχα. Αν Tείναι το σημείο τομής των ΒΔ, ΓΕ και S το σημείο τομής των ΔΝ, ΕΚ, να αποδείξετε ότι τα σημεία Α, S και T βρίσκονται επάνω στην ίδια ευθεία. Τα τρίγωνα ΑΔΒ και ΑΕΓ είναι ίσα γιατί έχουν: (α) ΑΔ= ΑΕ, ως ακτίνες του ίδιου κύκλου, (β) ΑΒ = ΑΓ (πλευρές του ισοσκελούς τριγώνου ΑΒΓ ) και (γ) η γωνία ˆΑ είναι κοινή για τα δύο τρίγωνα.

112 Σχήμα Από την ισότητα των τριγώνων ΑΔΒ και ΑΕΓ, προκύπτουν οι ισότητες: Β ˆ ˆ = Γ και κατά συνέπεια: ΒΤΓ ˆ = ΓΤΒ ˆ. () ΑΔΒ ˆ = ΑΕΓ ˆ και κατά συνέπεια ως παραπληρωματικές ίσων γωνιών ΒΕΓ ˆ = ΒΔΓ ˆ () ΔΒ = ΔΓ. () Από την ισότητα () των γωνιών ΒΤΓ ˆ = ΓΤΒ ˆ προκύπτει ότι το τρίγωνο ΒΤΓ είναι ισοσκελές και κατά συνέπεια το σημείο Τ θα ανήκει στη μεσοκάθετη της ΒΓ. Από το ισοσκελές τρίγωνο ΒΤΓ έχουμε: ΤΒ = ΤΓ και σε συνδυασμό με την ισότητα () συμπεραίνουμε: ΤE = ΤΔ. Από την ισότητα () των γωνιών ΒΕΓ ˆ = ΒΔΓ ˆ, προκύπτει η ισότητα τω ισοσκελών τριγώνων ΑΔΚ και ΑΕΝ. Άρα ΔΚ = ΕΝ και επειδή ΤE= TΔ, καταλήγουμε ΤΚ = ΤΝ. Από τις ισότητες ΤE= TΔ και ΤΚ = ΤΝ συμπεραίνουμε την ισότητα των τριγώνων ΕΤΚ και ΔΤΝ. Από την προηγούμενη ισότητα προκύπτει η ισότητα των τριγώνων SΕΝ = SΔΚ και στη συνέχεια η ισότητα SΑΕ = SΑΚ, οπότε το σημείο S ανήκει στη διχοτόμο της γωνίας ˆΑ.

113 Β ΛΥΚΕΙΟΥ Πρόβλημα (α) Να απλοποιήσετε την παράσταση: ( x+ )( x )( x ) + x 4 Κ ( x) =, x ±. x (β) Να υπολογίσετε την τιμή της αριθμητικής παράστασης: Α=. 00 χωρίς την εκτέλεση των σημειούμενων πράξεων. (α) Εκτελούμε τις πράξεις και παραγοντοποιούμε τον αριθμητή της παράστασης: ( x+ )( x )( x ) + x 4 ( x+ )( x x+ ) + x 4 = x x x x + x+ 4x 6x+ + x 4 x + x 4x = = x x x( x ) + x ( x )( x+ ) = = = x +. x x (β) Για x = 00 η προηγούμενη παράσταση γίνεται ίση με την Α, οπότε θα έχουμε: Α=Κ 00 = 00 + = 40. ( ) Πρόβλημα Να αποδείξετε ότι η εξίσωση x a + x b =, c με άγνωστο το x, έχει ρίζες στο, για όλες τις τιμές των παραμέτρων abc,,, c 0. Για a = b η εξίσωση γίνεται: = x = a+ c. x a c Έστω a b. Τότε η εξίσωση είναι ισοδύναμη με x a x b = c x a+ x b, με x a και x b ( )( ) ( ) ( ) ( ) x a+ b+ c x+ ab+ a+ b c = 0, με x a και x b () Η διακρίνουσα της δευτεροβάθμιας εξίσωσης είναι ( ) ( ) ( ) ( ) 4 4 Δ= a+ b+ c 4ab 4 a+ b c = a+ b 4ab+ 4c = a b + 4c > 0, οπότε η εξίσωση () έχει δύο ρίζες άνισες στο που δίνονται από τις ισότητες ( ) 4 a+ b+ c ± a b + 4c x, =. () Οι δύο ρίζες είναι δεκτές, αν τα a και b δεν είναι ρίζες της εξίσωσης (). Για x = a a a x b = c a a+ x b 0 = c a b, που είναι η εξίσωση γίνεται: ( )( ) ( ) ( )

114 άτοπο, αφού είναι c 0 και έχουμε υποθέσει ότι a b. Ομοίως καταλήγουμε σε άτοπο για x = b. Επομένως, για a b, η δεδομένη εξίσωση έχει δύο ρίζες άνισες στο που δίνονται από τις ισότητες (). Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: y = x + x, z = y + y, x= z + z. Με αφαίρεση κατά μέλη των εξισώσεων του συστήματος λαμβάνουμε: y z = x y x + xy+ y + () ( )( ) ( )( ) z x= y z y + yz+ z + () y y Επειδή είναι x + xy+ y + = x+ + + > 0 και ομοίως προκύπτει ότι 4 z z y + yz+ z + = y+ + + > 0, αν υποθέσουμε ότι είναι x > y, τότε από 4 την () λαμβάνουμε ότι y > z. Στη συνέχεια από τη σχέση () λαμβάνουμε z > x. Έτσι έχουμε x > y > z > x, άτοπο. Ομοίως καταλήγουμε σε άτοπο, αν υποθέσουμε ότι x < y. Επομένως έχουμε x = y, οπότε θα είναι και y = z. Τότε από τις αρχικές εξισώσεις έχουμε: x= x + x x + x = 0 x + x = 0 ( x )( x + x+ ) = 0 x=, αφού το τριώνυμο x + x+ έχει διακρίνουσα Δ = 7< 0. Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο c(o,r). Οι διχοτόμοι των γωνιών ˆΑ, ˆΒ και ˆΓ, τέμνουν το κύκλο c(o,r) στα σημεία Δ, Ε και Ζ αντίστοιχα. Από το σημείο Ζ, θεωρούμε παράλληλη στην ΑΓ, που τέμνει την ΒΓ στο σημείο M. Από το σημείο Ε, θεωρούμε παράλληλη στην ΑΒ, που τέμνει την ΒΓ στο σημείο Ν. Να αποδείξετε ότι: α) Τα τετράπλευρα ΒΜΟΖ και ΓΝΟΕ είναι εγγράψιμα σε κύκλους, έστω (c ) και (c ), αντίστοιχα. β) Το δεύτερο κοινό σημείο (έστω Κ ) των κύκλων (c ) και (c ) ανήκει στο κύκλο με κέντρο το σημείο Δ και ακτίνα ΔΙ, όπου Ι το έκκεντρο του τριγώνου ΑΒΓ. α) Εφόσον η ΖΜ είναι παράλληλη στην ΑΓ, θα ισχύει: ΖΜΒ ˆ = ΑΓΒ ˆ = Γˆ. Η γωνία ΖΟΒ ˆ είναι επίκεντρη στον κύκλο c(o, R ) και βαίνει στο τόξο ΖΒ (που είναι το μισό του τόξου ΑΒ ). Άρα ΖΟΒ ˆ = Γˆ. Άρα είναι ΖΜΒ ˆ = ΖΟΒ ˆ = Γˆ, οπότε το τετράπλευρο ΒΜΟΖ είναι εγγράψιμο.

115 Σχήμα 4 Ομοίως προκύπτει ότι εγγράψιμο. ΕΝΓ ˆ = EOˆ Γ= Βˆ και ότι το τετράπλευρο ΓΝΟΕ είναι β) Επειδή το σημείο Ι είναι το έκκεντρο του τριγώνου ΑΒΓ, θα ισχύουν οι ισότητες γωνιών: Α ˆ + Βˆ ΔΙΒ ˆ ΔΒΙ ˆ Α ˆ + Γˆ = = και ΔΙΓ ˆ = ΔΓΙ ˆ =. Από τις προηγούμενες ισότητες προκύπτει ότι ΔΒ = ΔΙ = ΔΓ και επίσης εύκολα ˆ προκύπτει ότι: ΒΙΓ ˆ Α = Αρκεί να αποδείξουμε ότι τα σημεία Β, Ι, Κ, Γ είναι ομοκυκλικά, δηλαδή ότι Β+Γ ˆ ˆ ΒΚΓ ˆ = Α ˆ + = ΒΙΓ ˆ. Σχήμα 5

116 Το τρίγωνο ΟΒΖ είναι ισοσκελές (ΟΒ = ΟΖ = R), με ΒΟΖ ˆ = Γˆ. Άρα ˆ o ˆΓ ΒΖΟ = Το τρίγωνο ΟΓΕ είναι ισοσκελές (ΟΓ = ΟΕ = R), με ΓΟΕ ˆ = Βˆ. Άρα o ˆΒ Γ ÊO = 90. Έτσι ισχύουν διαδοχικά οι ισότητες: ΒΚΓ ˆ = ΟΚΒ ˆ + ΟΚΓ ˆ = ΒΖΟ ˆ + ΓΕΟ ˆ ˆΓ = 90 o o ˆΒ + 90 ˆ o Α ˆ Α = = 90 + = ΒΙΓ ˆ.

117 Γ ΛΥΚΕΙΟΥ. Να λυθεί στους πραγματικούς αριθμούς η εξίσωση ( x x ) ( x x ) 6( x ) = +. ( ος τρόπος) Παρατηρούμε ότι τα τριώνυμα x + x+ και x + x έχουν παράγοντα το x +, οπότε η εξίσωση γίνεται: ( x+ ) ( x+ ) + ( x ) 6 = ( x+ ) = 0 ή ( x+ ) + ( x ) 6= 0 4 x= (με πολλαπλότητα 4) ή x + x 4= 0 4 x= (με πολλαπλότητα 4) ή x + 6x 7= 0 x= (με πολλαπλότητα 4) ή x = ή x = 7(αδύνατη) x= (με πολλαπλότητα 4) ή x= ή x=. ος τρόπος Αν θέσουμε γίνεται: a x x b x x = + +, = +, τότε a b= x+ 4 και η εξίσωση ( ) a + b = a b a + b = a 4a b+ 6a b 4ab + b ( ) ab a ab + b = 0 a= b= a ab+ b = a= 0 ή b= 0 ή a= b= 0, 0 ή 0 ή 0 αφού η εξίσωση a ab+ b = 0, αν ab 0, είναι ισοδύναμη με την εξίσωση a u u+ = 0, u =, b η οποία δεν έχει λύσεις στο. Άρα έχουμε: a= 0 ή b= 0 ή a= b= 0 x + x+ = 0 ή x + x = 0 ή x + x+ = x + x = 0 x= ή x= ή x= ή x= ή x= (διπλή) x= ή x= ή x= (με πολλαπλότητα 4) Πρόβλημα Να προσδιορίσετε την τιμή της παραμέτρου α,, αν το σύστημα α( x + y ) + x+ y = λ, (Σ) x y = λ έχει λύση στο, δια κάθε τιμή της παραμέτρου λ. Έχουμε

118 Αν ήταν α 0 ( ) ( ) ( ) α x + y + x+ y = λ α x + x+ λ + x+ x+ λ = λ x y = λ y = x+ λ 5αx + 4( αλ+ ) x+ αλ = 0 () y = x+ λ (), τότε η εξίσωση () έχει διακρίνουσα ( αλ ) α λ ( α λ αλ ) Δ = = Επειδή το σύστημα έχει λύση στο για κάθε τιμή της παραμέτρου λ, έπεται ότι θα είναι: Δ 0 αλ + 8αλ () Όμως, το τριώνυμο αλ + 8αλ+ 4 έχει διακρίνουσα Δ = 80α > 0, οπότε έχει 4 δύο πραγματικές ρίζες ετερόσημες, έστω λ < 0 < λ (αφού είναι λλ = < 0 ). α Επομένως θα έχουμε αλ + 8αλ+ 4< 0, για λ < λ ή λ > λ, άτοπο. Για α = 0 η εξίσωση () έχει τη λύση x = 0, οπότε προκύπτει ότι y = λ και το σύστημα έχει τη λύση ( xy, ) ( 0, λ ) =. Άρα είναι α = 0. Πρόβλημα Η ακολουθία an, n= 0,,,... είναι τέτοια ώστε η ακολουθία d, n = an an με n =,,.,... είναι αριθμητική πρόοδος με διαφορά ω = a a0.. Να προσδιορίσετε, συναρτήσει των a, 0 ω και n τον γενικό όρο a n και το άθροισμα S = n a + 0 a a. n. Αν είναι a 0 = και a = 7, να προσδιορίσετε τον ελάχιστο θετικό ακέραιο n για τον οποίο συναληθεύουν οι ανισώσεις: an > 0 και S n Σύμφωνα με την υπόθεση έχουμε: d = ω, dn = d+ ( n ) ω = nω, n=,,..... οπότε θα είναι: d+ d dn = ( a a0) + ( a a) ( an an ) ω + ω nω = an a0 an = a0 + ( n) ω n( n+ ) an = a0 + ω. Για το άθροισμα S n + έχουμε:

119 ( n ) n + Sn+ = a0 + a+ + an = ( n+ ) a ω n = ( n+ ) a0 + (( + ) + ( + ) ( n + n) ) ω = ( n+ ) a0 + ( k + k) k = n n n( n+ )( n+ ) n( n+ ) = ( n+ ) a0 + k ω k ω ( n ) a0 ω + k= = k= 6 n( n+ )( n+ ) n( n+ )( n + ) = ( n+ ) a0 + ω = ( n+ ) a0 + ω. 6. Αν είναι a 0 = και a = 7, τότε έχουμε ω = 6 και ( ) ( )( ) ( ) ( ) ( ) an = + n n+, Sn+ = n+ + n n+ n+ = n+ + n n+ = n+. Έτσι έχουμε να λύσουμε το σύστημα των ανισώσεων: an > 0 και S n + 80 ( ) ( ) a = + n n+ > 0, S = n+ 8 0 ( ) n nn+ >, n+ 0 n> 8, n 9 n= 8 ή n= 9. αφού είναι 7 8 = 06, 8 9 = 4. Άρα ο ζητούμενος ελάχιστος θετικός ακέραιος n είναι ο 8. Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο (c) και Δ τυχόν σημείο της πλευράς ΒΓ. Η διχοτόμος της γωνίας ˆΒ, τέμνει τον κύκλο (c) στο σημείο Σ, τη διχοτόμο της γωνίας ΑΔΒ ˆ στο σημείο Κ και τη διχοτόμο της γωνίας ΑΔΓ ˆ στο σημείο M. Η διχοτόμος της γωνίας ˆΓ, τέμνει τον κύκλο (c) στο σημείο Τ, τη διχοτόμο της γωνίας ΑΔΓ ˆ στο σημείο Λ και τη διχοτόμο της γωνίας ΑΔΒ ˆ στο σημείο N. Να αποδείξετε ότι: α) Τα σημεία Α,Ι,Λ,Μ και Α,Ι,Κ, Ν είναι ομοκυκλικά σε δύο διαφορετικούς κύκλους (έστω) (c ) και (c ) αντίστοιχα, όπου Ι το έκκεντρο του τριγώνου ΑΒΓ. β) Αν η ΑΔ ταυτιστεί με το ύψος του τριγώνου ΑΒΓ, που αντιστοιχεί στη κορυφή Α τότε οι κύκλοι (c ) και (c ) είναι ίσοι μεταξύ τους. α) Από την κατασκευή των διχοτόμων συμπεραίνουμε ότι τα σημεία Κ, Λ είναι τα έκκεντρα των τριγώνων ΑΔΒ και ΑΔΓ αντίστοιχα. Ισχύει τώρα η ισότητα των γωνιών: ˆ ˆ 0 ˆ ˆ ˆ Α ΔΑΓ Αˆ 80 xˆ Γˆ Αˆ ˆ ˆ o Γ Β Α = ΙΑΓ ΛΑΓ= = = xˆ = xˆ n+

120 Σχήμα 6 Βˆ Βˆ Από το τρίγωνο ΜΔΒ έχουμε: ˆ ˆ ˆ ˆΒ x= Μ+ Μ= xˆ, δηλαδή Αˆ = Μˆ = xˆ. Άρα το τετράπλευρο ΑΙΛΜ είναι εγγράψιμο. Ισχύει επίσης η ισότητα των γωνιών: ˆ ˆ 0 ˆ ˆ ˆ Α ΔΑΒ Αˆ 80 yˆ Βˆ Αˆ ˆ ˆ o Β Γ Α = ΙΑΒ ΚΑΒ= = = yˆ = yˆ. Γˆ Γˆ Από το τρίγωνο ΝΔΓ έχουμε: ˆ ˆ ˆ ˆΓ y = Ν+ Ν= yˆ, δηλαδή Αˆ = Νˆ = yˆ. Άρα το τετράπλευρο ΑΙΚΝ είναι εγγράψιμο. β) Εφόσον Ι είναι το έκκεντρο του τριγώνου ΑΒΓ, θα ισχύουν οι ισότητες γωνιών: Αˆ Βˆ Γˆ ΑΙΒ ˆ Γˆ + ˆ ˆ ˆ o = + = 90 + και ˆ ˆ Α+ Γ o Β ΑΙΓ = Β + = Από το τρίγωνο ΑΙΚ έχουμε: ˆΓ ˆ ˆ ˆ o Κ ˆ ˆ o o ˆ o Γ Γ = 80 ΑΙΒ Α = Ν = 90 yˆ + = 90 o ŷ. Από το τρίγωνο ΑΙΛ έχουμε: ˆΒ ˆ ˆ ˆ o Λ ˆ ˆ o o ˆ o Β Β = 80 ΑΙΓ Α = Μ = 90 xˆ + = 90 o xˆ. o Αν τώρα υποθέσουμε ότι ΑΔ ΒΓ τότε xˆ = ŷ = 45, οπότε Κ ˆ ˆ = Λ. Άρα οι κύκλοι (c ) και (c ) είναι ίσοι (οι ίσες γωνίες ˆΚ ˆ, Λ βαίνουν στη κοινή χορδή ΑΙ ). Παρατηρήσεις α) Τα κέντρα των κύκλων (c ) και (c ) βρίσκονται επάνω στην ΣΤ. β) Το σημείο Α είναι το σημείο Miquel του πλήρους τετραπλεύρου ΔΚΙΛΜΝ.

121 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 0 ΟΚΤΩΒΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μια ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις Ιανουαρίου 0 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 0 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. θα επιλεγεί με προκαθορισμένη διαδικασία η εθνική ομάδα, που θα συμμετάσχει στην 0 η Βαλκανική Μαθηματική Ολυμπιάδα (Μάιος 0), στην 7 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ιούνιος 0) και στην 54 η Διεθνή Μαθηματική Ολυμπιάδα (Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και να την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γρηγόριος Καλογερόπουλος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών

122 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: : Α= Πρόβλημα Αν ο κ είναι πρώτος θετικός ακέραιος και διαιρέτης του μέγιστου κοινού διαιρέτη των ακεραίων, 0 και 54, να βρείτε όλες τις δυνατές τιμές του κ και της παράστασης: κ κ Β= : κ κ Πρόβλημα Ένας ελαιοπαραγωγός έχει παραγωγή λαδιού 800 κιλά. Για την καλλιέργεια του ελαιώνα του ξόδεψε 407 ευρώ και για τη συγκομιδή του καρπού από τις ελιές του ξόδεψε 050 ευρώ. Η τιμή πώλησης του λαδιού είναι,5 ευρώ το κιλό και κατά την πώληση του λαδιού υπάρχουν κρατήσεις σε ποσοστό 6% πάνω στην τιμή πώλησης. (α) Να βρείτε πόσα κιλά λάδι πρέπει να πωλήσει ο παραγωγός για να καλύψει τα έξοδά του. (β) Αν επιπλέον το ελαιοτριβείο (εργοστάσιο που παράγεται το λάδι) κρατάει για την αμοιβή του το 8% του παραγόμενου λαδιού, να βρείτε πόσα κιλά λάδι θα μείνουν στον παραγωγό μετά την πώληση λαδιού για την κάλυψη των εξόδων του. Πρόβλημα 4 Δίνεται τρίγωνο ΑΒΓ με ˆ Α = 60 και ΑΓ = ΑΒ. Παίρνουμε σημείο Ε πάνω στην πλευρά ΑΓ τέτοιο ώστε ΑΕ = ΑΒ. Αν η διχοτόμος της γωνίας ˆΑ τέμνει το ευθύγραμμο τμήμα BΕ στο σημείο Δ, να βρείτε τις γωνίες του τριγώνου ΔΕΓ. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

123 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: , Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης x y z Κ=, αν είναι x=, y = 4, z = 8 ( ) και να αποδείξετε ότι είναι τέλειο τετράγωνο ρητού αριθμού Πρόβλημα Να βρείτε για ποιες τιμές του πραγματικού αριθμού α οι αριθμοί και - είναι λύσεις της ανίσωσης 4x 5α + < α x + α. ( ) ( ) Πρόβλημα Αν το εμβαδόν Ε του χωρίου ΑΒΔΓ του διπλανού σχήματος ισούται με το του εμβαδού του κυκλικού δακτυλίου που ορίζεται από τους κύκλους ( Ο,α ) και ( Ο, β ), 0< β < α, να βρείτε τη γωνία ω = ΑΟΒ ˆ και την τιμή της παράστασης: Σ= ημ ω συνω 4., Πρόβλημα 4 Δίνεται ορθογώνιο ΑΒΓΔ με ΑΔ = α cm και ΑΒ<ΑΔ. Η κάθετη από την κορυφή Β προς τη διαγώνιο ΑΓ την τέμνει στο σημείο Ε. Αν ισχύει ότι ΕΓ = ΑΕ, να βρείτε: (i) το μήκος της πλευράς ΑΒ. (ii) Το εμβαδόν του κύκλου που περνάει και από τις τέσσερις κορυφές του ορθογωνίου ΑΒΓΔ. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

124 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 Α ΛΥΚΕΙΟΥ Πρόβλημα Να βρεθούν οι ακέραιοι x που είναι ρίζες της εξίσωσης ( ) τετράγωνό τους δεν είναι μεγαλύτερο του 5. x x = 4 και το Πρόβλημα Να απλοποιηθεί η παράσταση: α + β α + β + ( αβ + β )( α β) Κ ( αβ, ) =, ( α + β) α β αν α + β 0 και α + β. Πρόβλημα Δίνεται η εξίσωση x + λx+ λ = 0. Να βρείτε τις τιμές της παραμέτρου λ για τις οποίες η εξίσωση έχει δύο ρίζες μεγαλύτερες του -5 και μικρότερες του και το άθροισμα των τετραγώνων τους είναι ίσο με 0. Πρόβλημα 4 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΒΓ= α και ΑΒ = ΑΓ=α. Η παράλληλη ευθεία από την κορυφή Γ προς την πλευρά ΑΒ τέμνει την ευθεία της διχοτόμου ΒΔ στο σημείο Ε. Η ευθεία ΑΕ τέμνει την ευθεία ΒΓ στο σημείο Ζ. Να αποδείξετε ότι το τρίγωνο ΑΒΖ είναι ισοσκελές. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

125 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 Β ΛΥΚΕΙΟΥ Πρόβλημα Αν α 0 και < α <, να βρείτε το πρόσημο της παράστασης Α Κ = + α, Β όπου + α α + α α Α= +, Β=. α + α α + α Πρόβλημα Δίνεται η εξίσωση : x κx + κ = 0. Να βρείτε τις τιμές της παραμέτρου κ για τις οποίες η εξίσωση έχει δύο ρίζες στο διάστημα ( 0,5) με άθροισμα τέταρτων δυνάμεων ίσο με 8. Πρόβλημα Να προσδιορίσετε τους μη μηδενικούς ακέραιους x, y και zγια τους οποίους ισχύει ότι x = y = z 0x+ 0y+ 5 0z+ 7 και το άθροισμα των τετραγώνων των x, y και z είναι διαιρέτης του 747. Πρόβλημα 4 Δίνεται κύκλος cor (, ), τυχούσα χορδή του AB (όχι διάμετρος) και τυχόν σημείο M του μικρού τόξου AB. Οι κύκλοι c ( A, AM ) και c (, ) B BM τέμνουν το κύκλο cor (, ) στα σημεία K και N, αντίστοιχα. Οι κύκλοι c (, ) A AM και c (, ) B BM τέμνονται στο σημείο T. Να αποδείξετε ότι το σημείο T είναι το σημείο τομής των διχοτόμων του τριγώνου KMN. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

126 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 Γ ΛΥΚΕΙΟΥ Πρόβλημα Να λύσετε στους θετικούς ακέραιους την εξίσωση = x 0 Πρόβλημα Αν οι γραφικές παραστάσεις των συναρτήσεων ( ) g( x) = cx+ b, όπου abc,,, a 0 f x = ax + bx+ c και, διαφορετικοί μεταξύ τους ανά δύο, έχουν ένα μόνο κοινό σημείο, να βρείτε τη συνθήκη που ισχύει μεταξύ των παραμέτρων abc,, καθώς και το κοινό σημείο των δύο γραφικών παραστάσεων.. Πρόβλημα Να προσδιορίσετε τους μη μηδενικούς πραγματικούς αριθμούς x, y και οποίους ισχύει ότι x = y = z 0x+ y 0y+ z 0z+ 7 και το άθροισμα των τετραγώνων των x, y και z ισούται με 47. zγια τους Πρόβλημα 4 Δίνεται κύκλος cor (, ), τυχούσα χορδή του BC (όχι διάμετρος) και τυχόν σημείο M του μικρού τόξου BC. Οι κύκλοι c ( B, BM ), c (, ) C CM τέμνουν το κύκλο cor (, ) στα σημεία K, N, αντίστοιχα, και οι κύκλοι c ( B, BM ), c ( C, CM ) τέμνονται στα σημεία A και M. Η παράλληλος από το σημείο M προς την BC τέμνει τους κύκλους c ( B, BM ), c (, ) C CM στα σημεία T, S, αντίστοιχα. Να αποδείξετε ότι οι ευθείες AM, KT, NS περνάνε από το ίδιο σημείο. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

127 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: : Α= Α= 8 : = = = Πρόβλημα Αν ο κ είναι πρώτος θετικός ακέραιος και διαιρέτης του μέγιστου κοινού διαιρέτη των ακεραίων, 0 και 54, να βρείτε όλες τις δυνατές τιμές του κ και της παράστασης: κ κ Β= :. κ κ Είναι ΜΚΔ (,0,54) = 6. Οι θετικοί διαιρέτες του 6 είναι οι,,, 6 και από αυτούς πρώτοι είναι οι και. Άρα έχουμε κ = ή κ =. Για κ = έχουμε: 4 8 Β = : = : = =. 4

128 κ Για κ = ο διαιρέτης 0 της παράστασης Β γίνεται = = 0, ενώ ο κ διαιρετέος γίνεται = = 5 5 0, οπότε η παράσταση Β δεν ορίζεται. Πρόβλημα Ένας ελαιοπαραγωγός έχει παραγωγή λαδιού 800 κιλά. Για την καλλιέργεια του ελαιώνα του ξόδεψε 407 ευρώ και για τη συγκομιδή του καρπού από τις ελιές του ξόδεψε 050 ευρώ. Η τιμή πώλησης του λαδιού είναι,5 ευρώ το κιλό και κατά την πώληση του λαδιού υπάρχουν κρατήσεις σε ποσοστό 6% πάνω στην τιμή πώλησης. (α) Να βρείτε πόσα κιλά λάδι πρέπει να πωλήσει ο παραγωγός για να καλύψει τα έξοδά του. (β) Αν επιπλέον το ελαιοτριβείο (εργοστάσιο που παράγεται το λάδι) κρατάει για την αμοιβή του το 8% του παραγόμενου λαδιού, να βρείτε πόσα κιλά λάδι θα μείνουν στον παραγωγό μετά την πώληση λαδιού για την κάλυψη των εξόδων του. 6 (α) Κατά την πώληση του λαδιού οι κρατήσεις είναι,5 = 0,5 ευρώ, οπότε η 00 καθαρή τιμή πώλησης είναι,5 0,5 =,5 ευρώ. Τα έξοδα του παραγωγού είναι = 457 ευρώ, οπότε ο παραγωγός πρέπει να πωλήσει 457 :,5 = 60 κιλά λάδι. 8 (β) Το ελαιοτριβείο θα κρατήσει 800 = 64 κιλά λάδι, οπότε θα μείνουν στον 00 + = κιλά λάδι. παραγωγό 800 ( 60 64) 6 Πρόβλημα 4 Δίνεται τρίγωνο ΑΒΓ με ˆ Α = 60 και ΑΓ = ΑΒ. Παίρνουμε σημείο Ε πάνω στην πλευρά ΑΓ τέτοιο ώστε ΑΕ = ΑΒ. Αν η διχοτόμος της γωνίας ˆΑ τέμνει το ευθύγραμμο τμήμα BΕ στο σημείο Δ, να βρείτε τις γωνίες του τριγώνου ΔΕΓ. Σχήμα

129 Για συντομία, θα συμβολίσουμε με α το μήκος του τμήματος AB, δηλαδή: AB = α. Εφόσον ΑΓ = AB = α και ΑΕ = ΑΒ = α, έχουμε: α ΕΓ = ΑΓ ΑΕ = α α =. o Το τρίγωνο ΑΒΕ είναι ισοσκελές ( ΑΒ = ΑΕ ) και η γωνία του Αˆ είναι 60, οπότε το τρίγωνο είναι ισόπλευρο και η διχοτόμος του ΑΔ είναι και διάμεσος. α α Άρα είναι ΔΕ = και το τρίγωνο ΔΕΓ είναι ισοσκελές, αφού ΕΓ = ΕΓ =. Η γωνία ˆΕ είναι εξωτερική του ισόπλευρου τριγώνου ΑΒΕ. Άρα έχουμε Ε ˆ ˆ = 80 ΑΕΒ = = 0, 80 0 οπότε : ˆ ˆ o Γ =Δ = = 0. Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης x y z Κ=, αν είναι x=, y = 4, z = 8 ( ) και να αποδείξετε ότι είναι τέλειο τετράγωνο ρητού αριθμού. Έχουμε: ( ) ( ) x=, y = 4 = =, z = 8 = =. Ο αριθμητής του κλάσματος γίνεται: ( ) ( ) ( ) Α = x y z = = = Ο παρανομαστής του κλάσματος γίνεται: ( ) ( 4 6 ) ( ) ( ) Π = = + = + = = =. Άρα έχουμε 0 Κ= = = = = 6. Πρόβλημα Να βρείτε για ποιες τιμές του πραγματικού αριθμού α οι αριθμοί και - είναι λύσεις της ανίσωσης 4x 5α + < α x + α. ( ) ( ) Ο αριθμός είναι λύση της δεδομένης ανίσωσης, αν ισχύει ότι

130 6 4 5α + < α( ) + ( α ) 5α + < α 6< 7α α >. 7 Ο αριθμός - είναι λύση της δεδομένης ανίσωσης, αν ισχύει ότι 4 ( ) 5α + < α( ) + ( α ) 5α + < 6α + α. 8< α α > 8 Επομένως οι αριθμοί και - είναι λύσεις της ανίσωσης, όταν συναληθεύουν οι 6 6 ανισώσεις α > και α > 8, δηλαδή όταν α >. 7 7 Πρόβλημα Αν το εμβαδόν Ε του χωρίου ΑΒΔΓ του διπλανού σχήματος ισούται με το του εμβαδού του κυκλικού δακτυλίου που ορίζεται από τους κύκλους ( Ο,α ) και ( Ο, β ), 0< β < α, να βρείτε τη γωνία ω = ΑΟΒ ˆ και την τιμή της παράστασης: Σ= ημ ω συνω 4. Σχήμα Το εμβαδόν του χωρίου ΑΒΔΓ ισούται με τη διαφορά των εμβαδών των κυκλικών τομέων ΟΑΒ, και ΟΓΔ,, δηλαδή είναι ( ) ( ) ( ) ω ω α β ω Ε( ΑΒΔΓ ) = πα πβ =. π π Ο και Ο, β, 0< β < α, ισούται με Ε( Ο, β, α) = π ( α β ), οπότε, σύμφωνα με την Το εμβαδόν του κυκλικού δακτυλίου που ορίζεται από τους κύκλους (,α ) ( ) υπόθεση, έχουμε: ( ) ( ) ( ) ( ) Ε ΑΒΔΓ α β ω π = = ω =. Ε Ο, βα, π α β 6 π π Επειδή είναι ημω = ημ = και συν ω = συν =, έχουμε 6

131 Σ= ημ ω συν ω = = = = Πρόβλημα 4 Δίνεται ορθογώνιο ΑΒΓΔ με ΑΔ = α cm και ΑΒ<ΑΔ. Η κάθετη από την κορυφή Β προς τη διαγώνιο ΑΓ την τέμνει στο σημείο Ε. Αν ισχύει ότι ΕΓ = ΑΕ, να βρείτε: (i) το μήκος της πλευράς ΑΒ (ii) Το εμβαδόν του κύκλου που περνάει και από τις τέσσερις κορυφές του ορθογωνίου ΑΒΓΔ. Σχήμα (i) Έστω ΑΒ = ΓΔ = x, ΑΕ = y, ΕΓ = y και ΒΖ= z. Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνα ΑΒΕ έχουμε: x = y + z z = x y. () Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνα ΒΓΕ έχουμε: α = 4y + z z = α 4y. () Από τις σχέσεις () και () λαμβάνουμε: α 4y = x y x = α y () Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνο ΑΔΓ έχουμε: 9y = x + α x = 9y α. (4) Από τις σχέσεις () και (4) έχουμε: α α 6 9y α = α y y = y =, 6 6 οπότε λαμβάνουμε και α 6 α α α x = α = α = x= 6. 6 (ii) Διάμετρος του κύκλου είναι η ΑΓ= y, οπότε η ακτίνα του είναι α 6 R= y =. Το εμβαδό του κύκλου είναι 4 6α πα E = πr = π =. 6 8

132 Πρόβλημα Α ΛΥΚΕΙΟΥ Να βρεθούν οι ακέραιοι x που είναι ρίζες της εξίσωσης ( ) τετράγωνό τους δεν είναι μεγαλύτερο του 5. x x = 4 και το Η εξίσωση x( x ) = 4 x x 4= 0 είναι δευτέρου βαθμού και έχει διακρίνουσα Δ= 00, οπότε έχει δύο πραγματικές ρίζες ± 0 x= x= 6 ή x= 4. Δεκτή είναι η ρίζα x = 4, γιατί ( 4) = 6< 5, ενώ 6 = 6> 5. Πρόβλημα Να απλοποιηθεί η παράσταση: α + β α + β + ( αβ + β )( α β) Κ ( αβ, ) =, ( α + β) α β αν α + β 0 και α + β. Ο αριθμητής της παράστασης γράφεται: α + β α + β + αβ + β α β ( )( ) α β ( α β ) β( α β)( α β) ( α β)( α αβ β ) ( α β)( α β) β( α β)( α β) ( α β)( α αβ β α β βα β ) ( α β)( α β α β) = = = = + + ( α β) ( α β)( α β) ( α β) ( α β)( α β)( α β. ) = + + = + + Ο παρανομαστής της παράστασης γράφεται: ( α + β) α β = ( α + β)( α + β ) Άρα, αφού α + β 0 και α + β, έχουμε ( ) ( α + β)( α β)( α + β ) ( α + β)( α + β ) Κ α, β = = α β. Πρόβλημα Δίνεται η εξίσωση x + λx+ λ = 0. Να βρείτε τις τιμές της παραμέτρου λ για τις οποίες η εξίσωση έχει δύο ρίζες μεγαλύτερες του -5 και μικρότερες του και το άθροισμα των τετραγώνων τους είναι ίσο με 0. Η δεδομένη εξίσωση είναι δευτέρου βαθμού και έχει διακρίνουσα Δ= 4λ 4 λ = 4, ( )

133 οπότε έχει δύο πραγματικές ρίζες x = λ + και x = λ. Οι δύο ρίζες ανήκουν στο διάστημα ( 5, ), όταν 5< λ + < και 5< λ < 6< λ < και 4< λ <. < λ < 6 και < λ < 4 < λ < 4. Επιπλέον, έχουμε ( ) ( ) λ+ + λ = 0 λ + = 0 λ = 9 λ = ή λ =, Επομένως, αφού πρέπει < λ < 4 το ζητούμενο ισχύει για λ =. Πρόβλημα 4 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΒΓ= α και ΑΒ = ΑΓ=α. Η παράλληλη ευθεία από την κορυφή Γ προς την πλευρά ΑΒ τέμνει την ευθεία της διχοτόμου ΒΔ στο σημείο Ε. Η ευθεία ΑΕ τέμνει την ευθεία ΒΓ στο σημείο Ζ. Να αποδείξετε ότι το τρίγωνο ΑΒΖ είναι ισοσκελές. Σχήμα 4 Επειδή ΕΓ // ΑΒ, θα ισχύει Β ˆ ˆ = Ε και αφού η ΒΕ είναι διχοτόμος της γωνίας Βˆ, θα είναι Β ˆ ˆ = Β. Επομένως έχουμε Β ˆ ˆ = Ε και κατά συνέπεια το τρίγωνο ΒΓΕ είναι ισοσκελές, δηλαδή: ΒΓ = ΓΕ = α. Στη συνέχεια μπορούμε να εργαστούμε με δύο τρόπους. ος τρόπος. Λόγω της παραλληλίας των ΕΓ, ΑΒ θεωρούμε τα όμοια τρίγωνα ΕΓΖ και ΑΒΖ, από τα οποία λαμβάνουμε: ΓΖ ΕΓ α = = = ΒΖ= ΓΖ ΒΖ ΑΒ α Επομένως το σημείο Γ είναι το μέσο της ΒΖ, δηλαδή ΒΖ= ΒΓ= α. Επειδή είναι και ΑΒ = α το τρίγωνο ΑΒΖ είναι ισοσκελές. ος τρόπος. Θεωρούμε το μέσο M της ΑΒ. Τότε το τετράπλευρο ΒΓΕΜ είναι ρόμβος, διότι: έχει ΒΜ = // ΓΕ = α (οπότε ΒΓΕΜ παραλληλόγραμμο) και ΒΓ = ΓΕ = α (δύο διαδοχικές πλευρές ίσες). Άρα ΜΕ = ΒΖ και κατά συνέπεια το E είναι μέσο του ΑΖ. Επομένως στο τρίγωνο ΑΒΖ, η ΒΕ είναι διχοτόμος και διάμεσος, οπότε το τρίγωνο ΑΒΖ είναι ισοσκελές.

134 Β ΛΥΚΕΙΟΥ Πρόβλημα Α Αν κ α 0 και < α < να βρείτε το πρόσημο της παράστασης Κ = + α, Β όπου + α α + α α Α= +, Β=. α + α α + α Από τις υποθέσεις έχουμε ότι + α > 0 και α > 0, οπότε + α α + α + α Α= + = = α + α α α, ( α) + α α + α α Β= = =. α + α α α Άρα έχουμε: Α α + α Κ= + α = + α =. Β α α Επειδή είναι α + α = α + > 0, για όλες τις τιμές του α, έπεται ότι η 4 παράσταση Κ έχει το πρόσημο του α, δηλαδή θετικό, αν 0< α < και αρνητικό, αν < α < 0. Πρόβλημα Δίνεται η εξίσωση : x κx + κ = 0. Να βρείτε τις τιμές της παραμέτρου κ για τις οποίες η εξίσωση έχει δύο ρίζες στο διάστημα ( 0,5) με άθροισμα τέταρτων δυνάμεων ίσο με 8. Η δεδομένη εξίσωση είναι δευτέρου βαθμού και έχει διακρίνουσα Δ= 4κ 4( + κ ) = 4, οπότε έχει δύο πραγματικές ρίζες x = κ + και x = κ. Οι δύο ρίζες ανήκουν στο διάστημα ( 0,5 ), όταν 0< κ + < 5 και 0< κ < 5 < κ < 4 και < κ < 6 < κ < 4. Επιπλέον, έχουμε ( ) ( ) κ + + κ = 8 κ + κ + = 8 κ + 6κ 40 = 0, από την οποία λαμβάνουμε κ = 4 ή κ = 0 (αδύνατη) κ = ή κ =. Επομένως για κ = ισχύει το ζητούμενο, αφού η τιμή κ = απορρίπτεται λόγω της σχέσης < κ < 4.

135 Πρόβλημα Να προσδιορίσετε τους μη μηδενικούς ακέραιους x, y και zγια τους οποίους ισχύει ότι x = y = z 0x+ 0y+ 5 0z+ 7 και το άθροισμα των τετραγώνων των x, y και z είναι διαιρέτης του 747. Από το δεδομένο σύστημα έχουμε 0x+ 0y+ 5 0z+ 7 = = x y z = 0 + = 0 + x y z 5 7 = = x y z οπότε, αν θέσουμε = 5 = 7 = έπεται ότι: x= λ, y = 5 λ, z = 7λ. x y z λ Επειδή το άθροισμα των τετραγώνων των x, y και z είναι διαιρέτης του 747 θα έχουμε x + y + z = 8λ 747 κ κ 8λ = λ =, Επομένως οι μοναδικές αποδεκτές τιμές για το λ είναι οι, και 9. Για λ λ xyz,, =,5,7 ή xyz,, =, 5, 7. = =± έπεται ότι ( ) ( ) ( ) ( ) Για λ = λ =± προκύπτουν για τα x, yz, μη ακέραιες τιμές, άτοπο. Για λ 9 λ xyz,, = 9,5, ή xyz,, = 9, 5,. = =± έπεται ότι ( ) ( ) ( ) ( ) Πρόβλημα 4 Δίνεται κύκλος cor (, ), τυχούσα χορδή του AB (όχι διάμετρος) και τυχόν σημείο M του μικρού τόξου AB. Οι κύκλοι c ( A, AM ) και c (, ) B BM τέμνουν το κύκλο cor (, ) στα σημεία K και N αντίστοιχα. Οι κύκλοι c (, ) A AM και c (, ) B BM τέμνονται στο σημείο T. Να αποδείξετε ότι το σημείο T είναι το σημείο τομής των διχοτόμων του τριγώνου KMN. Γνωρίζουμε ότι η διάκεντρος τεμνόμενων κύκλων είναι μεσοκάθετη της κοινής χορδής τους.

136 Σχήμα 5 Η KM είναι κοινή χορδή των κύκλων c ( O,R ) και c ( A, AM ). Άρα η OA είναι μεσοκάθετη της KM. () Η MT είναι κοινή χορδή των κύκλων c ( A, AM ) και c ( B,BM ). Άρα η AB είναι μεσοκάθετη της MT. () Η MN είναι κοινή χορδή των κύκλων c ( O,R ) και c ( B,BM ). Άρα η OB είναι μεσοκάθετη της MN. () Από τις καθετότητες () και (), προκύπτει η ισότητα γωνιών: Â = Mˆ (γιατί έχουν πλευρές κάθετες). Από τις καθετότητες () και (), προκύπτει η ισότητα γωνιών: Bˆ = Mˆ (γιατί έχουν πλευρές κάθετες) και τελικά από το ισοσκελές τρίγωνο OAB, έχουμε: Â = Bˆ. Οι τρεις τελευταίες ισότητες γωνιών μας οδηγούν στην ισότητα: Mˆ = Mˆ. Η γωνία A Nˆ M και A Bˆ M είναι ίσες, διότι είναι εγγεγραμμένες στον κύκλο c ( O,R ) και βαίνουν στο τόξο AM. Η γωνία T Nˆ M είναι εγγεγραμμένη στο κύκλο c ( B,BM ), οπότε θα ισούται με το μισό της αντίστοιχης επίκεντρης γωνίας T Bˆ M, δηλαδή: TNˆ M = ABˆ M Άρα ANˆ M = T Nˆ M και κατά συνέπεια τα σημεία A,T, N είναι συνευθειακά. Ισχύει τώρα η ισότητα A Nˆ K = ANˆ M (διότι είναι εγγεγραμμένες στον κύκλο c ( O,R ) και βαίνουν στα ίσα τόξα AM και AK ). Επομένως η NA είναι διχοτόμος της γωνίας K Nˆ M.

137 Γ ΛΥΚΕΙΟΥ Πρόβλημα Να λύσετε στους θετικούς ακέραιους την εξίσωση = x 0 x( x+ ) Επειδή x =, για κάθε θετικό ακέραιο x, η δεδομένη εξίσωση γράφεται: = x( x+ ) = x x+ 0 0 = = x = 0. x + 0 x + 0 Πρόβλημα Αν οι γραφικές παραστάσεις των συναρτήσεων ( ) g( x) = cx+ b, όπου abc,,, a 0 f x = ax + bx+ c και, διαφορετικοί μεταξύ τους ανά δύο, έχουν ένα μόνο κοινό σημείο, να βρείτε τη συνθήκη που ισχύει μεταξύ των παραμέτρων abc,, καθώς και το κοινό σημείο των δύο γραφικών παραστάσεων. Από την υπόθεση έπεται ότι η εξίσωση ax + bx + c = cx + b ax + ( b c) x + ( c b) = 0 έχει μοναδική λύση. Επομένως η διακρίνουσά της ισούται με 0, δηλαδή Δ= ( b c) + 4a( b c) = 0 ( b c)( b c+ 4a) = 0 c b= 4 a, αφού b c. Όταν c b= 4a η εξίσωση γίνεται: ax 4ax + 4a = 0 a x 4x + 4 = 0 x 4x + 4= 0 x =. ( ) Άρα το κοινό σημείο των δύο γραφικών παραστάσεων είναι το Μ (, c+ b).. Πρόβλημα Να προσδιορίσετε τους μη μηδενικούς πραγματικούς αριθμούς x, y και οποίους ισχύει ότι x = y = z 0x+ y 0y+ z 0z+ 7 και το άθροισμα των τετραγώνων των x, y και z ισούται με 47. zγια τους Από το δεδομένο σύστημα έχουμε

138 0x+ y 0y+ z 0z+ 7 = = x y z y z 7 y z = 0 + = 0 + = = x y z x y z y z 7 οπότε, αν θέσουμε = = = έπεται ότι: x= 7 λ, y = 7 λ, z = 7λ. x y z λ Επειδή το άθροισμα των τετραγώνων των x, y και z ισούται με 47 θα έχουμε 6 4 x + y + z = 47 49λ + 49λ + 49λ = λ + λ + λ = λ + λ + λ = 0 4 λ λ + λ + + λ + + = 0 ( )( ) 4 ( )( ) λ λ + λ + = 0 λ = ή λ =, 4 αφού η εξίσωση λ + λ + = 0 έχει διακρίνουσα Δ = 8< 0. Επομένως οι ζητούμενες τριάδες ακεραίων είναι: xyz,, = 7,7,7 ή xyz,, = 7, 7, 7 ( ) ( ) ( ) ( ) Πρόβλημα 4 Δίνεται κύκλος cor (, ), τυχούσα χορδή του BC (όχι διάμετρος) και τυχόν σημείο M του μικρού τόξου BC. Οι κύκλοι c ( B, BM ), c (, ) C CM τέμνουν το κύκλο cor (, ) στα σημεία K, N, αντίστοιχα, και οι κύκλοι c ( B, BM ), c ( C, CM ) τέμνονται στα σημεία A και M. Η παράλληλος από το σημείο M προς την BC τέμνει τους κύκλους c ( B, BM ), c (, ) C CM στα σημεία T, S αντίστοιχα. Να αποδείξετε ότι οι ευθείες AM, KT, NS περνάνε από το ίδιο σημείο. Θα αποδείξουμε, πρώτα, ότι τα σημεία K, A,C, S και N, A,B, T είναι συνευθειακά. Σχήμα 6 Η AM είναι η κοινή χορδή των κύκλων c ( B,BM ) και c ( C,CM ). Άρα η διάκεντρός τους BC είναι μεσοκάθετη της AM.

139 Η BC όμως είναι παράλληλη με την TS (από την κατασκευή του σχήματος). Άρα η o TS είναι κάθετος με την AM ( AM TS ). Δηλαδή A Mˆ T = AMˆ S = 90. Από την τελευταία ισότητα γωνιών προκύπτει ότι τα σημεία A, T και A, S είναι αντιδιαμετρικά στους κύκλους c ( B,BM ) και c ( C,CM ) αντίστοιχα. Επομένως, τα σημεία A,C, S και A,B, T είναι συνευθειακά. Στη συνέχεια θα αποδείξουμε ότι τα σημεία K, A, C και N, A, B είναι συνευθειακά. Στον κύκλο c ( O,R ), το σημείο B είναι μέσο του τόξου KM (διότι BM, BK είναι ακτίνες του κύκλου c ( B,BM ) ). Άρα οι εγγεγραμμένες στα τόξα BM και BK γωνίες, θα είναι ίσες μεταξύ τους. Επομένως KCB ˆ = MCB ˆ (). Εφόσον η διάκεντρος BC είναι μεσοκάθετη της AM, τα τρίγωνα ABC και MBC είναι ίσα, οπότε : ACB ˆ = MCB ˆ (). Από τις ισότητες των γωνιών () και () συμπεραίνουμε ότι K ĈB = AĈB και κατά συνέπεια τα σημεία K, A, C είναι συνευθειακά. Με όμοιο τρόπο αποδεικνύουμε ότι και τα σημεία N, A, B είναι επίσης συνευθειακά. Από τα εγγεγραμμένα τετράπλευρα AMTK και AMSN συμπεραίνουμε ότι: o A Kˆ T = ANˆ S = 90. Επομένως προκύπτουν οι καθετότητες TK KS και TN NS. Σε συνδυασμό τώρα με την καθετότητα AM TS, συμπεραίνουμε ότι τα AM, KT, NS είναι ύψη του τριγώνου ATS, οπότε θα συγκλίνουν στο ορθόκεντρό του. Παρατηρήσεις Έστω P το ορθόκεντρο του τριγώνου ATS. Τότε τα σημεία P, A,T, S αποτελούν ορθοκεντρική τετράδα και κατά συνέπεια το σημείο A είναι ορθόκεντρο του τριγώνου PTS. Το τρίγωνο KMN είναι ορθικό του τριγώνου PTS και κατά συνέπεια το σημείο A είναι έκκεντρο του τριγώνου KMN.

140 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΟΚΤΩΒΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, και ΚΙΝΗΤΟ ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μια ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 8 Ιανουαρίου 04 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 04 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. θα επιλεγεί με προκαθορισμένη διαδικασία η εθνική ομάδα, που θα συμμετάσχει στην η Βαλκανική Μαθηματική Ολυμπιάδα (Μάιος 04), στην 8 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ιούνιος 04) και στην 55 η Διεθνή Μαθηματική Ολυμπιάδα (Ιούλιος 04). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και να την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γεώργιος Δημάκος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών

141 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 6 74 : : Πρόβλημα Ένας οικογενειάρχης πήρε από την τράπεζα ένα ποσό χρημάτων. Από αυτά ξόδεψε το 0% για την αγορά ενός φορητού ηλεκτρονικού υπολογιστή. Στη συνέχεια, από τα χρήματα που του έμειναν ξόδεψε το 5% για αγορά τροφίμων της οικογένειας. Αν του έμειναν τελικά 60 ευρώ, να βρείτε: (α) Πόσα χρήματα πήρε από την τράπεζα ο οικογενειάρχης. (β) Πόσα χρήματα στοίχισαν τα τρόφιμα. (γ) Ποιο ποσοστό των χρημάτων που πήρε από την τράπεζα ξόδεψε συνολικά. Πρόβλημα Δίνεται τρίγωνο ΑΒΓ στο οποίο η γωνιά ˆ είναι διπλάσια της γωνίας ˆ. Η μεσοκάθετη της πλευράς ΒΓ τέμνει την πλευρά ΑΓ στο σημείο Ε και η ευθεία ΒΕ τέμνει την ευθεία, που περνάει από το σημείο Α και είναι παράλληλη προς την πλευρά ΒΓ, στο σημείο Ζ. Να αποδείξετε ότι: (α), (β) ˆ ˆ. Πρόβλημα 4 7 Ο λόγος δυο φυσικών αριθμών είναι. Διαιρώντας τον μεγαλύτερο αριθμό με το 5 8, το πηλίκο της διαίρεσης είναι ίσο με 8, ενώ διαιρώντας τον μικρότερο αριθμό με το το πηλίκο της διαίρεσης είναι ίσο με 9. Αν γνωρίζετε ότι το υπόλοιπο της διαίρεσης του μεγαλύτερου αριθμού με το 8 είναι πενταπλάσιο του υπόλοιπου της διαίρεσης του μικρότερου αριθμού με το, να βρείτε τους δυο αριθμούς. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

142 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: , Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αν ο πραγματικός αριθμός είναι η μικρότερη δεκαδική προσέγγιση δέκατου του άρρητου αριθμού 5, να βρείτε την αριθμητική τιμή της παράστασης: 4,6 0,. Πρόβλημα Αν ο θετικός ακέραιος ικανοποιεί τις ανισώσεις 4 5, να λύσετε ως προς άγνωστο x την ανίσωση: x x x. Πρόβλημα Στο ορθοκανονικό σύστημα αναφοράς χoψ μια ευθεία σχηματίζει με τον άξονα χχ γωνία και επίσης διέρχεται από το σημείο, 6. Το σημείο Α ανήκει στον άξονα χχ και στην ευθεία, ενώ το σημείο Β ανήκει στον άξονα ψψ και στην ευθεία. (α) Βρείτε την εξίσωση της ευθείας. (β) Βρείτε τις συντεταγμένες των σημείων Α, Β και το εμβαδόν του τριγώνου. (γ) Βρείτε το εμβαδόν του τριγώνου ΟΑΜ. Πρόβλημα 4 Σε κύκλο c(, R) (κέντρου Ο και ακτίνας R ) δίνονται σημεία Α, Γ και Β τέτοια ώστε ˆ 0 και ˆ 0. Τα σημεία Α και Γ βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΟΒ. Από το σημείο Ο φέρουμε ευθεία κάθετη προς τη χορδή ΓΒ που την τέμνει στο σημείο Δ, ενώ τέμνει τον κύκλο c(, R) στο σημείο Ε. (α) Βρείτε το μέτρο της γωνίας ˆ και το μέτρο του τόξου σε μοίρες. (β) Να αποδείξετε ότι το τετράπλευρο ΟΒΕΓ είναι ρόμβος και να υπολογίσετε το εμβαδό του. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

143 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Α ΛΥΚΕΙΟΥ Πρόβλημα Αν τα συστήματα x y 4 x y 4 ( ) και 4 x y 8 x y έχουν την ίδια λύση x, y, να βρείτε την τιμή των παραμέτρων και. Πρόβλημα Για τους θετικούς πραγματικούς αριθμούς x, y και zισχύει ότι: z x y και z x y. (α) Να αποδείξετε ότι: y x z. (β) Να βρείτε την τριάδα x, yz, για την οποία: x y z 680. Πρόβλημα Να βρεθούν οι ακέραιοι x για τους οποίους οι αριθμοί A 8x και B x είναι και οι δύο τέλεια τετράγωνα ακεραίων. Πρόβλημα 4 0 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με και ˆ 0. Θεωρούμε σημείο Δ πάνω στην πλευρά ΑΓ τέτοιο ώστε. Από το σημείο Α φέρουμε ευθύγραμμο τμήμα ΑΕ τέτοιο ώστε, και με τα σημεία Ε και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Στη συνέχεια κατασκευάζουμε το παραλληλόγραμμο ΒΑΕΖ. Να βρείτε το μέτρο της γωνίας ˆ. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

144 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Β ΛΥΚΕΙΟΥ Πρόβλημα Για κάθε θετικό πραγματικό αριθμό x να αποδείξετε ότι: 9x x 7x 6. x 9x x Για ποιες τιμές του x ισχύει η ισότητα; Πρόβλημα Να υπολογιστούν οι ακέραιοι συντελεστές,, της εξίσωσης x x 0 με 0, αν αυτή έχει ρίζες x και x. Πρόβλημα Να βρείτε όλες τις τιμές του πραγματικού αριθμού x για τις οποίες η αριθμητική τιμή του κλάσματος x x 4 x x είναι θετικός ακέραιος. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο AB (με ) εγγεγραμμένο σε κύκλο C ( O,R ) (με κέντρο O και ακτίνα R ). Ο κύκλος C B ( B,AB ) (με κέντρο B και ακτίνα AB ), τέμνει την A στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Ο κύκλος C (,A ) (με κέντρο και ακτίνα A ), τέμνει την A στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Να αποδείξετε ότι το τετράπλευρο που ορίζουν τα σημεία,,, είναι ισοσκελές τραπέζιο. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

145 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Γ ΛΥΚΕΙΟΥ Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση x 5x x x 5x. Πρόβλημα Αν, ακέραιοι και ο αριθμός είναι τέλειο τετράγωνο ακεραίου, να αποδείξετε ότι ο αριθμός ισούται με το άθροισμα δύο τέλειων τετραγώνων ακεραίων αριθμών. Πρόβλημα Βρείτε για ποιες τιμές της πραγματικής παραμέτρου a η εξίσωση 4 4x 8 4a x a 8a 4 x a 8 x a 0 έχει όλες τις ρίζες της πραγματικούς αριθμούς. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο AB (με ) εγγεγραμμένο σε κύκλο C ( O,R ) (με κέντρο O και ακτίνα R ) και ευθεία ( ) που περνάει από την κορυφή και είναι παράλληλη στη πλευρά. Ο κύκλος C B ( B,AB ) (με κέντρο B και ακτίνα AB ), τέμνει την ( ) στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Ο κύκλος C (,A ) (με κέντρο και ακτίνα A ), τέμνει την ( ) στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Οι κύκλοι C B ( B,AB ), C (,A ) τέμνονται στο σημείο και η ( ) τέμνει τον C ( O,R ) στο σημείο. (α) Να αποδείξετε ότι τα σημεία,,, είναι συνευθειακά. (β) Να αποδείξετε ότι οι ευθείες,, περνάνε από το ίδιο σημείο. Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία!

146 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 0 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 6 74 : : : : Πρόβλημα Ένας οικογενειάρχης πήρε από την τράπεζα ένα ποσόν χρημάτων. Από αυτά ξόδεψε το 0% για την αγορά ενός φορητού ηλεκτρονικού υπολογιστή. Στη συνέχεια, από τα χρήματα που του έμειναν ξόδεψε το 5% για αγορά τροφίμων της οικογένειας. Αν του έμειναν τελικά 60 ευρώ, να βρείτε: (α) Πόσα χρήματα πήρε από την τράπεζα ο οικογενειάρχης. (β) Πόσα χρήματα στοίχισαν τα τρόφιμα. (γ) Ποιο ποσοστό των χρημάτων που πήρε από την τράπεζα ξόδεψε συνολικά. (α) Μετά την αγορά τροφίμων έμειναν στον οικογενειάρχη 60 ευρώ. Αυτά τα χρήματα αποτελούν το 85% των χρημάτων που του έμειναν μετά την αγορά του υπολογιστή. Άρα το 85% αντιστοιχεί σε ποσόν 60 ευρώ, οπότε το ποσόν που του έμεινε μετά την αγορά του υπολογιστή είναι ευρώ. 85 Σύμφωνα με τα δεδομένα του προβλήματος: το (00 0)% 80% του ποσού που πήρε αντιστοιχούν σε 600 ευρώ. Άρα τα χρήματα που πήρε από την τράπεζα είναι: 00 ευρώ

147 (β) Τα τρόφιμα στοίχισαν το 5% των χρημάτων που έμειναν μετά την αγορά του υπολογιστή, δηλαδή ευρώ. 00 Το ποσό αυτό μπορεί να βρεθεί και με την αφαίρεση: (γ) Ο οικογενειάρχης από τα 000 ευρώ που πήρε από την τράπεζα ξόδεψε ευρώ, δηλαδή ποσοστιαία επί τις εκατό Πρόβλημα Δίνεται τρίγωνο ΑΒΓ στο οποίο η γωνία ˆ είναι διπλάσια της γωνίας ˆ. Η μεσοκάθετη της πλευράς ΒΓ τέμνει την πλευρά ΑΓ στο σημείο Ε και η ευθεία ΒΕ τέμνει την ευθεία, που περνάει από το σημείο Α και είναι παράλληλη προς την πλευρά ΒΓ, στο σημείο Ζ. Να αποδείξετε ότι: (α), (β) ˆ ˆ. Σχήμα (α) Επειδή το σημείο Ε ανήκει στη μεσοκάθετη της ΒΓ έπεται ότι, οπότε από το ισοσκελές τρίγωνο προκύπτει ˆ ˆ.Επειδή έπεται ότι: ˆ ˆ (εντός εναλλάξ γωνίες). Από τη σχέση της υπόθεσης ˆ, ˆ έχουμε: ˆ ˆ ˆ ˆ ˆ. Άρα το τρίγωνο ΑΒΖ είναι ισοσκελές με ΑΒ=ΑΖ. (β) Η γωνία ˆ είναι εξωτερική στο τρίγωνο ΕΒΓ, οπότε ˆ ˆ ˆ ˆ ˆ. Πρόβλημα 4 7 Ο λόγος δυο φυσικών αριθμών είναι. Διαιρώντας τον μεγαλύτερο αριθμό με το 5 8, το πηλίκο της διαίρεσης είναι ίσο με τον αριθμό 8, ενώ διαιρώντας τον μικρότερο αριθμό με το το πηλίκο της διαίρεσης είναι ίσο με τον αριθμό 9. Αν γνωρίζετε ότι το υπόλοιπο της διαίρεσης του μεγαλύτερου αριθμού με το 8 είναι πενταπλάσιο του

148 υπόλοιπου της διαίρεσης του μικρότερου αριθμού με το, να βρείτε τους δυο αριθμούς. ( ος τρόπος) 7 Έστω, οι δυο φυσικοί αριθμοί με, Τότε θα είναι και επιπλέον και 9. Επομένως, έχουμε (ιδιότητα ίσων κλασμάτων), οπότε έχουμε: (από επιμεριστική ιδιότητα) , οπότε θα είναι 54 και 0. ος τρόπος. Έχουμε: 8 8, με 0,,,...,7 και 9, με 0,,,...,. Τα ζεύγη για τα οποία μπορεί να ισχύει η ισότητα είναι τα : και από αυτά μόνο το ζεύγος 0, μας δίνει 54 και 0 και το κλάσμα 54 0 που είναι ισοδύναμο με το 7 5. Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αν ο πραγματικός αριθμός είναι η μικρότερη δεκαδική προσέγγιση δέκατου του άρρητου αριθμού 5, να βρείτε την αριθμητική τιμή της παράστασης: 4,6 0,. Έχουμε: 4 5, οπότε Είναι, οπότε η ζητούμενη τιμή του είναι,. Με αντικατάσταση βρίσκουμε: Πρόβλημα Αν ο θετικός ακέραιος ικανοποιεί τις ανισώσεις 4 5, να λύσετε ως προς άγνωστο x την ανίσωση: x x x Έχουμε Επειδή ο είναι θετικός ακέραιος, έπεται ότι ή.

149 x Για η ανίσωση γίνεται: x x x x x. Για η ανίσωση γίνεται: x x x x x 0 x, η οποία είναι αδύνατη. Πρόβλημα Στο ορθοκανονικό σύστημα αναφοράς χoψ μια ευθεία (ε) σχηματίζει με τον άξονα χχ γωνία και επίσης διέρχεται από το σημείο, 6. Το σημείο Α ανήκει στον άξονα χχ και στην ευθεία, ενώ το σημείο Β ανήκει στον άξονα ψψ και στην ευθεία. (α) Βρείτε την εξίσωση της ευθείας. (β) Βρείτε τις συντεταγμένες των σημείων Α, Β και το εμβαδόν του τριγώνου. (γ) Βρείτε το εμβαδόν του τριγώνου ΟΑΜ. α) Η ζητούμενη εξίσωση έχει τη μορφή ψ αχ β, όπου α 45. Επειδή η ευθεία περνάει από το σημείο, 6 έχουμε ότι 6 β β -8. Άρα η εξίσωση της ευθείας είναι : ψ χ 8 Σχήμα είναι τα β) Τα σημεία τομής με τους άξονες χχ και ψψ 8, 0 και (0, 8). Άρα έχουμε OAB OA OB 8 8 τετρ. μονάδες,0, τότε το τρίγωνο ΚΜΑ είναι γ) Αν Κ είναι το σημείο με συντεταγμένες ορθογώνιο στο Κ και οι κάθετες πλευρές του έχουν μήκη 6 και 6. Από το Πυθαγόρειο θεώρημα λαμβάνουμε Ομοίως, από το Πυθαγόρειο θεώρημα στο τρίγωνο ΟΑΒ λαμβάνουμε: Επειδή τα τρίγωνα και ΟΑΒ έχουν κοινό ύψος από την κορυφή O, έστω, έχουμε:

150 ΟΑΜ 6 ΟΑΒ 8 4 OAB 4 τετρ. μονάδες. 4 4 Παρατήρηση: Το εμβαδό του τριγώνου ΟΑΜ, μπορούμε να το υπολογίσουμε, παρατηρώντας ότι η ΚΜ είναι ύψος του τριγώνου ΟΑΜ (έχει μήκος 6) και η ΟΑ βάση με μήκος 8. Άρα Σε κύκλο c(, R) (κέντρου Ο και ακτίνας R ) δίνονται σημεία Α, Γ και Β τέτοια ώστε ˆ 0 και ˆ 0. Τα σημεία Α και Γ βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΟΒ. Από το σημείο Ο φέρουμε ευθεία κάθετη προς τη χορδή ΓΒ που την τέμνει στο σημείο Δ, ενώ τέμνει τον κύκλο c(, R) στο σημείο Ε. (α) Βρείτε το μέτρο της γωνίας ˆ και το μέτρο του τόξου σε μοίρες. (β) Να αποδείξετε ότι το τετράπλευρο ΟΒΕΓ είναι ρόμβος και να υπολογίσετε το εμβαδό του. Σχήμα (α) Επειδή το τρίγωνο ΟΑΒ είναι ισοσκελές ˆ ˆ 0. Επειδή το τρίγωνο ΟΓΒ είναι ισοσκελές ˆ ˆ 0. R R, έπεται ότι:, έπεται ότι: Άρα έχουμε: ˆ ˆ ˆ και 40. (β) Το ύψος του τριγώνου ΟΓΒ είναι και διάμεσος και διχοτόμος της γωνίας ˆ, οπότε ˆ 90 ˆ , οπότε θα είναι και ˆ 60. Άρα το τρίγωνο ΟΓΕ είναι ισόπλευρο, οπότε R. Επειδή η ευθεία ΟΕ είναι

151 μεσοκάθετη του ευθύγραμμου τμήματος ΓΒ θα είναι R, οπότε το τετράπλευρο ΟΒΕΓ έχει τις τέσσερις πλευρές του ίσες, δηλαδή είναι ρόμβος. R R R Επιπλέον, έχουμε 0 R, οπότε R. Α ΛΥΚΕΙΟΥ Πρόβλημα Αν τα συστήματα x y 4 x y 4 ( ) και 4 x y 8 x y έχουν την ίδια λύση x, y, να βρείτε την τιμή των παραμέτρων και. Αν θέσουμε και, το σύστημα γίνεται: x y 4 4 4, οπότε το σύστημα έχει τη λύση: xy,,, 4. Όμως από την υπόθεση την ίδια λύση έχει και το σύστημα, οπότε θα έχουμε; Πρόβλημα Για τους θετικούς πραγματικούς αριθμούς x, y και zισχύει ότι: z x y και z x y. (α) Να αποδείξετε ότι: y x z. (β) Να βρείτε την τριάδα x, yz, για την οποία: x y z 680. (α) Επειδή z x y 0 x y 0, έπεται ότι x y. Επίσης από τις δεδομένες ισότητες έχουμε: z x y x y x y x y x 5y, οπότε προκύπτει: z x y y, οπότε z x y 5y 7y 0, οπότε z x. Άρα έχουμε: z x y y x z. (β) Από τις προηγούμενες σχέσεις, δεδομένου ότι είναι y 0, έχουμε: x y z 680 5y y 44y y 680 y 4 y. Άρα είναι: xyz,, 0,,4.

152 Πρόβλημα Να βρεθούν οι ακέραιοι x για τους οποίους οι αριθμοί A 8x και B x είναι και οι δύο τέλεια τετράγωνα ακεραίων. Έστω A 8x και B x. Τότε λαμβάνουμε ότι: x () 8 και 4. () Από τη σχέση 9) έχουμε: 4 ή ή ή, 7, ή, 7, ή, 7, ή, 7,. Από όλα τα παραπάνω ζεύγη, από τις σχέσεις () προκύπτει ότι: x 6. Πρόβλημα 4 0 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με και ˆ 0. Θεωρούμε σημείο Δ πάνω στην πλευρά ΑΓ τέτοιο ώστε. Από το σημείο Α φέρουμε ευθύγραμμο τμήμα ΑΕ τέτοιο ώστε, και με τα σημεία Ε και Δ να βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΒ. Στη συνέχεια κατασκευάζουμε το παραλληλόγραμμο ΒΑΕΖ. Να βρείτε το μέτρο της γωνίας ˆ. Σχήμα 4 Επειδή είναι ˆ 0 και έχουμε ότι: ˆ ˆ ˆ Άρα τα τρίγωνα ΑΒΓ και ΕΑΔ είναι ίσα, αφού έχουν δύο πλευρές τους ίσες μία προς μία, και τις περιεχόμενες γωνίες ίσες ˆ ˆ 80.

153 Επομένως, έχουμε:, ˆ 0. Επειδή το παραλληλόγραμμο ΒΑΕΖ έχει δύο διαδοχικές πλευρές ίσες, είναι ρόμβος, οπότε, δηλαδή το τρίγωνο ΕΔΖ είναι ισοσκελές. Επιπλέον, ισχύει: ˆ ˆ 80. Επομένως ˆ ˆ ˆ , οπότε το τρίγωνο ΕΔΖ είναι ισόπλευρο. Τότε είναι: ˆ ˆ ˆ , οπότε από το ισοσκελές τρίγωνο προκύπτει ότι: ˆ 70. Β ΛΥΚΕΙΟΥ Πρόβλημα Για κάθε θετικό πραγματικό αριθμό x να αποδείξετε ότι: 9x x 7x 6. x 9x x Για ποιες τιμές του x ισχύει η ισότητα; Επειδή είναι x 0 θα είναι και 9x x 0, οπότε αρκεί να αποδείξουμε ότι: 9x x 7x 6x 9x x x x x x x 9x 9x 7x 0 x x x 9x x 6x 9x x 7x , που ισχύει. Η ισότητα ισχύει όταν 9x 0 x x, αφού x 0. 9 Πρόβλημα Να υπολογιστούν οι ακέραιοι συντελεστές,, της εξίσωσης x x 0 με 0, αν αυτή έχει ρίζες x και x. Αφού οι αριθμοί και είναι ρίζες της εξίσωσης, έχουμε: 0, () 0. () Με αφαίρεση κατά μέλη των () και () λαμβάνουμε 0 0 ή 0. Αν υποθέσουμε ότι είναι, τότε και 0, αδύνατο. Άρα είναι, οπότε θα είναι: 0.

154 . Επομένως, έχουμε τις περιπτώσεις: 0, οπότε έχουμε: 0 και 0 0, το οποίο απορρίπτεται αφού από την υπόθεση έχουμε 0., οπότε έχουμε και 4 4, 4. Επομένως Επειδή πρέπει:,0 προκύπτει η τριάδα συντελεστών,,,, 4. Πρόβλημα Να βρείτε όλες τις τιμές του πραγματικού αριθμού x για τις οποίες αριθμητική τιμή του κλάσματος x x 4 x x είναι θετικός ακέραιος. Θέλουμε να βρούμε για ποιους θετικούς ακεραίους έχει λύση ως προς x η εξίσωση x x 4 x x 0. x x 8 Αν προκύπτει από την εξίσωση η λύση x. Αν, τότε η εξίσωση είναι δευτέρου βαθμού και έχει λύση ως προς x, αν, και μόνον αν, η διακρίνουσά της είναι μη αρνητική. Έχουμε , Παρατηρούμε ότι για και οι δύο παρενθέσεις είναι αρνητικές, οπότε 0. Επομένως, αφού ο είναι θετικός ακέραιος, διάφορος του, έπεται ότι:. Τότε η εξίσωση γίνεται x x 6 0 x 7. 8 Άρα για x το κλάσμα παίρνει την ακέραια τιμή και για x 7παίρνει την ακέραια τιμή. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο AB (με ) εγγεγραμμένο σε κύκλο C ( O,R ) (με κέντρο O και ακτίνα R ). Ο κύκλος C B ( B,AB ) (με κέντρο B και ακτίνα AB ), τέμνει την A στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Ο κύκλος C (,A ) (με κέντρο και ακτίνα A ), τέμνει την A στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Να αποδείξετε ότι το τετράπλευρο που ορίζουν τα σημεία,,, είναι ισοσκελές τραπέζιο. Έστω το δεύτερο κοινό σημείο των κύκλων C και C. Θα αποδείξουμε ότι τα σημεία,, είναι συνευθειακά. Οι χορδές και του κύκλου C είναι ίσες μεταξύ τους, διότι είναι ακτίνες του κύκλου C, οπότε οι εγγεγραμμένες (στο κύκλο C ) γωνίες που βαίνουν στα αντίστοιχα τόξα, θα είναι ίσες μεταξύ τους, δηλαδή

155 ΒΓΑ= ˆ ΒΓΛ= ˆ Γ ˆ (). Η είναι διάκεντρος των κύκλων C και C, οπότε θα είναι μεσοκάθετη της κοινής χορδής και θα διχοτομεί τη γωνία ˆ, δηλαδή ΒΓΑ= ˆ ΒΓΤ ˆ = Γ ˆ (). Άρα τα σημεία,, είναι συνευθειακά. Σχήμα 5 Με όμοιο τρόπο αποδεικνύουμε ότι και τα σημεία,, είναι συνευθειακά. Το τρίγωνο είναι ισοσκελές ( ). Άρα ˆ ˆ, οπότε τα αντίστοιχα τόξα και (του κύκλου C ) είναι ίσα μεταξύ τους. Από την ισότητα των τόξων και, προκύπτει η ισότητα των τόξων και. Άρα το τετράπλευρο είναι ισοσκελές τραπέζιο με //. Με ανάλογο τρόπο αποδεικνύουμε ότι το τετράπλευρο είναι ισοσκελές τραπέζιο με //. Άρα // και κατά συνέπεια το είναι τραπέζιο και η είναι κοινή μεσοκάθετη των παράλληλων πλευρών του. Τα τρίγωνα και είναι ίσα. Άρα το είναι ισοσκελές τραπέζιο. Γ ΛΥΚΕΙΟΥ Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση x 5x x x 5x. Περιορισμός: x 5x 0 x x 5 0 x 0 ή x 5. Η εξίσωση, για x 0 ή x 5, είναι ισοδύναμη με την εξίσωση x x x x x x x x x x x 5x ή x x 5x : x x 5x x x 5 x, x,0 5,, x

156 x x x 5 x, με x 5 x, x 5, απορρίπτεται. : x x 5x x x 5 x, x,0 5,, x x x x x x x 5, με 0 ή 5 x, x 0 ή x 5 x. 7 7 Πρόβλημα Αν, ακέραιοι και ο αριθμός είναι τέλειο τετράγωνο ακεραίου, να αποδείξετε ότι ο αριθμός ισούται με το άθροισμα δύο τέλειων τετραγώνων ακεραίων αριθμών. x Έστω ότι x, όπου x. Τότε. Επειδή, πρέπει ο αριθμητής x να είναι άρτιος ακέραιος, το οποίο συμβαίνει μόνον όταν οι ακέραιοι και x είναι ή και οι δύο άρτιοι ή και οι δύο περιττοί. Έτσι έχουμε x x x x x x 4 x x όπου οι αριθμοί και είναι ακέραιοι, αφού οι ακέραιοι και οι δύο άρτιοι ή και οι δύο περιττοί. και x είναι ή, Πρόβλημα Βρείτε για ποιες τιμές της πραγματικής παραμέτρου a η εξίσωση 4 4x 8 4a x a 8a 4 x a 8 x a 0 έχει όλες τις ρίζες της πραγματικούς αριθμούς. Έχουμε 4 4 4x 8x a x 4ax 8ax a x 4x 8x a x 4x 8x a ax 4x 8x a 4x 8x a 4x 8x a x ax. 4x 8 4a x a 8a 4 x a 8 x a Επομένως, η εξίσωση έχει όλες τις ρίζες της πραγματικούς αριθμούς, αν, και μόνον αν, και τα δύο τριώνυμα x ax και 4x 8x a έχουν πραγματικές ρίζες a 4 0 και 64 6a 0 a 4 0 και a 4 0 a 4 a ή a.

157 Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο AB (με ) εγγεγραμμένο σε κύκλο C ( O,R ) (με κέντρο O και ακτίνα R ) και ευθεία ( ) που περνάει από την κορυφή και είναι παράλληλη στη πλευρά. Ο κύκλος C B ( B,AB ) (με κέντρο B και ακτίνα AB ), τέμνει την ( ) στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Ο κύκλος C (,A ) (με κέντρο και ακτίνα A ), τέμνει την ( ) στο σημείο και τον κύκλο C ( O,R ) στο σημείο. Οι κύκλοι C B ( B,AB ), C (,A ) τέμνονται στο σημείο και η ( ) τέμνει τον C ( O,R ) στο σημείο. (α) Να αποδείξετε ότι τα σημεία,,, είναι συνευθειακά. (β) Να αποδείξετε ότι οι,, περνάνε από το ίδιο σημείο. (α) Το τρίγωνο είναι ισοσκελές ( ως ακτίνες του κύκλου C ). Άρα ˆ ˆ. Σχήμα 6 Από την παραλληλία ( ) // (με τέμνουσα την ΑΓ) έχουμε: ˆ ˆ ˆ. Από τις προηγούμενες ισότητες γωνιών, προκύπτει: ˆ ˆ (). Από την ισότητα των χορδών και του κύκλου C ( O,R ) (οι χορδές και είναι ακτίνες του κύκλου C B ) έχουμε: ˆ ˆ ˆ ( ). Από τις σχέσεις () και () συμπεραίνουμε ότι: ˆ ˆ ˆ, δηλαδή τα σημεία,, είναι συνευθειακά. Η διάκεντρος (των κύκλων C B και C ) είναι μεσοκάθετη της κοινής χορδής τους. Άρα ˆ ˆ ˆ. Από την ισότητα των γωνιών ˆ και ˆ, προκύπτει ότι τα σημεία,, είναι συνευθειακά, οπότε σε συνδυασμό με το προηγούμενο συμπέρασμα έπεται ότι τα σημεία,,, είναι συνευθειακά. (β) Με ανάλογο τρόπο αποδεικνύουμε ότι και τα σημεία,,, είναι συνευθειακά, οπότε τα σημεία και είναι μέσα των πλευρών και, αντίστοιχα, του τριγώνου. Θα αποδείξουμε ότι το σημείο είναι το μέσο της πλευράς (οπότε οι,, θα συντρέχουν στο βαρύκεντρο του τριγώνου ).

158 Πράγματι, το τετράπλευρο είναι ισοσκελές τραπέζιο εγγεγραμμένο στον κύκλο C ( O,R ), οπότε ισχύουν οι παρακάτω ισότητες γωνιών: ˆ ˆ (από το ισοσκελές τραπέζιο ) ˆ ˆ (από το ισοσκελές τρίγωνο ). Άρα η είναι παράλληλη προς την, δηλαδή το είναι το μέσο της. Παρατήρηση Δεν είναι απαραίτητο (για την απόδειξη του δευτέρου ερωτήματος) να αποδείξουμε ότι το σημείο ανήκει στην ίδια ευθεία με τα σημεία,,. Χρειάζεται όμως για να αποδείξουμε ότι και,, συντρέχουν και να συμπεράνουμε ότι τα σημεία ο κύκλος C ( O,R ) είναι ο κύκλος Euler του τριγώνου.

159 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούµε να διαβάσετε προσεκτικά τις οδηγίες στους µαθητές.. Οι επιτηρητές των αιθουσών θα διανείµουν πρώτα κόλλες αναφοράς, στις οποίες οι µαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή µε την ταυτότητα που θα έχουν οι εξεταζόµενοι, πριν καλυφθούν και µετά θα γίνει η υπαγόρευση ή διανοµή φωτοτυπιών των θεµάτων στους µαθητές.. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγµή που θα γίνει η εκφώνηση των θεµάτων (9- περίπου). ε θα επιτρέπεται σε κανένα µαθητή ν' αποχωρήσει πριν παρέλθει µία ώρα από την έναρξη της εξέτασης. 4. Οι επιτηρητές των αιθουσών έχουν το δικαίωµα ν' ακυρώσουν τη συµµετοχή µαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιµοποιήσει αθέµιτα µέσα, σηµειώνοντας τούτο στις κόλλες των µαθητών. Η επιτροπή ιαγωνισµών της Ε.Μ.Ε. έχει δικαίωµα να επανεξετάσει µαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσµα χρήσης αθέµιτου µέσου. 5. Υπολογιστές οποιουδήποτε τύπου απαγορεύονται. 6. Αµέσως µετά το πέρας της εξέτασης, οι κόλλες των µαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή ιαγωνισµών της Ε.Μ.Ε., Πανεπιστηµίου 4, Αθήνα, αφού πρώτα στα παραρτήµατα, εφόσον είναι εφικτό, γίνει µία πρώτη βαθµολόγηση, σύµφωνα µε το σχέδιο βαθµολόγησης της επιτροπής διαγωνισµών. 7. Τα αποτελέσµατα του διαγωνισµού θα σταλούν στους Προέδρους των Τοπικών Νοµαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήµατα της Ε.Μ.Ε. και δεν προβλέπεται Αναβαθµολόγηση (διότι γίνεται εσωτερικά). 8. Η Εθνική Ολυµπιάδα Μαθηµατικών «ΑΡΧΙΜΗ ΗΣ» θα γίνει στις 5 Φεβρουαρίου 006 στην Αθήνα. Από τους διαγωνισµούς αυτούς και επί πλέον από ένα τελικό διαγωνισµό στην Ε.Μ.Ε. και µια προφορική εξέταση µε προκαθορισµένη διαδικασία θα επιλεγεί η εθνική οµάδα, που θα συµµετάσχει στη η Βαλκανική Μαθηµατική Ολυµπιάδα (Κύπρος, Μάιος 006), στην 0 η Βαλκανική Μαθηµατική Ολυµπιάδα Νέων (Μολδαβία, Ιούνιος 006) και στην 47η ιεθνή Μαθηµατική Ολυµπιάδα (Σλοβενία, Ιούλιος 006). 9. Με την ευκαιρία αυτή, το.σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συµβάλλουν στην επιτυχία των Πανελληνίων Μαθητικών ιαγωνισµών της Ελληνικής Μαθηµατικής Εταιρείας. Παρακαλούνται οι Πρόεδρου των ΤΝΕ να επιδώσουν σε κάθε συνάδελφο επιτηρητή ένα αντίγραφο της συνηµµένης ευχαριστήριας επιστολής, αφού πρώτα αναγράψουν το όνοµά του. ΓΙΑ ΤΟ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Θεόδωρος Εξαρχάκος Ο Γενικός Γραµµατέας Ιωάννης Τυρλής

160 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 B ΓΥΜΝΑΣΙΟΥ. Οι αριθµοί α και β είναι ακέραιοι και ισχύει α + β = 000. Είναι δυνατόν να ισχύει α + 5β = 005; ικαιολογείστε την απάντησή σας.. Σε ένα δοχείο υπάρχουν 6 λευκά, 9 κίτρινα, κόκκινα και 5 πράσινα σφαιρίδια. Να προσδιορισθεί ο ελάχιστος αριθµός σφαιριδίων που πρέπει να πάρουµε τυχαία έτσι ώστε να εξασφαλισθεί η παρουσία στο δείγµα τουλάχιστον Α) λευκών Β) 5 κίτρινων Γ) 6 κόκκινων ) 0 πράσινων σφαιριδίων (τέσσερα διαφορετικά ερωτήµατα).. έκα σηµεία είναι τοποθετηµένα σε σχήµα ισοπλεύρου τριγώνου όπως στο σχήµα Να διαγραφεί ο ελάχιστος αριθµός σηµείων έτσι ώστε τα υπόλοιπα να µη σχηµατίζουν κανένα ισόπλευρο τρίγωνο. 4. Ποιος από τους αριθµούς A = ( ) και = είναι µεγαλύτερος και γιατί; B (... ) ΚΑΛΗ ΕΠΙΤΥΧΙΑ

161 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 Γ ΓΥΜΝΑΣΙΟΥ. Να λυθεί η εξίσωση x + x + x x = Ποιο από τα κλάσµατα και κ = λ = 4 είναι µεγαλύτερο και γιατί;. ίνεται τραπέζιο ΑΒΓ, όπου Α = α, ΒΓ = β, ΑΒ = α + β και η πλευρά ΑΒ είναι κάθετος προς τις πλευρές ΒΓ και Α. Να υπολογισθεί η απόσταση της κορυφής Α από το µέσο της πλευράς Γ συναρτήσει των α και β. 4. Αν οι αριθµοί α, β, γ, δ και ε είναι διαφορετικοί και καθένας παίρνει µια από τις τιµές,,, 4 και 5, είναι δυνατόν να έχουµε τη σχέση (α + β)(β + γ)(γ + δ)(δ + ε)(ε + α)=(α +γ)(γ + ε)(ε +β)(β +δ)(δ + α); ΚΑΛΗ ΕΠΙΤΥΧΙΑ

162 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 Α ΛΥΚΕΙΟΥ. Έστω ότι οι ακέραιοι αριθµοί α και α + είναι πρώτοι µε α >. Να αποδειχθεί ότι ο αριθµός α + 4 είναι σύνθετος.. Οι αριθµοί α και β είναι θετικοί και ισχύει α + β = λ. Να δεχθεί ότι 4 + <. λ α+ λ β+ λ λ. Έστω ΑΒΓ ένα σκαληνό τρίγωνο. Πόσα σηµεία υπάρχουν στο επίπεδο του τριγώνου τέτοια ώστε το τετράπλευρο µε κορυφές τα σηµεία Α, Β, Γ, να έχει άξονα συµµετρίας διαφορετικό από πλευρά του τριγώνου; 4. Έστω Α και Β δύο µη κενά και ξένα µεταξύ τους σύνολα των οποίων η ένωση είναι το σύνολο {,,, 4, 5}. Να αποδειχθεί ότι ένα τουλάχιστον από τα Α και Β περιέχει τουλάχιστον τη διαφορά δύο στοιχείων του. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

163 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 Β ΛΥΚΕΙΟΥ. Υπάρχει θετικός ακέραιος ν τέτοιος ώστε: Α) Ο ν είναι τέλειος κύβος, ο 4ν τέλεια τέταρτη δύναµη και ο 5ν τέλεια πέµπτη δύναµη; Β) Ο ν είναι τέλειος κύβος, ο 4ν τέλεια τέταρτη δύναµη, ο 5ν τέλεια πέµπτη δύναµη και ο 6ν τέλεια έκτη δύναµη;. Να βρεθούν πραγµατικοί αριθµοί x, y, z, w για τους οποίους ισχύει x y + y z + z w + x + w = x +.. Οι κορυφές Α, Β, Γ,, Ε µιας τεθλασµένης γραµµής βρίσκονται πάνω σε ένα κύκλο όπως στο σχήµα και οι γωνίες ΑΒΓ, ΒΓ, Γ Ε έχουν µέτρο Να αποδειχτεί ότι ΑΒ + Γ = ΒΓ + Ε. 4. Μια πραγµατική συνάρτηση f είναι ορισµένη στο R και για κάθε x R ισχύει Να δεχθεί ότι για κάθε x f(x + )f(x) + f(x + ) + = f(x). R ισχύουν: ) f(x), ) f(x) 0, ) f(x + 4) = f(x). ΚΑΛΗ ΕΠΙΤΥΧΙΑ

164 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006. Για µια συνάρτηση f:r R ισχύει για κάθε x R. Α) Να βρεθεί το f(). Β) Να εξετασθεί αν η συνάρτηση είναι -.. Έστω α, β θετικοί ακέραιοι τέτοιοι ώστε Να αποδειχθεί ότι Γ ΛΥΚΕΙΟΥ f(f(x)) = x x + x, g(x) = x + x f(x) xf (x) + α < 5. β α 5 >. β 4αβ. Έστω ΑΒΓ κυρτό τετράπλευρο τέτοιο ώστε Α = ΒΓ, Α µη παράλληλη προς τη ΒΓ και Ο το σηµείο τοµής των διαγωνίων ΑΓ και Β. Να αποδειχθεί ότι υπάρχει σηµείο Ρ διάφορο του Ο τέτοιο ώστε ο λόγος των εµβαδών των τριγώνων ΡΒ και ΡΑΓ να ισούται µε το τετράγωνο του λόγου των πλευρών ΡΒ και ΡΑ αντίστοιχα. 4. Έστω ν > κ και έστω ότι οι ακέραιοι αριθµοί α, α,, α ν αφήνουν διαφορετικά υπόλοιπα όταν διαιρεθούν δια του κ. Να αποδειχθεί ότι για κάθε ακέραιο αριθµό λ υπάρχουν δείκτες i, j από το σύνολο {,,, ν} τέτοιοι ώστε κ α i + α j λ. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

165 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 006 ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. Αδύνατο (άρτια περιττά).. Α) = 9, Β) = 8, Γ) = 6, ) = 7.. ιαγραφή πρώτης σειράς ( σφαιρίδιο), του µεσαίου της τρίτης σειράς και των δύο µεσαίων της τέταρτης σειράς. 4. Έστω Τότε Γ = Α = Γ/99, και Β = Γ/00 + /0000 Α Β = (Γ )/ / > 0.

166 Γ ΓΥΜΝΑΣΙΟΥ. x = 0. Έστω α = 4 και β =. Τότε κ = /α και λ = /β και κ λ = /β /α = (α β)/αβ = - /αβ. Άρα κ < λ.. (α + β)/. 4. Αν ήταν δυνατόν, τότε ο αριθµός (α + β)(β + γ)(γ + δ)(δ + ε)(ε + α)(α +γ)(γ + ε)(ε +β)(β +δ)(δ + α) θα ήταν τέλειο τετράγωνο. Λόγω συµµετρίας µπορούµε να υποθέσουµε ότι α =, β =, γ =, δ = 4, ε = 5, οπότε το γινόµενο αυτό παίρνει την τιµή που δεν είναι τέλειο τετράγωνο.

167 Α ΛΥΚΕΙΟΥ. Ένας από τους αριθµούς α, α +, α + διαιρείται µε τον και αυτός πρέπει να είναι ο α +. Άρα ο αριθµός α + 4 = α + + διαιρείται µε τον.. Έχουµε λ + =. α+ λ β+ λ αβ+ λ Η πρώτη ανισότητα είναι ισοδύναµη µε 4αβ (α+ β), και η δεύτερη µε αβ > 0.. Το πρέπει να είναι συµµετρικό κορυφής του τριγώνου ως προς τη µεσοκάθετο της απέναντι πλευράς. Άρα υπάρχουν τέτοια σηµεία. 4. Έστω ότι κανένα από τα δύο σύνολα δεν περιέχει τη διαφορά δύο στοιχείων του. Τότε προφανώς το δεν µπορεί να ανήκει στο ίδιο σύνολο µε το ούτε µε το 4 γιατί = και 4 =. Έστω λοιπόν Α, οπότε Β και 4 Β. Επειδή 4 =, έπεται ότι Β και εποµένως Α. Επειδή 5 =, έπεται ότι 5 Α και επειδή 5 = 4, έπεται 5 Β. Άτοπο επειδή Α Β = {,,, 4, 5}.

168 Β ΛΥΚΕΙΟΥ. Α) Ναι, π.χ. ν = Β) Όχι., διότι, αν υπήρχε, τότε ν. Έστω α ο µεγαλύτερος εκθέτης τέτοιος ώστε α ν. Τότε 4 α + (λόγω του ότι ο 4ν είναι τέλεια τετάρτη δύναµη) και α + (λόγω του ότι ο 6ν είναι τέλεια έκτη δύναµη) και άρα, δηλ. άτοπο.. Η σχέση είναι ισοδύναµη µε ( x y ) + ( y z ) + ( z w ) + ( x + w ) = 0 και άρα x =, y =, z = 0, w = -.. Προφανώς ΑΒ Γ και ΒΓ Ε και άρα ΑΓ = Β = ΕΓ. Επίσης έχουµε ΒΓ = Α, Γ = ΒΕ και <ΑΒΕ = <Α Ε = Άρα ΑΒ + Γ = ΑΒ + Γ = ΑΕ = Α + Ε = ΒΓ + Ε. 4. ) Αν f(a) = -, τότε = 0. ) Aν f(β) = 0, τότε f(β + ) = -. Άτοπο λόγω ). ) Έχουµε f(x + ) = (f(x) )/(f(x) + ), f(x + ) = -/f(x) και εποµένως f(x + 4) = -/f(x + ) = f(x). 4

169 Γ ΛΥΚΕΙΟΥ. Ισχύει f(f()) = και εποµένως f() = f(f(f())) =(f()) (f()) + f(). Λύνοντας ως προς f() έχουµε f() =. Επίσης, g(0) = g() =.. Έχουµε 5 α / β = ( β 5 a ) / β = (5β a ) / β ( β 5 + a) / β ( β 5 + a) > / 4αβ αν α > β 5. Αν α < β 5, τότε 5 α / β > 5 5 / = 5 / > > / 4αβ.. Θεωρούµε τους περιγεγραµµένους Κ και Κ στα τρίγωνα ΟΑ και ΟΒΓ µε διαφορετικά σηµεία τοµής Ο και Ρ λογω του ότι η πλευρά Α δεν είναι παράλληλη προς την πλευρά ΒΓ. Λόγω του ότι οι γωνίες ΑΟ και ΒΟΓ είναι ίσες ως κατά κορυφήν καθώς και οι πλευρές Α, ΒΓ από την υπόθεση, οι κύκλοι Κ και Κ είναι ίσοι και τα τρίγωνα ΡΒ, ΡΑΓ όµοια. 4. Οι αριθµοί λ α, λ α,, λ α ν αφήνουν διαφορετικά υπόλοιπα όταν διαιρεθούν δια του κ. Ο µέγιστος αριθµός αυτών των υπολοίπων είναι κ. Επειδή ν > κ, δύο από τους ν αριθµούς α, α,, α ν, λ α, λ α,, λ α ν θα αφήνουν το ίδιο υπόλοιπο όταν διαιρεθούν δια του κ και δεν µπορούν να ανήκουν στο ίδιο σύνολο {λ α, λ α,, λ α ν } ή {α, α,, α ν }, δηλ. ο ένας θα είναι κάποιος α i και ο άλλος κάποιος λ - α j. Η διαφορά τους διαιρείται µε τον κ. 5

170 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 4. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 5. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 6. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 7. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. και δεν προβλέπεται Αναβαθμολόγηση (διότι γίνεται εσωτερικά). 8. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 4 Φεβρουαρίου 007 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στη 4 η Βαλκανική Μαθηματική Ολυμπιάδα (Ρόδος, 6 Απριλίου Μαΐου 007), στην η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Βουλγαρία, Ιούνιος 007) και στην 48η Διεθνή Μαθηματική Ολυμπιάδα (Βιετνάμ, Ιούλιος 007). 9. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας. 0. Παρακαλούμε τον Πρόεδρο της ΤΝΕ μαζί με τα γραπτά να μας στείλει το ονοματεπώνυμο και την ταχυδρομική διεύθυνση όλων των επιτηρητών για να τους σταλεί ονομαστική ευχαριστήρια επιστολή από το Δ.Σ. της ΕΜΕ. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Θεόδωρος Εξαρχάκος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

171 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 Web site: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens - HELLAS Tel Fax: 6405 Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 Β ΓΥΜΝΑΣΙΟΥ. Να προσδιορίσετε τους φυσικούς αριθμούς ν που είναι τέτοιοι ώστε ο αριθμός 4 ν + να είναι ακέραιος.. Θεωρούμε οξεία γωνία ΑΟΒ και την προέκταση ΟΓ της πλευράς ΟΑ. Στο ημιεπίπεδο που ορίζεται από την ΑΓ και περιέχει το σημείο Β, φέρουμε ευθεία ΟΔ ΟΑ και ευθεία ΟΕ ΟΒ. Αν είναι ΓΟΕ = 4ΑΟΒ, να υπολογίσετε τη γωνία ΑΟΒ. α βγδ είναι πραγματικοί αριθμοί τέτοιοι ώστε ( γ δ)( γ δ) 0. Αν,,, α + β α β α + β α β + = + γ + δ γ δ γ δ γ + δ να αποδείξετε ότι ένας τουλάχιστον από τους α, βγδ,, ισούται με 0. + και 4. Να αποδείξετε ότι κάθε εξαψήφιος φυσικός αριθμός της μορφής xyzxyz, όπου x, y, z είναι ψηφία με x 0 διαιρείται με τους αριθμούς 7, και., Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία

172 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 Web site: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens HELLAS Tel Fax: 6405 Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ " Ο ΕΥΚΛΕΙΔΗΣ " ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 Γ ΓΥΜΝΑΣΙΟΥ Α= 5 7. Να βρείτε σε πόσα μηδενικά λήγει ο Α και. Δίνεται ο αριθμός ποιο είναι το τελευταίο μη μηδενικό ψηφίο του.. Να προσδιορίσετε τους φυσικούς αριθμούς,, x y 6 = =. 4 z xyz που είναι τέτοιοι ώστε:. Έστω Μ σημείο της βάσης ΒΓ ισοπλεύρου τριγώνου ΑΒΓ με ΑΒ=6. Αν είναι Κ Λ είναι η προβολή του ΚΛ στη ΒΓ, να υπο- ΜΚ ΑΒ, ΜΛ ΑΓ και λογίσετε το εμβαδόν του τραπεζίου ΚΚΛΛ. 4. Οι 5 μαθητές μιας τάξης έχουν συνολικά στις τσάντες τους 5 τετράδια. Αν κάθε μαθητής έχει ένα τουλάχιστον τετράδιο, να αποδείξετε ότι δύο τουλάχιστον μαθητές έχουν τον ίδιο αριθμό τετραδίων. Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία

173 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens HELLAS Tel Fax: 6405 Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ " Ο ΕΥΚΛΕΙΔΗΣ " ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 Α ΛΥΚΕΙΟΥ. Δίνονται οι πραγματικοί αριθμοί α, βγδε,,, με α < β < γ < δ < ε και η παράσταση (i) Να αποδείξετε ότι: β (ii) Αν είναι α δ γ + α δ ε + ε β α + ε β γ Κ= β α + β γ + δ γ + δ ε <Κ< δ. ( α β)( γ δ), ( α γ)( β δ), ( α δ)( β γ) x= + + y = + + z = + +, να συγκρίνετε τους αριθμούς xyz,,.. Στο εσωτερικό τριγώνου ΑΒΓ υπάρχει σημείο Μ τέτοιο ώστε ΜΒΓ = ΜΓΒ και πάνω στις ΜΒ και ΜΓ υπάρχουν σημεία Δ και Ε, αντίστοιχα, έτσι ώστε ΑΔ=ΑΕ και ΜΑΔ = ΜΑΕ. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές... Αν είναι xy>, 0 και x + y 64, να αποδείξετε ότι: x + y < Έχουμε κέρματα και χαρτονομίσματα των, 0 και 00 ευρώ. Είναι δυνατόν με 000 α- κριβώς από αυτά να σχηματίσουμε το ποσό των ευρώ; Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία

174 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens HELLAS Tel Fax: 6405 Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ " Ο ΕΥΚΛΕΙΔΗΣ " ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007. Δίνεται ότι το πολυώνυμο ( ) Β ΛΥΚΕΙΟΥ Ρ x = x + κ x+ λ με κ, λ έχει τις πραγματικές ρίζες x, x, και x που ανά δύο είναι διαφορετικές μεταξύ τους. Να εκφράσετε την παράσταση συναρτήσει των κ, λ. ( x )( )( x x ) Γ=. Θεωρούμε τόξο ΑΒ = 90 και προεκτείνουμε τη χορδή ΑΒ κατά ευθύγραμμο τμήμα ΒΓ=ΑΒ. Ονομάζουμε Δ το σημείο επαφής της εφαπτομένης του τόξου ΑΒ από το Γ και Κ το ίχνος της κάθετης από το Α προς τη ΒΔ. Να αποδείξετε ότι: ΚΒ= ΚΑ.. Αν α, β είναι θετικοί ακέραιοι, να αποδείξετε ότι: 4 4 α + β α + β α+ β α β α β. 4. Δίνεται τρίγωνο ΑΒΓ. Από σημείο Μ της πλευράς ΒΓ φέρουμε παράλληλες προς τις ΑΓ και ΑΒ που τέμνουν τις ΑΒ και ΑΓ στα σημεία Κ και Λ, αντίστοιχα. Αν είναι ΜΚ= x, ΜΛ= y, να βρείτε το ελάχιστο της παράστασης S = x + y και τη θέση του σημείου Μ για την οποία λαμβάνεται αυτό. Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία

175 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens HELLAS Tel Fax: 6405 Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ " ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 Γ ΛΥΚΕΙΟΥ. Αν log50 = x, log50 = y τότε να υπολογιστεί η τιμή της παράστασης A= 50 x y y ( ). Δίνεται ότι το πολυώνυμο ( ) Ρ x = x + κ x+ λ με κ, λ έχει τις πραγματικές ρίζες x, x, και x που ανά δύο είναι διαφορετικές μεταξύ τους. Να εκφράσετε την παράσταση συναρτήσει των κλ,.. Να λύσετε στο την εξίσωση: ( x )( )( x x ) Γ= x x + =. 4. Αν Ι είναι το έγκεντρο τριγώνου ΑΒΓ με ΒΓ= και ΒΑΓ = 60, να αποδείξετε ότι: ΙΑ + ΙΒ + ΙΓ. Διάρκεια διαγωνισμού: ώρες Καλή επιτυχία

176 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Οι λύσεις είναι ενδεικτικές και όχι μοναδικές. Οποιαδήποτε μαθηματικώς σωστή λύση είναι αποδεκτή ανεξάρτητα από τα χρησιμοποιούμενα εργαλεία, π.χ. η Αναλυτική Γεωμετρία και ο Απειροστικός Λογισμός μπορούν να χρησιμοποιηθούν από μαθητές οποιασδήποτε τάξης. Β ΓΥΜΝΑΣΙΟΥ 4. με ν ν + Δ 4 = {,,,6,7,4,,4}. ν + Επειδή ο ν + είναι περιττός έπεται ότι: ν + = ή ν + = ή ν + = 7 ή ν + = ν = 0 ή ν = ή ν = ή ν = 0.. Αν θέσουμε ΑΟΒ = ω, τότε από την υπόθεση του προβλήματος έχουμε: Γ 4ω ω = 80 5ω = 90 ω = 8 Ο Ε Δ Α Β. Από τις υποθέσεις έχουμε α + β α β α + β α β α + β α β α + β α β + = + = γ + δ γ δ γ δ γ + δ γ + δ γ + δ γ δ γ δ β β = β( γ δ γ δ) = 0 γ + δ γ δ βδ = 0 βδ = 0 β = 0 ή δ = Έχουμε ότι

177 Ν= xyzxyz = 00000x y + 000z + 00x + 0y + z = 0000x+ 000y+ 00z ( x y z) = = 7 xyz. Άρα οι αριθμοί 7, και διαιρούν τον αριθμό Ν.. Έχουμε Γ ΓΥΜΝΑΣΙΟΥ ( ) Α= 5 7 = = Άρα ο Α λήγει σε 90 μηδενικά και το τελευταίο μη μηδενικό ψηφίο του είναι το 6.. Έχουμε x y 6 4x = = 4x= y και xz = 8 y = και xz = 8. 4 z Επειδή οι αριθμοί x, z είναι φυσικοί έχουμε xz = 8 ( x, z) = (,8) ή (,9) ή (, 6) ή ( 6,) ή ( 9, ) ή ( 8,), 4x οπότε, από την ισότητα y = προκύπτει ότι : xyz,, =, 4,6 ή 6,8, ή 9,, ή 8, 4,. ( ) ( ) ( ) ( ) ( ). Έχουμε 6 ΑΒΓ = ΑΒΜ + ΑΓΜ = 6 ΜΚ + 6 ΜΚ 4 ( ) ( ) ( ) ΜΚ + ΜΛ = () A K Λ Β K M Λ Γ Από τα ορθογώνια τρίγωνα ΚΚ Μ και ΛΛ Μ γεωμετρικά ή τριγωνομετρικά έχουμε KK = MK, ΛΛ = ΜΛ και ΜΚ = ΜΚ, ΜΛ = ΜΛ 9 Οπότε ΚΛ = ΜΚ + ΜΛ = ( ΜΚ + ΜΛ ) =.

178 ΚΚ + ΛΛ = + Λ = =. 7 ΚΚΛΛ = ΚΚ + ΛΛ ΚΛ =. 8 και ( MK M ) Άρα είναι ( ) ( ) 4. Αν υποθέσουμε ότι όλοι οι μαθητές έχουν διαφορετικό αριθμό τετραδίων, τότε ο ελάχιστος αριθμός τετραδίων που μπορούν να έχουν όλοι μαζί είναι = 0 > 5. Άρα δεν είναι δυνατόν να έχουν όλοι οι μαθητές διαφορετικό αριθμό τετραδίων, οπότε δύο τουλάχιστον θα έχουν τον ίδιο αριθμό τετραδίων. Α ΛΥΚΕΙΟΥ. (i) Λαμβάνοντας υπόψη τις ανισότητες α < β < γ < δ < ε εύκολα βρίσκουμε ότι Κ= γ, οπότε β <Κ< δ. (ii) Έχουμε x y = ( α + β)( γ + δ) ( α + γ)( β + δ) = αγ + βδ αβ γδ = α( γ β) + δ ( β γ) = ( γ β)( α δ) < 0. Άρα είναι x y < 0 δηλαδή x < y. Ομοίως λαμβάνουμε y z = ( δ γ)( α β) < 0.. Επειδή είναι ΜΒΓ = ΜΓΒ, το τρίγωνο ΜΒΓ είναι ισοσκελές με ΜΒ = ΜΓ. () Επιπλέον, τα τρίγωνα ΜΑΔ και ΜΑΕ είναι ίσα γιατί έχουν: ΑΜ κοινή πλευρά, ΑΔ = ΑΕ, ΜΑΔ = ΜΑΕ. Άρα θα έχουν και ΑΜΔ = ΑΜΕ. () Λόγω των () και () τα τρίγωνα ΜΑΒ και ΜΑΓ είναι ίσα, οπότε θα έχουν και ΑΒ =ΑΓ, δηλαδή το τρίγωνο ΑΒΓ είναι ισοσκελές. Β Δ Μ Α Ε Γ. Επειδή είναι xy>, 0 έχουμε 4 x + y 64 x < 64 και y < 64 x< 4 και y< 8 x < 4x και y < 8y, από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε 4 x + y < 4x + 8y < 8 x + y 8 64 = 5. ( ) 4. Αν υποθέσουμε ότι παίρνουμε x κέρματα του ενός ευρώ, y χαρτονομίσματα των 0 ευρώ και z χαρτονομίσματα των 00 ευρώ, τότε θα έχουμε τις ισότητες x+ 0y+ 00z = και x+ y+ z = 000, () από τις οποίες με αφαίρεση κατά μέλη λαμβάνουμε:

179 ( ) 9y+ 99z = y+ z = , που είναι άτοπο, γιατί το άθροισμα των ψηφίων του είναι ο αριθμός που δεν διαιρείται με το 9. Β ΛΥΚΕΙΟΥ. Από την υπόθεση έχουμε ότι: Ρ x = x x x x x x. (). ( ) ( )( )( ) Η παράσταση Κ γράφεται: Κ x, x, x = x + x x + x x + x ( ) ( )( )( )( )( )( ) = ( x)( x)( x)( + x)( + x)( + x) =Ρ() ( x )( x )( x ) () ( ) ( )( ) ( ) = Ρ Ρ = + κ + λ κ + λ = + κ λ. Γ Β Β Δ Κ Α Ε Ο Α ος Τρόπος Έχουμε: ΓΔ = ΓΑ ΓΒ = R R = 4R ΓΔ = R = O Δ. Επειδή επιπλέον ΟΔΓ ˆ = 90 ο, αρκεί να αποδείξουμε ότι ΟΓΔ ΑΚΒ ή ισοδύναμα αρκεί να αποδείξουμε ότι: O ΓΔ ˆ = ΑΒΚ ˆ. Πράγματι αν Ε είναι το αντιδιαμετρικό σημείο του Α ως προς τον κύκλο Ο, τότε: OB EΓ ΕΓ ΟΕ ΟΔΓΕ εγγεγραμμένο τετράπλευρο ΔΓΕ ˆ = ΔΟΑ ˆ ΔΓΟ ˆ = ΑΒΚ ˆ ΔΓΟ=ΑΒΚ ˆ ˆ ος Τρόπος Δ Δ

180 Έστω Ε το αντιδιαμετρικό σημείο του Α ως προς τον κύκλο κέντρου Ο Από το εγγεγραμμένο τετράπλευρο ΑΔΒΕ έπεται ότι ΚΔΑ = ΑΕΒ = 45, οπότε και το τρίγωνο ΑΔΚ είναι ορθογώνιο ισοσκελές. Άρα είναι ΑΔ ΚΑ = ΚΔ =. () Επιπλέον, αν είναι ΑΑ ΓΔ, ΒΒ ΓΔ και ΟΑ= R, τότε με χρήση του τύπου της απόστασης σημείου κύκλου από εφαπτομένη του, λαμβάνουμε ΔΑ ΔΑ R ΑΑ ΓΑ = = = =. () ΔΒ ΔΒ ΒΒ ΓΒ R ΑΔ Από τη () έπεται ότι ΔΒ =, οπότε από την () έπεται ότι ΔΒ = ΚΔ = ΚΑ και ΚΒ = ΚΔ + ΔΒ = ΚΑ.. Από την ανισότητα αριθμητικού γεωμετρικού μέσου έχουμε α φορές β φορές 4 4 α + β α + α + + α + β + β + β = = α + β α + β από την οποία έπεται το ζητούμενο. α β α β ( α ) ( β ) ( α β ) α+ β α+ β, 4. Έστω ότι είναι ΜΒ= κ και ΜΓ = λ, οπότε θα είναι κ + λ = α. Τότε θα έχουμε x β κ = α και y γ βκ γλ = x = και y =. Α λ α α α Άρα η παράσταση S γίνεται Λ β κ γ λ S = x + y = + () α α Κ βκ + γ ( α κ) S = α β + γ γ = + = κ κ γ f ( κ). Β Γ α α Μ Άρα η παράσταση S είναι τριώνυμο ως προς κ με συντελεστή του κ τον γ β + γ αγ > 0, οπότε η παράσταση έχει ελάχιστο για κ = α = α ( β + γ ) β + γ α αβ Τότε είναι λ = α κ =, οπότε το σημείο Μ στο οπο0ίο λαμβάνεται το β + γ ΜΒ γ ελάχιστο της παράστασης S χωρίζει την πλευρά ΒΓ σε λόγο =. ΜΓ β Η τιμή του ελάχιστου είναι.

181 αγ = f β + γ + + γ = β γ αγ γ αγ β γ α β + γ α β + γ β + γ. ος τρόπος Μέσω της σχέσης () θα μπορούσαμε να προχωρήσουμε ως εξής: α α β κ γ λ α α β γ S + = + + ( κ + λ) = α S β γ α α β β β + γ οπότε έχουμε: βγ Smin =. β +γ Η ισότητα ισχύει όταν ΒΓ σε λόγο γ β. Γ ΛΥΚΕΙΟΥ βκ γλ α κ γ = α ή = α α λ β β γ, δηλαδή όταν το σημείο Μ χωρίζει τη. x y 50 =, 50 = x y x y 50 ( y) 50 ( y) y x y x y y ( ) ( y ) A = = = 50 = x y x y ( ) ( y ) y x y = 50 = 50 = 50 = = = x+ y x y 50 = = 5 = 5. ος τρόπος 50 log50 x y 6 log50a = = log50 50 = log50 50 = log50 5 = log50 5. ( y) 50 log50 Άρα Α=5.. Από την υπόθεση έχουμε ότι: Ρ x = x x x x x x. () ( ) ( )( )( ) Η παράσταση Κ γράφεται: Κ x, x, x = i x i x i x i x i x i x ( ) ( )( )( )( )( )( ) = ( i x )( i x )( i x )( i x )( i x )( i x ) () ( ) ( i κi λ)( i κi λ) λ ( κ ) =Ρ Ρ = = +.

182 . Η συνάρτηση h( x) Άρα ( ) ( ) ( ) x + = είναι γνησίως αύξουσα, άρα αντιστρέφεται και x, x h ( x) = x, x < h x = h x με x. Αφού f γνησίως αύξουσα, τα κοινά σημεία των G, G h h θα βρίσκονται στη πρώτη διχοτόμο y=x. x + x + y= h( x) y= x = Έχουμε: y= x y= x y= x + x x + = 0 x,, x, y x αφού x. = y= x y= x Άρα ( ) x,. ος τρόπος x + x + () y= h( x) y h y ( x = ) y = = y= h ( x) x = h( y) y + x = x y= ( y x ) () x yx y 0 4 x = y αφού η 4 έχει ( ) x = y ή ( ) Δ= y + 4 < 0, y κ.λπ = ( ) ( ) 4. Θεωρούμε τον περιγεγραμένο κύκλο C ( ) C (,R) K,R του AB Δ Γ και τον συμμετρικό του Λ ως προς τη ΒΓ. Τότε το Λ θα είναι μέσο του μικρού τόξου ΒΓ. Έστω Α το αντιδιαμετρικό του Α στον C και Α το αντιδιαμετρικό του Κ στον C. Το τρίγωνο ΒΑ Γ είναι ισόπλευρο οπότε IΑ = IB + IΓ. Επίσης BI ˆΓ=ΒΚΓ= ˆ 0 ο. Επομένως IA + IB + IΓ=ΙΑ+ΙΑ. Αλλά IA ΚΑ = R (R η ακτίνα του περιγεγραμμένου κύκλου) και IA = AΛ R < A Λ R = KA = R. Άρα IA + IB + IΓ R = =, αφού ΒΓ= R = =.

183 A A Β K Ι Λ Γ Α ος τρόπος Έστω ΙΑ=x, IB=y, IΓ=ω Â o Τότε 0 x = = ρ ο ( ) ( ) BI ˆΓ= 0 y +ω + yω= 4 y +ω yω= 4 y +ω = 4 + yω y+ω= 4+ yω= 4+λ με λ=yω. Εξάλλου ( IBΓ ) = ρ =ρ λ λ ( IBΓ ) = yω =, οπότε ρ=. 4 4 λ Αρκεί λοιπόν + 4+λ, ή λ + 4+λ Όμως R = R = και R 8 4 >ρ > 4 > λ >λ > >λ. Οπότε αρκεί 4 ( 4 ) που ισχύει αφού Δ= λ λ, ή 4( 4 ) ( 4 ) A + λ λ, ή λ 8λ+ 0 0 x Β ρ y I 0 ω Γ

184 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. και δεν προβλέπεται Αναβαθμολόγηση (διότι γίνεται εσωτερικά). 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 008 στην Αθήνα. Από τους διαγωνισμούς αυτό και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί οι εθνικές ομάδες, που θα συμμετάσχουν στην 5 η Βαλκανική Μαθηματική Ολυμπιάδα (ΠΓΔΜ, Μάιος 008), στην η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Αλβανία, Ιούνιος 008) και στην 49η Διεθνή Μαθηματική Ολυμπιάδα (Ισπανία, Ιούλιος 008). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ μαζί με τα γραπτά να μας στείλει το ονοματεπώνυμο και την ταχ. Δ/νση όλων των επιτηρητών για να τους σταλεί ονομαστική ευχαριστήρια επιστολή από το Δ.Σ. της ΕΜΕ. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Νικόλαος Αλεξανδρής Ο Γενικός Γραμματέας Ιωάννης Τυρλής

185 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Αθήνα, 9 Ιανουαρίου 008 Αγαπητοί μαθητές, Σας καλωσορίζουμε στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ) ΕΥΚΛΕΙΔΗΣ. Σήμερα δεν δίνετε τις συνηθισμένες εξετάσεις. Συμμετέχετε σε έναν αγώνα του πνεύματος. Και μόνο η απόφασή σας για συμμετοχή είναι μια επιτυχία. Με την ευκαιρία αυτής μας της επικοινωνίας θα θέλαμε να σας πληροφορήσουμε για τα εξής : Στα περιοδικά της ΕΜΕ Ευκλείδης Α και Ευκλείδης Β δημοσιεύονται εκτός των άλλων θεμάτων ανά τάξη και θέματα με τις λύσεις τους από Διεθνείς Μαθηματικούς Διαγωνισμούς. Επίσης έχουν εκδοθεί βιβλία της ΕΜΕ με τα θέματα των Διεθνών Μαθηματικών Ολυμπιάδων, Βαλκανιάδων, Θεωρίας αριθμών και τα βιβλία με τα Θέματα των Ελληνικών Διαγωνισμών Για το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα καλή χρονιά, προσωπική και οικογενειακή ευτυχία. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Νικόλαος Αλεξανδρής Ο Γενικός Γραμματέας Ιωάννης Τυρλής

186 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα. ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 B τάξη Γυμνασίου Αν ισχύει ότι 8x + 0y =, να βρείτε την τιμή της παράστασης ( ) Α= x + 5y 48x 60 y. Πρόβλημα. Σε μία ατελή διαίρεση ενός τριψήφιου φυσικού αριθμού a με τον αριθμό 5, το πηλίκο είναι μεγαλύτερο κατά 5 του εξαπλάσιου του υπολοίπου. Ποιες είναι οι δυνατές τιμές του a ; Πρόβλημα Στο διπλανό σχήμα δίνεται το τρίγωνο ABC και ευθεία ε που περνάει από το C παράλληλη προς την πλευρά AB. Επιπλέον, δίνεται ότι CD = CE = AB. Στην προέκταση της AB προς το B παίρνουμε ευθύγραμμο τμήμα BF = AB. α) Να βρεθούν τα τρίγωνα που υπάρχουν στο σχήμα και έχουν ίσο εμβαδόν. (Να δικαιολογήσετε πλήρως την απάντησή σας). β) Τι μέρος του εμβαδού του σχήματος AFED είναι το εμβαδόν του τριγώνου ABC ; F B Α E ε C D Πρόβλημα 4 (α) Να αποδείξετε ότι κάθε εξαψήφιος θετικός ακέραιος της μορφής ψηφία, διαιρείται με το. (β) Να προσδιορίσετε τους εξαψήφιους θετικούς ακέραιους της μορφής ψηφία, οι οποίοι διαιρούνται με το 5 και το 9. Α = ababab, όπου ab, Α = ababab, όπου ab, ΚΑΛΗ ΕΠΙΤΥΧΙΑ

187 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 Γ τάξη Γυμνασίου Αν ισχύει ότι b+ 6a=, να βρείτε την τιμή της παράστασης 5 Α= ( 4b+ 5a) ( 7b+ 56 a). Πρόβλημα Τρία σχολεία νοίκιασαν ένα αθλητικό κέντρο για τις ανάγκες του μαθήματος της Γυμναστικής και θα πληρώνουν 000 ευρώ μηνιαίως. Τα χρήματα που θα πληρώνει κάθε σχολείο είναι ανάλογα προς τον αριθμό των ημερών που θα χρησιμοποιεί το αθλητικό κέντρο. Το πρώτο σχολείο θα χρησιμοποιεί το αθλητικό κέντρο μέρες το μήνα, το δεύτερο σχολείο θα χρησιμοποιεί το αθλητικό κέντρο 0 μέρες το μήνα και το τρίτο σχολείο κατά το των ημερών του πρώτου σχολείου συν μέρες ακόμα. Πόσο θα κοστίσουν σε κάθε σχολείο οι τρεις πρώτοι μήνες; Πρόβλημα Στο διπλανό σχήμα το ευθύγραμμο τμήμα BC είναι διάμετρος του κύκλου και επιπλέον AB = 7 και AC = 6. α) Να βρεθεί το μήκος της διαμέτρου του κύκλου. β) Να βρεθεί το μήκος της διαμέσου και του ύψους του τριγώνου ABC που αντιστοιχούν στην πλευρά BC. γ) Αν E είναι το εμβαδόν του κυκλικού δίσκου και E x είναι το εμβαδόν του μέρους της επιφάνειας του κυκλικού δίσκου που βρίσκεται εξωτερικά του τριγώνου ABC, να αποδείξετε ότι E x E >. A B C O Πρόβλημα 4 Έστω ο τριψήφιος θετικός ακέραιος αριθμός Α = abc, όπου abc,, ψηφία με a > 0. Αν εναλλάξουμε το πρώτο με το τρίτο ψηφίο του, τότε προκύπτει ο ακέραιος Β που είναι μικρότερος από τον Α κατά 96. Επιπλέον, αν από τον Α αφαιρέσουμε 4 ο αριθμός που προκύπτει ισούται με 50 φορές το άθροισμα των ψηφίων του Α. Να προσδιορίσετε τον αριθμό Α. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

188 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 Πρόβλημα (α) Να απλοποιήσετε την παράσταση (β) Να αποδείξετε ότι ο αριθμός είναι κύβος ακεραίου. Α τάξη Λυκείου ( ) ( ) K = x + y x y 6x y y Α= Πρόβλημα Αν για τους πραγματικούς αριθμούς ab, ισχύει ότι να βρεθούν οι λύσεις της εξίσωσης a b a b ab + = + 4, ( ) ( ) x a x b x = 0.. Πρόβλημα Δίνεται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ= α και ΑΔ = α. Να αποδείξετε ότι το μέσον Μ της πλευράς ΑΒ έχει την ιδιότητα: το άθροισμα ΔΜ + ΜΓ είναι το ελάχιστο δυνατό για τις διάφορες θέσεις του σημείου Μ πάνω στην ευθεία ΑΒ. Πρόβλημα 4 Αν οι αριθμοί,, να αποδείξετε ότι x yz είναι τέτοιοι ώστε x > 0, y+ > 0, z+ > 0 και x+ y+ z =, Για ποιες τιμές των x, yz, ισχύει η ισότητα; ( + ) ( + )( + ) ( + ) x y y z x z + + x+ y+ y+ z+ x+ z+. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

189 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 Β τάξη Λυκείου Πρόβλημα Να λύσετε την εξίσωση: x + = x. Πρόβλημα Σε ένα τουρνουά ποδοσφαίρου συμμετέχουν n ομάδες οι οποίες θα παίξουν όλες μεταξύ τους μία μόνο φορά. Για τη νίκη μιας ομάδας δίνονται βαθμοί, για την ισοπαλία βαθμοί και για την ήττα βαθμό. Αν στο τέλος του τουρνουά ο συνολικός αριθμός των βαθμών που συγκέντρωσαν όλες οι ομάδες είναι 64, να βρεθεί ο αριθμός n των ομάδων που συμμετείχαν. Πρόβλημα Αν για τους πραγματικούς αριθμούς x, yz, ισχύει x y z x y z = 0, τότε να προσδιορίσετε το μέγιστο θετικό αριθμό m που είναι τέτοιος ώστε: Πρόβλημα 4. x+ y+ z+ m 0. Δίνεται τραπέζιο ΑΒΓΔ με ˆ ˆ Α=Β= 90, ΑΔ= α και ΑΒ=ΒΓ= α. (i) Να αποδείξετε ότι: ΔΑ + ΑΓ < ΔΒ + ΒΓ. (ii) Να βρείτε σημείο Μ πάνω στην ευθεία ΑΒ για το οποίο το άθροισμα ΔΜ + ΜΓ (iii) είναι το ελάχιστο δυνατό. Για το σημείο Μ που θα βρείτε, να υπολογίσετε το εμβαδόν του τριγώνου ΔΜΓ. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

190 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 Γ τάξη Λυκείου Πρόβλημα Αν ο z είναι μιγαδικός με Re( z) 0, Im( z) 0 και 4 6z + 5z + 6 4, z + z + να αποδείξετε ότι: z =. Πρόβλημα Να λύσετε το σύστημα x + xy+ y = x x = y y (Σ) Πρόβλημα Δίνεται η ακολουθία α ν με ν, για την οποία ισχύει:. α - ν+ αν = ν +, για κάθε ν Να αποδείξετε ότι το γινόμενο δύο οποιωνδήποτε διαδοχικών όρων της ακολουθίας είναι επίσης όρος της ακολουθίας. Πρόβλημα 4. Έστω Σ εσωτερικό σημείο οξυγωνίου τριγώνου ΑΒΓ. Οι ευθείες ΑΣ, ΒΣ και ΓΣ τέμνουν τις πλευρές ΒΓ, ΑΓ και ΑΒ στα σημεία Α, Β και Γ αντίστοιχα, ώστε ΣΑ ΑΣ, ΣΒ ΒΣ και ΣΓ ΓΣ. x = (ΣΑΒ), y = (ΣΒΓ) και z = (ΣΑΓ) Αν θέσουμε,να αποδείξετε ότι: x + y + z x y + xz + y z. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

191 ΔΥΚΛΔΙΓΗΣ 008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αλ ηζρύεη όηη 8x 0y, λα βξείηε ηελ ηηκή ηεο παξάζηαζεο x 5y 48x 60 y. ( ος τρόπος) x 5y 48x 60y x y x y x y x y ( ος τρόπος) x 5y 48x 60y 008 6x 0y 48x 60y x 80y x 0y Πρόβλημα Σε κία αηειή δηαίξεζε ελόο ηξηςήθηνπ θπζηθνύ αξηζκνύ a κε ηνλ αξηζκό 5, ην πειίθν είλαη κεγαιύηεξν θαηά 5 ηνπ εμαπιάζηνπ ηνπ ππνινίπνπ. Πνηεο είλαη νη δπλαηέο ηηκέο ηνπ αξηζκνύ a ; Αλ είλαη ην πειίθν θαη είλαη ην ππόινηπν ηεο δηαίξεζεο, ηόηε ζύκθσλα κε ηελ ππόζεζε ηνπ πξνβιήκαηνο έρνπκε 6 5 θαη a 5 6 5,,,,4 a 5,,,,4. Η ηηκή 0 απνθιείεηαη γηαηί ε δηαίξεζε είλαη αηειήο. Γηα, ιακβάλνπκε a Γηα, ιακβάλνπκε a Γηα, ιακβάλνπκε a 5 8 Γηα 4, ιακβάλνπκε a Άξα νη δπλαηέο ηηκέο ηνπ ηξηςήθηνπ αξηζκνύ a είλαη : a 8 ή a 49. Πρόβλημα Γίλεηαη ην ηξίγσλν ABC θαη ε επζεία πνπ πεξλάεη από ην C θαη είλαη παξάιιειε πξνο ηελ πιεπξά AB. Δπηπιένλ δίλεηαη όηη CD CE AB. Σηελ πξνέθηαζε ηεο AB πξνο ην B παίξλνπκε επζύγξακκν ηκήκα BF AB. α) Να βξεζνύλ ηα ηξίγσλα πνπ ππάξρνπλ ζην ζρήκα θαη έρνπλ ίζν εκβαδόλ. Να δηθαηνινγήζεηε πιήξσο ηελ απάληεζή ζαο. F B Α E C D

192 β) Τη κέξνο ηνπ εκβαδνύ ηνπ ζρήκαηνο AFED είλαη ην εκβαδόλ ηνπ ηξηγώλνπ ABC ; α) Τα ηεηξάπιεπξα ABCD θαη BFEC έρνπλ ηηο απέλαληη πιεπξέο ηνπο παξάιιειεο, νπόηε είλαη παξαιιειόγξακκα. Άξα ζα έρνπλ ηηο απέλαληη πιεπξέο ηνπο ίζεο, δειαδή είλαη AD BC FE. Έηζη ηα ηξίγσλα ABC, BFE, BEC θαη ACD έρνπλ ίζεο βάζεηο. Α D B K C F Λ E Τα ηξίγσλα ABC θαη ACD έρνπλ πξνο ηηο ίζεο βάζεηο ηνπο ύςε ίζα πξνο ην ύςνο ηνπ παξαιιεινγξάκκνπ ABCD σο πξνο ηε βάζε BC. Οκνίσο ηα ύςε ησλ ηξηγώλσλ BFE, BEC πξνο ηηο ίζεο βάζεηο ηνπο είλαη ίζα. Δπηπιένλ, αλ AK BC θαη FE, ηόηε ηα ηξίγσλα ABK θαη BF είλαη ίζα, αθνύ είλαη νξζνγώληα πνπ έρνπλ ίζεο ππνηείλνπζεο θαη ABK ˆ BF ˆ (εληόο ελαιιάμ ζηηο παξάιιειεο BC, EF κε ηέκλνπζα ηε BF ). Άξα ζα έρνπλ θαη ΑΚ = BΛ Δπνκέλσο ηα ηξίγσλα ABC, BFE, BEC θαη ACD έρνπλ ίζα ύςε πξνο ηηο ίζεο βάζεηο ηνπο, νπόηε ζα έρνπλ θαη ίζα εκβαδά. (β) Δπεηδή AFED ABC ACD BFE BEC 4 ABC έπεηαη όηη ABC ABC. 4 4 AFED Πρόβλημα 4 (α) Να απνδείμεηε όηη θάζε εμαςήθηνο ζεηηθόο αθέξαηνο ηεο κνξθήο όπνπ ab, ςεθία, δηαηξείηαη κε ην. (β) Να πξνζδηνξίζεηε ηνπο εμαςήθηνπο ζεηηθνύο αθέξαηνπο ηεο κνξθήο όπνπ ab, ςεθία, νη νπνίνη δηαηξνύληαη κε ην 5 θαη ην 9. (α) Τν άζξνηζκα ησλ ςεθίσλ ηνπ αξηζκνύ Α είλαη ν αξηζκόο a b a b a b a b a b, ABC πνπ είλαη πνιιαπιάζην ηνπ, νπόηε ν αξηζκόο Α δηαηξείηαη κε ην. ababab, ababab, (β) Γηα λα δηαηξείηαη ν αξηζκόο Α κε ην 5, πξέπεη θαη αξθεί ην ηειεπηαίν ςεθίν ηνπ b λα είλαη 0 ή 5. Έηζη δηαθξίλνπκε ηηο πεξηπηώζεηο:

193 Αλ 0, b ηόηε a 0 a. Δπνκέλσο ν αξηζκόο Α δηαηξείηαη κε ην 9, όηαλ ν a είλαη πνιιαπιάζην ηνπ 9. Δπεηδή ν a είλαη ςεθίν a,6,9, νπόηε πξνθύπηνπλ νη κεγαιύηεξν ηνπ 0, απηό ζπκβαίλεη όηαλ αξηζκνί 000 ή Α= ή Αλ 5 b, ηόηε ην άζξνηζκα ησλ ςεθίσλ ηνπ Α είλαη a 5 είλαη πνιιαπιάζην ηνπ 9, όηαλ 5,6,9, a θαη a, νπόηε αθνύ 9 έπεηαη όηη a,4,7. Έηζη πξνθύπηνπλ νη αξηζκνί Α=555 ή Α= ή Α= Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα. Αλ ηζρύεη όηη b 6a, λα βξείηε ηελ ηηκή ηεο παξάζηαζεο 5 4b 5a 7b 56 a. 5 4b 5a 7b 56a 5 b 6a 6 b 6a Πρόβλημα. Τξία ζρνιεία λνίθηαζαλ έλα αζιεηηθό θέληξν γηα ηηο αλάγθεο ηνπ καζήκαηνο ηεο Γπκλαζηηθήο θαη ζα πιεξώλνπλ 000 επξώ κεληαίσο. Τα ρξήκαηα πνπ ζα πιεξώλεη θάζε ζρνιείν είλαη αλάινγα πξνο ηνλ αξηζκό ησλ εκεξώλ πνπ ζα ρξεζηκνπνηεί ην αζιεηηθό θέληξν. Τν πξώην ζρνιείν ζα ρξεζηκνπνηεί ην αζιεηηθό θέληξν κέξεο ην κήλα, ην δεύηεξν ζρνιείν ζα ρξεζηκνπνηεί ην αζιεηηθό θέληξν 0 κέξεο ην κήλα θαη ην ηξίην ζρνιείν θαηά ην ησλ εκεξώλ ηνπ πξώηνπ ζρνιείνπ ζπλ κέξεο αθόκα. Πόζν ζα θνζηίζνπλ ζε θάζε ζρνιείν νη ηξεηο πξώηνη κήλεο; Τν ηξίην ζρνιείν ζα ρξεζηκνπνηεί ην αζιεηηθό θέληξν γηα 8 εκέξεο. Αλ x, y θαη z είλαη ην κεληαίν θόζηνο γηα ην πξώην, δεύηεξν θαη ηξίην ζρνιείν, αληίζηνηρα, ηόηε x y z, 0 8 νπόηε ιακβάλνπκε x, y 0, z 8 θαη έρνπκε x y z Άξα έρνπκε:

194 4 x 00 x επξώ ην κήλα, ζα πιεξώλεη ην πξώην ζρνιείν, νπόηε γηα ηνπο ηξεηο κήλεο ζα πιεξώζεη 600 επξώ. y 00 y επξώ ην κήλα, ζα πιεξώλεη ην δεύηεξν ζρνιείν, 0 νπόηε γηα ηνπο ηξεηο κήλεο ζα πιεξώζεη 000 επξώ. z 00 z επξώ ην κήλα, ζα πιεξώλεη ην ηξίην ζρνιείν, νπόηε γηα 8 ηνπο ηξεηο κήλεο ζα πιεξώζεη 400 επξώ. Πρόβλημα Σην δηπιαλό ζρήκα ην επζύγξακκν ηκήκα BC είλαη δηάκεηξνο ηνπ θύθινπ θαη είλαη αθόκα AB 7 θαη AC 6. α) Να βξεζεί ην κήθνο ηεο δηακέηξνπ ηνπ θύθινπ. β) Να βξεζεί ην κήθνο ηεο δηακέζνπ θαη ηνπ ύςνπο ηνπ ηξηγώλνπ ABC πνπ αληηζηνηρνύλ ζηελ πιεπξά BC. γ) Αλ E είλαη ην εκβαδόλ ηνπ θπθιηθνύ δίζθνπ θαη E x είλαη ην εκβαδόλ ηνπ κέξνπο ηεο επηθάλεηαο ηνπ θπθιηθνύ δίζθνπ πνπ βξίζθεηαη εμσηεξηθά ηνπ ηξηγώλνπ ABC, λα απνδείμεηε όηη E x E. A C O D B α) Δπεηδή είλαη A ˆ 90, από ην Ππζαγόξεην ζεώξεκα έρνπκε: BC AB AC Άξα είλαη BC 8. 8 β) Η δηάκεζνο AO ηζνύηαη κε ηελ αθηίλα ηνπ θύθινπ, νπόηε είλαη AO 4. Γηα ηελ εύξεζε ηνπ ύςνπο AD ρξεζηκνπνηνύκε ηνπο ηύπνπο γηα ην εκβαδόλ ηνπ νξζνγώληνπ ηξηγώλνπ ABC θαη έρνπκε: AB AC BC AD 7 7 ABC 8 AD 6 7 AD. 8 γ) Έρνπκε E R 4 6. Η επηθάλεηα ηνπ θπθιηθνύ δίζθνπ πνπ βξίζθεηαη εμσηεξηθά ηνπ ηξηγώλνπ ABC έρεη 6 7 Ex E ABC , νπόηε E x E , 64 εκβαδόλ

195 5 πνπ ηζρύεη, γηαηί είλαη,4 9, ελώ Πρόβλημα 4 Έζησ ν ηξηςήθηνο ζεηηθόο αθέξαηνο αξηζκόο abc, όπνπ abc,, ςεθία κε a 0. Αλ ελαιιάμνπκε ην πξώην κε ην ηξίην ςεθίν ηνπ, ηόηε πξνθύπηεη ν αθέξαηνο Β πνπ είλαη κηθξόηεξνο από ηνλ Α θαηά 96. Δπηπιένλ, αλ από ηνλ Α αθαηξέζνπκε 4 πξνθύπηεη αξηζκόο πνπ ηζνύηαη κε 50 θνξέο ην άζξνηζκα ησλ ςεθίσλ ηνπ Α. Να βξείηε ηνλ αξηζκό Α. Δίλαη abc 00a 0b c, νπόηε κεηά ηελ ελαιιαγή πξώηνπ θαη ηξίηνπ ςεθίνπ πξνθύπηεη ν αξηζκόο cba 00c 0b a, νπόηε από ηα δεδνκέλα ηνπ πξνβιήκαηνο έρνπκε: a c 96 a c 4 c a 4. () Δπηπιένλ δίλεηαη όηη 4 50 a b c 00a 0b c 4 50a 50b 50c 50a 40b 49c 4, νπόηε, ιόγσ ηεο (), ιακβάλνπκε 50a 40b 49 a 4 4 a 40b 55. () Δπεηδή ν αθέξαηνο a είλαη ςεθίν κεγαιύηεξν ηνπ κεδελόο, έπεηαη όηη a 9 40b b 64 b, νπόηε ιακβάλνπκε b 4. Έηζη από ηηο () θαη () πξνθύπηεη a 5 θαη c. Άξα ν δεηνύκελνο αξηζκόο είλαη ν Α=54. Πρόβλημα (α) Να απινπνηήζεηε ηελ παξάζηαζε Α ΛΥΚΔΙΟΥ K x y x y 6x y y. (β) Να απνδείμεηε όηη ν αξηζκόο είλαη θύβνο αθεξαίνπ. (α) Έρνπκε (β) Έρνπκε x y x y 6x y y x x y xy y x x y xy y 6x y y x x y xy y x x y xy y 6x y y y.

196 , νπόηε, αλ ζέζνπκε x θαη y 4 ζηελ πξνεγνύκελε παξάζηαζε, απηή γίλεηαη y 4. Πρόβλημα Αλ γηα ηνπο πξαγκαηηθνύο αξηζκνύο ab, ηζρύεη όηη a b a b ab 4, λα βξεζνύλ νη ιύζεηο ηεο εμίζσζεο x a x b x 0. Έρνπκε a b a b ab 4 a b ab a b 0 Τόηε ε εμίζσζε γίλεηαη a b b a 0 a b b a 0 a b. x a x b x 0 x x x 0 x x x x x x 0, αθνύ ηζρύεη όηη x x x 0, 0 όπσο πξνθύπηεη άκεζα από ηελ ηαπηόηεηα ησλ θύβσλ. Η ηειεπηαία παξαγνληνπνίεζε κπνξεί επίζεο λα πξνθύςεη εύθνια, κεηά από πξάμεηο. Άξα ε εμίζσζε είλαη ηζνδύλακε κε ηελ x x x 0 x 0 ή x 0 ή x 0 x ή x ή x 0. Πρόβλημα Γίλεηαη νξζνγώλην ΑΒΓΓ κε πιεπξέο θαη. Να απνδείμεηε όηη ην κέζνλ Μ ηεο πιεπξάο ΑΒ έρεη ηελ ηδηόηεηα : ην άζξνηζκα είλαη ην ειάρηζην δπλαηό γηα ηηο δηάθνξεο ζέζεηο ηνπ ζεκείνπ Μ πάλσ ζηελ επζεία ΑΒ. Γ Γ Α Μ Β Δ

197 7 Τν ηξίγσλν ΜΒΓ είλαη νξζνγώλην ηζνζθειέο (ΜΒ = BΓ = ), νπόηε ˆ 45. Δπεηδή είλαη ˆ ˆ ˆ 5 80, ε πξνέθηαζε ηεο ΓΜ ηέκλεη ηελ πξνέθηαζε ηεο ΓΑ πξνο ην Α, έζησ ζην ζεκείν Δ. Τα ηξίγσλα ΜΒΓ θαη ΜΑΔ είλαη ίζα, γηαηί είλαη νξζνγώληα θαη έρνπλ θαη ˆ ˆ (σο θαηά θνξπθή). Άξα ζα έρνπλ θαη. Τόηε όκσο θαη ηα ηξίγσλα ΑΜΓ θαη ΑΜΔ είλαη ίζα, γηαηί είλαη νξζνγώληα ζην Α θαη έρνπλ ηελ πιεπξά ΑΜ θνηλή θαη ΑΔ = ΑΓ. Άξα ζα έρνπλ θαη ΓΜ = ΔΜ, νπόηε. () Έζησ ηώξα ηπρόλ ζεκείν ηεο επζείαο ΑΒ δηαθνξεηηθό από ην ζεκείν Μ. Τόηε πξνθαλώο ηα νξζνγώληα ηξίγσλα θαη είλαη ίζα, νπόηε ζα έρνπλ θαη. () Δπεηδή ε γξακκή είλαη ηεζιαζκέλε, ελώ ε γξακκή ΔΜΓ είλαη επζεία πνπ έρεη ηα ίδηα άθξα κε ηελ ηεζιαζκέλε, από ηηο () θαη () έπεηαη όηη. Πρόβλημα 4 Αλ νη αξηζκνί x, y, z είλαη ηέηνηνη ώζηε x 0, y 0, z 0 θαη x y z, λα απνδείμεηε όηη x y y z x z. x y y z x z Γηα πνηεο ηηκέο ησλ x, y, z ηζρύεη ε ηζόηεηα; Δπεηδή ηα θιάζκαηα ηνπ πξώηνπ κέινπο ηεο δεηνύκελεο αληζόηεηαο παξνπζηάδνπλ ζηνλ αξηζκεηή ην άζξνηζκα δύν ζεηηθώλ αξηζκώλ θαη ζηνλ παξαλνκαζηή ην γηλόκελό ηνπο, ζεσξνύκε ηε γλσζηή αληζόηεηα a b 4 ab,, γηα θάζε ab,, () ε νπνία αιεζεύεη, αθνύ είλαη ηζνδύλακε κε ηελ πξνθαλή αληζόηεηα a b 0. Η ηζόηεηα αιεζεύεη όηαλ a b. Γηα ab, ζεηηθνύο, από ηελ () ιακβάλνπκε ab a b, () a b 4 ελώ ε ηζόηεηα αιεζεύεη όηαλ a b. Από ηελ () γηα a x, b y ιακβάλνπκε x y x y () x y 4 θαη νκνίσο πξνθύπηνπλ νη αληζόηεηεο y z y z, (4) y z 4 x z x z. (5) x z 4 Με πξόζζεζε θαηά κέιε ησλ (), (4) θαη (5) ιακβάλνπκε

198 8 x y y z x z ( x y z) 6 x y y z x z 4 x y y z x z 6. x y y z x z 4 Η ηζόηεηα αιεζεύεη όηαλ x y z, νπόηε από ηελ ζρέζε x y z πξνθύπηεη όηη x x x x 6 x θαη y, z 0. Β ΛΥΚΔΙΟΥ Πρόβλημα Να ιύζεηε ηελ εμίζσζε x x. ( ος τρόπος) Θα αλαδεηήζνπκε ιύζεηο πνπ ηθαλνπνηνύλ ηελ αλίζσζε x 0 x. Δπεηδή θαη ηα δύν κέιε ηεο εμίζσζεο είλαη ζεηηθά, ε δεδνκέλε εμίζσζε είλαη ηζνδύλακε κε ηελ 4 x x x x x () Οη πηζαλέο αθέξαηεο ιύζεηο ηεο () είλαη νη :, -,, -,, -,, -. Δύθνια δηαπηζηώλνπκε όηη ε ν αθέξαηνο είλαη ξίδα ηεο εμίζσζεο θαη κέζσ ηνπ ζρήκαηνο Horner θαηαιήγνπκε ζηελ εμίζσζε x x x 5x 0. Χξεζηκνπνηώληαο θαη πάιη ην ζρήκα Horner γηα x, γηα ην πνιπώλπκν x x 5x θαηαιήγνπκε ζηελ εμίζσζε x x x x 0 αθνύ ην ηξηώλπκν x x x x x ή ή 0 x ή x, x 0 έρεη δηαθξίλνπζα 5 0. ος τρόπος Οκνίσο πξέπεη x. Χξεζηκνπνηνύκε ηνλ κεηαζρεκαηηζκό y x, γηα x. Τόηε ιακβάλνπκε y 0 θαη y x, ελώ ε δεδνκέλε εμίζσζε γίλεηαη x y. Έηζη έρνπκε ην ζύζηεκα x y y κε x x θαη y 0.

199 9 Με αθαίξεζε ησλ δύν εμηζώζεσλ θαηά κέιε ιακβάλνπκε x y y x x y x y 0 x y 0 ή x y 0 x y ή x y. Η εμίζσζε x y είλαη αδύλαηε ιόγσ ησλ πεξηνξηζκώλ Γηα x y έρνπκε ηελ εμίζσζε x x x x x x 0 ή. x θαη y 0. Πρόβλημα Σε έλα ηνπξλνπά πνδνζθαίξνπ ζπκκεηέρνπλ n νκάδεο νη νπνίεο ζα παίμνπλ όιεο κεηαμύ ηνπο κία κόλν θνξά. Γηα ηε λίθε κηαο νκάδαο δίλνληαη βαζκνί, γηα ηελ ηζνπαιία βαζκνί θαη γηα ηελ ήηηα βαζκόο. Αλ ζην ηέινο ηνπ ηνπξλνπά ν ζπλνιηθόο αξηζκόο ησλ βαζκώλ πνπ ζπγθέληξσζαλ όιεο νη νκάδεο είλαη 64, λα βξεζεί ν αξηζκόο n ησλ νκάδσλ πνπ ζπκκεηείραλ. Έζησ όηη ζπκκεηέρνπλ n νκάδεο. Η ε νκάδα παίδεη κε ηηο ππόινηπεο n - νκάδεο, νπόηε δηεμάγνληαη n - αγώλεο. Η ε νκάδα παίδεη κε ηηο ππόινηπεο n - νκάδεο, νπόηε δηεμάγνληαη n - αγώλεο. Η ε νκάδα παίδεη κε ηηο ππόινηπεο n - νκάδεο, νπόηε δηεμάγνληαη n - αγώλεο.... Η (n-) ε νκάδα παίδεη κε ηελ ηειεπηαία νκάδα, νπόηε δηεμάγεηαη αγώλαο. Άξα ν ζπλνιηθόο αξηζκόο ησλ αγώλσλ είλαη: ( n ). () Αλ γξάςνπκε ηηο ηζόηεηεο... n n n n... θαη ηηο πξνζζέζνπκε θαηά κέιε, ηόηε ιακβάλνπκε n n n n n n. Σε θάζε αγώλα ν ζπλνιηθόο αξηζκόο ησλ βαζκώλ πνπ δίλνληαη ζηηο δύν νκάδεο πνπ ζπκκεηέρνπλ (αλεμάξηεηα από ην απνηέιεζκα) είλαη 4. Άξα ν ζπλνιηθόο αξηζκόο ησλ αγώλσλ είλαη: 64 = 9. () 4 Από ηηο ζρέζεηο () θαη () έρνπκε: ( n -) n 9 ( n-) n 7 ( n -) n 4 n 4. Άξα ζπκκεηείραλ 4 νκάδεο. Πρόβλημα. Αλ γηα ηνπο πξαγκαηηθνύο αξηζκνύο x, y, z ηζρύεη x y z x 4y 6z 0, λα πξνζδηνξίζεηε ην κέγηζην ζεηηθό αξηζκό m πνπ είλαη ηέηνηνο ώζηε: x y z m 0.

200 0 Έρνπκε x y z x 4y 6z 0 x x y 4y 4 z 6z 9 ( x ) ( y ) ( z ) θαη ζέηνληαο a x, y θαη z, έρνπκε ηειηθά Ιζρύεη όκσο ε αληζόηεηα. ( ) ( ), πνπ είλαη ηζνδύλακε κε ηε γλσζηή αληζόηεηα. Η ηζόηεηα ηζρύεη όηαλ. Δπνκέλσο έρνπκε ( ) x y z 6 - x y z 6 - x y z 6-0. Δπεηδή ε ηζόηεηα ηζρύεη γηα x y z, έπεηαη όηη ν δεηνύκελνο κέγηζηνο ζεηηθόο αξηζκόο είλαη ν m 6-. Πρόβλημα 4 Γίλεηαη ηξαπέδην ΑΒΓΓ κε ˆ ˆ 90, θαη. (i) Να απνδείμεηε όηη:. (ii) Να βξείηε ζεκείν Μ πάλσ ζηελ επζεία ΑΒ γηα ην νπνίν ην άζξνηζκα είλαη ην ειάρηζην δπλαηό. (iii) Γηα ην ζεκείν Μ πνπ ζα βξείηε, λα ππνινγίζεηε ην εκβαδόλ ηνπ ηξηγώλνπ ΓΜΓ. Γ Γ Ο Α Μ Ν Β Δ (i) Σύκθσλα κε ηηο ππνζέζεηο ηνπ πξνβιήκαηνο θαη ην Ππζαγόξεην ζεώξεκα έρνπκε, 5 5, νπόηε , πνπ ηζρύεη.

201 (ii) Αλ Δ είλαη ην ζπκκεηξηθό ηνπ Γ σο πξνο ηελ επζεία ΑΒ θαη ην επζύγξακκν ηκήκα ΔΓ ηέκλεη ηελ επζεία ΑΒ ζην ζεκείν Μ, ηόηε θαη. () Σηε ζπλέρεηα ζεσξνύκε ηπρόλ ζεκείν Ν πάλσ ζηελ επζεία ΑΒ, δηαθνξεηηθό από ην Μ, νπόηε ζα ηζρύεη ΓΝ = ΝΔ θαη. () Δπεηδή ε γξακκή ΔΜΓ είλαη επζεία, ελώ ε γξακκή ΔΝΓ έρεη ηα ίδηα άθξα κε ηελ ΔΜΓ θαη είλαη ηεζιαζκέλε, έπεηαη όηη. Άξα ην ζεκείν Μ είλαη ηέηνην ώζηε ην άζξνηζκα ΓΜ + ΜΓ λα είλαη ην ειάρηζην δπλαηό. (iii) Δπεηδή είλαη θαη,, ην ηεηξάπιεπξν ΓΔΒΓ είλαη παξαιιειόγξακκν. Αλ νη δηαγώληνη ηνπ ΓΔΒΓ ηέκλνληαη ζην Ο, ηόηε ην Ο είλαη ην κέζνλ ηεο ΓΒ θαη ε ΔΟ είλαη δηάκεζνο ηνπ ηξηγώλνπ ΓΔΒ. Δπίζεο ε ΑΒ είλαη δηάκεζνο ηνπ ηξηγώλνπ ΓΔΒ, αθνύ ηζρύεη ΑΓ =ΑΔ =. Άξα ην ζεκείν ηνκήο Μ ησλ δύν δηακέζσλ ηνπ ηξηγώλνπ ΓΔΒ είλαη ην βαξύθεληξν ηνπ ηξηγώλνπ ΓΔΒ, νπόηε ζα ηζρύεη:. Άξα έρνπκε: 4. Γηαθνξεηηθά έρνπκε 4 θαη Γ ΛΥΚΔΙΟΥ Πρόβλημα Δάλ ν z είλαη κηγαδηθόο κε Re( z),im( z) 0 θαη λα απνδείμεηε όηη z. 4 6z 5z 6 4 z z, ( ος τρόπος) Αλ ζέζνπκε ηόηε έρνπκε w 4 6z 5z 6 4 z z, 4 4 6z 5z 6 6z 5z z z z z w w,

202 ε νπνία κεηά από ηηο πξάμεηο θαη ιακβάλνληαο ππόςε όηη 4 ηζόηεηα z z z 0 z, αθνύ ιόγσ ηεο ππόζεζεο Re( z), Im( z) 0 έπεηαη όηη z zz z θαηαιήγεη ζηελ z 0. ( ος τρόπος) Δθηειώληαο ηε δηαίξεζε έρνπκε, 4 6 z 5 z 6 z 4 4 z z z z δειαδή ηζνδύλακα 4 z z z z z. 4 z z z z z Άξα έρνπκε z z z z z z z z z z z Όκσο, ιόγσ ηεο ππόζεζεο Re( z), Im( z) 0 έπεηαη όηη z z 0, νπόηε ηειηθά ιακβάλνπκε z 4 z. Πρόβλημα Να ιύζεηε ην ζύζηεκα x xy y x x y y (Σ) Η εμίζσζε x xy y είλαη ηζνδύλακε κε ηελ εμίζσζε x y xy ( ), ε νπνία από ηελ ηαπηόηεηα ηνπ Euler είλαη ηζνδύλακε κε ηηο εμηζώζεηο x y 0 ή x y. Άξα έρνπκε x y x y (Σ) ή. x x y y x x y y Τν ζύζηεκα έρεη ηε ιύζε xy,,, ελώ x y x y x y x y 0 x y x xy y x y 0 x y x y ή x y 0 x xy y x y 0 x y xy,, ή x y xy x y 0 x y x, y, ή x, y, 0 ή x, y, 0 ή x, y 0,. xy

203 Πρόβλημα Γίλεηαη ε αθνινπζία κε, γηα ηελ νπνία ηζρύεη: -, γηα θάζε. Να απνδείμεηε όηη ην γηλόκελν δύν νπνησλδήπνηε δηαδνρηθώλ όξσλ ηεο αθνινπζίαο είλαη επίζεο όξνο ηεο αθνινπζίαο. Δθαξκόδνληαο ηελ αλαδξνκηθή ζρέζε, γηα,,,( ) έρνπκε: Γηα έρνπκε Γηα έρνπκε... Γηα έρνπκε: ( ). Πξνζζέηνληαο θαηά κέιε ηηο παξαπάλσ ηζόηεηεο ιακβάλνπκε: ( ) ( ) ( ). (), όπνπ a. () Γηα ην γηλόκελν δύν νπνησλδήπνηε δηαδνρηθώλ όξσλ ηεο αθνινπζίαο έρνπκε: m ( m ) m ( m m m m 4 m m m m m m m m 4 m m m m m. m m Πρόβλημα 4 Έζησ εζσηεξηθό ζεκείν νμπγσλίνπ ηξηγώλνπ. Οη επζείεο, θαη ηέκλνπλ ηηο πιεπξέο, θαη ζηα ζεκεία, θαη αληίζηνηρα, ώζηε, θαη. Αλ ζέζνπκε x ( ), y ( ) θαη z ( ),λα απνδείμεηε όηη: x y z x y x z y z. Από ην δεδνκέλν ζεκείν ζεσξνύκε παξάιιειε πξνο ηε πνπ ηέκλεη ην ύςνο ζην ζεκείν. Τόηε πξνθαλώο ( ) ( ). Από ηε ζρέζε πξνθύπηεη πξνθαλώο. () Από ηε ζρέζε () έρνπκε: (ΤΓΒ) (ΤΑΒ). ()

204 4 Από ηε ζρέζε ( ) έρνπκε επίζεο: ( ) ( ) () Πξνζζέηνληαο ηηο ζρέζεηο () θαη () έρνπκε: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) θαη ζε ζπλδπαζκό κε ηε ζρέζε ( ) ( ), παίξλνπκε ηειηθά : ( ) ( ) ( ) ( ) ( ) ( ). Με όκνην ηξόπν απνδεηθλύνπκε όηη; ( ) ( ) ( ) θαη ( ) ( ) ( ). Δπεηδή έρνπκε ζέζεη x ( ), y ( ) θαη z ( ), από ηηο ηξεηο ηειεπηαίεο αληζώζεηο, έρνπκε: 0 x y z, 0 y x z θαη 0 z x y. (4) Αξθεί ηώξα λα απνδείμνπκε όηη: x y z x y x z y z x 4 y 4 z 4 x y y z x z ( xz ) x z y ( xz ) 0 x z xz y x z xz y 0 ( x z ) y ( x z ) y 0 0 x y z x z y x y z x y z 0 x y z x z y x y z y z x 0, πνπ ηζρύεη, ιόγσ ησλ ζρέζεσλ (4).

205 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 009 στην Αθήνα. Από το διαγωνισμό αυτό και επί πλέον από ένα τελικό προκριματικό διαγωνισμό στην Ε.Μ.Ε. συνοδευόμενο από μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγούν οι εθνικές ομάδες, που θα συμμετάσχουν στην 6 η Βαλκανική Μαθηματική Ολυμπιάδα (Σερβία, Μάιος 009), στην η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Βοσνία, Ιούνιος 009) και στην 50η Διεθνή Μαθηματική Ολυμπιάδα (Βρέμη Γερμανίας, Ιούλιος 009). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Νικόλαος Αλεξανδρής Ο Γενικός Γραμματέας Ιωάννης Τυρλής

206 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Αθήνα, 7 Ιανουαρίου 009 Αγαπητοί μαθητές, Σας καλωσορίζουμε στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ) ΕΥΚΛΕΙΔΗΣ. Σήμερα δεν δίνετε τις συνηθισμένες εξετάσεις. Συμμετέχετε σε έναν αγώνα του πνεύματος. Και μόνο η απόφασή σας για συμμετοχή και η πρόκρισή σας από τον προηγούμενο διαγωνισμό ΘΑΛΗΣ είναι μια επιτυχία. Με την ευκαιρία αυτής μας της επικοινωνίας θα θέλαμε να σας πληροφορήσουμε για τα εξής : Στα περιοδικά της ΕΜΕ Ευκλείδης Α και Ευκλείδης Β δημοσιεύονται εκτός των άλλων θεμάτων ανά τάξη και θέματα με τις λύσεις τους από Διεθνείς Μαθηματικούς Διαγωνισμούς. Επίσης έχουν εκδοθεί βιβλία της ΕΜΕ με τα θέματα των Διεθνών Μαθηματικών Ολυμπιάδων ( τεύχη), Βαλκανικών Μαθηματικών Ολυμπιάδων ( ), Θεωρίας αριθμών και τα βιβλία με τα Θέματα των Ελληνικών Μαθηματικών Διαγωνισμών σε τεύχη. Επιπλέον η ΕΜΕ μελετά τη διεξαγωγή Θερινού Σχολείου διάρκειας μιας εβδομάδας προς το τέλος Ιουλίου 009. Τα μαθήματα θα επικεντρωθούν σε ειδικά Κεφάλαια της σχολικής ύλης και σε θέματα Μαθηματικών Ολυμπιάδων. Λεπτομέρειες θα ανακοινωθούν στον επόμενο διαγωνισμό και στην ιστοσελίδα της ΕΜΕ. Για το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα καλή χρονιά, προσωπική και οικογενειακή ευτυχία. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Νικόλαος Αλεξανδρής Ο Γενικός Γραμματέας Ιωάννης Τυρλής

207 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Αθήνα 7 Ιανουαρίου 009 Προς τον κ... Αγαπητέ/ή συνάδελφε, Το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας και η Επιτροπή Διαγωνισμών σας ευχαριστεί θερμά για τη βοήθεια που προσφέρατε εθελοντικά στη διεξαγωγή του 69 ου Πανελλήνιου Μαθητικού Διαγωνισμού στα Μαθηματικά «O ΕΥΚΛΕΙΔΗΣ». Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Ο Γενικός Γραμματέας Καθηγητής Νικόλαος Αλεξανδρής Ιωάννης Τυρλής

208 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης ( x y) x y ( Α= :4 ). Μονάδες 5 Πρόβλημα Τρίγωνο ΑΒΓ έχει πλευρές ΑΒ = x, ΒΓ = x+ και ΓΑ= x + 8, όπου x. Να βρείτε τις τιμές του x για τις οποίες το τρίγωνο ΑΒΓ είναι ισοσκελές. Υπάρχει τιμή του x για την οποία το τρίγωνο ΑΒΓ είναι ισόπλευρο; Μονάδες 5 Πρόβλημα Δίνεται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ = ΓΔ και ΑΔ = ΒΓ μήκους α και β, αντίστοιχα. Αν αυξήσουμε το μήκος α κατά 0% και το μήκος β κατά 0%, να βρεθεί πόσο επί τοις εκατό θα αυξηθεί το εμβαδόν του ορθογωνίου. Μονάδες 5 Πρόβλημα 4 Δίνεται τρίγωνο ΑΒΓ ( ΑΓ > ΑΒ) με τη γωνία Α διπλάσια της γωνίας Β και τη γωνία μεγαλύτερη από τη γωνία Γ κατά είκοσι μοίρες. Δίνονται ακόμα το ύψος του ΑΗ και η διχοτόμος του ΑΔ. (α) Αν Α, Β, Γ είναι τα συμμετρικά των κορυφών Α, Β, Γ του τριγώνου ΑΒΓ, ως προς άξονα συμμετρίας την ευθεία του ύψους ΑΗ, να αποδείξετε ότι τα τρίγωνα ΑΒΒ και ΑΓΓ είναι ισοσκελή και να βρείτε τις γωνίες τους. (β) Να βρείτε τη γωνία που σχηματίζεται από το ύψος ΑΗ και τη διχοτόμο ΑΔ. Μονάδες 5 Β ΚΑΛΗ ΕΠΙΤΥΧΙΑ

209 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Γ τάξη Γυμνασίου Πρόβλημα Αν ισχύει ότι a+ b=, να βρείτε την τιμή της παράστασης 4 4 Α= ( 6a+ b) ( a+ 64 b) + :. Μονάδες 5 Πρόβλημα Αν οι θετικοί πραγματικοί αριθμοί x, y ικανοποιούν την ισότητα x + 4y = xy, να βρείτε την τιμή της παράστασης x + y Α=. x y Μονάδες 5 Πρόβλημα Να βρείτε τους διψήφιους θετικούς ακέραιους n= ab= 0 a+ b, όπου ab, ψηφία με a 0, που έχουν την ιδιότητα: Το γινόμενο των ψηφίων τους αυξημένο κατά το τετραπλάσιο του αθροίσματος των ψηφίων τους, ισούται με τον αριθμό. Μονάδες 5 0 Πρόβλημα 4 Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές ΑΒ και ΓΔ που είναι κάθετες μεταξύ τους και δεν περνάνε από το κέντρο του κύκλου. Οι δύο χορδές τέμνονται στο σημείο Κ, έτσι ώστε να είναι ΑΚ > ΚΒ. Έστω Μ το συμμετρικό του Β, ως προς κέντρο συμμετρίας το σημείο Κ. Να αποδείξετε ότι το σημείο Μ είναι το σημείο τομής των υψών του τριγώνου ΑΓΔ. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

210 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση m+ n x y y + y x Α= n m n, m+ n y x x x y όπου mn, ακέραιοι και x, y πραγματικοί αριθμοί με xy 0, xy και xy. Πρόβλημα Να βρεθούν οι ακέραιοι αριθμοί α, β, αν γνωρίζετε ότι ισχύουν: α β = α + β και α β + α β + α β α β = 7. m n m Μονάδες 5 Μονάδες 5 Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α. Πάνω στις πλευρές ΒΓ και ΓΔ λαμβάνουμε σημεία Ε και Ζ τέτοια ώστε ΕΓ = ΖΔ = α. Τα ευθύγραμμα τμήματα ΒΖ και ΔΕ τέμνονται στο σημείο Κ. Αν η ευθεία ΑΚ τέμνει την ευθεία ΕΖ στο σημείο Λ, τότε: (α) Να αποδείξετε ότι: ΑΛ ΕΖ. Μονάδες (β) Να υπολογίσετε το μήκος της ΑΛ συναρτήσει του α. Μονάδες Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο abc = 00a + 0b + c, όπου abc,, ψηφία με a 0, ο οποίος ικανοποιεί την ισότητα: ( ) abc = a + b + c. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

211 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του έχει μία μόνο λύση. Για τις τιμές του a a για τις οποίες το σύστημα x + 4y = 4a ax y = a, που θα βρείτε, να λύσετε το σύστημα. Μονάδες 5 Πρόβλημα Έστω S = x+ y+ z και S = xy+ yz+ zx, όπου xyz,, τέτοιοι ώστε να ικανοποιούν την ισότητα x ( y+ z) + y ( z+ x) + z ( x+ y) = 6. (α) Να αποδείξετε ότι: xyz = SS 6. Μονάδες 4 (β) Να προσδιορίσετε τους αριθμούς x, yz,, αν είναι S = και S =. Μονάδες Πρόβλημα Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με ˆ Α= 90. Αν ΑΔ είναι ύψος του τριγώνου και Κ, Κ, Κ είναι τα κέντρα των εγγεγραμμένων κύκλων των τριγώνων ΑΒΔ, ΑΓΔ, ΑΒΓ, αντίστοιχα, να αποδείξετε ότι: ΑΚ = ΚΚ. Μονάδες 5 Πρόβλημα 4. Να προσδιορίσετε την τιμή του ακέραιου αριθμού k,< k < 0και μη σταθερό πολυώνυμο P( x) για κάθε x. με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: ( x k) P( x) = k( x ) P( x), Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

212 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Γ τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου m για τις οποίες το εμβαδόν του τριγώνου που ορίζεται από τις γραφικές παραστάσεις των συναρτήσεων f x = x+, g( x) = mx, m, ( ) 6 και τον άξονα των x ισούται με. Μονάδες 5 Πρόβλημα Έστω H το ορθόκεντρο και O το περίκεντρο οξυγωνίου τριγώνου ABΓ. Έστω ακόμη Δ, Ε και Ζ τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ, αντίστοιχα. Θεωρούμε τα σημεία Δ, Εκαι Ζ έτσι ώστε: ΟΔ = λ ΟΔ, ΟΕ = λ ΟΕ και ΟΖ = λ ΟΖ, με λ >. Ο κύκλος C α που έχει κέντρο το σημείο Δ και διέρχεται από το H τέμνει την ευθεία ΒΓ στα σημεία Α και Α. Όμοια, οι κύκλοι Cβ ( Ε, ΕΗ ) και Cγ ( Ζ, ΖΗ ) ορίζουν τα σημεία B, B και Γ, Γ στις ευθείες ΑΓ και ΑΒ, αντίστοιχα. Να αποδείξετε ότι τα σημεία Α, Α, Β, Β, Γ και Γ είναι ομοκυκλικά. Μονάδες 5 Πρόβλημα Να προσδιορίσετε την τιμή του θετικού ακέραιου k και μη σταθερό πολυώνυμο P( x ) με πραγματικούς συντελεστές, βαθμού n, έτσι ώστε να ισχύει: ( x k) P( x) = k( x ) P( x), για κάθε x. Μονάδες 5 Πρόβλημα 4 Δίνεται η συνάρτηση f : με πεδίο ορισμού και σύνολο τιμών, το σύνολο των πραγματικών αριθμών ( f ( ) = ). Αν για οποιουσδήποτε πραγματικούς αριθμούς x, y ισχύει η σχέση: f f f( x) f( y) = f( x) f f( y), να αποδείξετε ότι η συνάρτηση f είναι περιττή. ( ( ) ) ( ) Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

213 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η παράσταση γίνεται: ( x y) x y ( ) Α= : 4. ( 4x 5y) 6x 5y ( 8: 4 ) 4x 5y 6x 5y ( ) x y ( x y) Α= = = = = 8 0 = 80. Πρόβλημα Τρίγωνο ΑΒΓ έχει πλευρές ΑΒ = x, ΒΓ = x+ και ΓΑ= x+ 8, x. Να βρείτε τις τιμές του x για τις οποίες το τρίγωνο ΑΒΓ είναι ισοσκελές. Υπάρχει τιμή του x για την οποία το τρίγωνο ΑΒΓ είναι ισόπλευρο; Το τρίγωνο ΑΒΓ είναι ισοσκελές, αν ισχύει: ΑΒ = ΒΓ ή ΑΒ = ΑΓ ή ΑΓ = ΒΓ x = x+ ή x = x+ 8 ή x+ 8= x+ x= 4 ή x= 0ή x= 4 x= 7 ή x= 0ή x= 4. Από τη λύση των παραπάνω εξισώσεων διαπιστώνουμε ότι δεν υπάρχει τιμή του x που να επαληθεύει την ισότητα ΑΒ=ΒΓ=ΑΓ, οπότε το τρίγωνο ΑΒΓ δεν μπορεί να είναι ισόπλευρο. Πρόβλημα Δίνεται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ = ΓΔ και ΑΔ = ΒΓ μήκους α και β, αντίστοιχα. Αν αυξήσουμε το μήκος α κατά 0% και το μήκος β κατά 0%, να βρεθεί πόσο επί τοις εκατό θα αυξηθεί το εμβαδόν του ορθογωνίου. Το εμβαδόν του ορθογωνίου ΑΒΓΔ είναι Ε = αβ. Μετά την αύξηση του μήκους των πλευρών του τα μήκη των πλευρών του νέου ορθογωνίου είναι:

214 0α α α 0β β β α = α + = α + = και β = β + = β + = Έτσι το εμβαδόν του νέου ορθογωνίου θα είναι: α β 56αβ 56αβ 56αβ Ε= = = αβ + =Ε Ε Ε Ε 56 Ε Ε= =. 00 Ε 00 Άρα η αύξηση της τιμής του εμβαδού είναι 56% πάνω στην αρχική τιμή του. Πρόβλημα 4 Δίνεται τρίγωνο ΑΒΓ ( ΑΓ > ΑΒ) με τη γωνία Α διπλάσια της γωνίας Β και τη γωνία Β μεγαλύτερη από τη γωνία Γ κατά είκοσι μοίρες. Δίνονται ακόμα το ύψος του ΑΗ και η διχοτόμος του ΑΔ. (α) Αν Α, Β, Γ είναι τα συμμετρικά των κορυφών Α, Β, Γ του τριγώνου ΑΒΓ, ως προς ά ξονα συμμετρίας την ευθεία του ύψους ΑΗ, να αποδείξετε ότι τα τρίγωνα ΑΒΒ και ΑΓΓ είναι ισοσκελή και να βρείτε τις γωνίες τους. (β) Να βρείτε τη γωνία που σχηματίζεται από το ύψος ΑΗ και τη διχοτόμο ΑΔ. A Γ Γ B Η Δ Β (α) Από την υπόθεση έχουμε Α= ˆ Β ˆ και Γ=Β ˆ ˆ 0 0, οπότε από τη γνωστή ισότητα Α+Β+Γ= ˆ ˆ ˆ λαμβάνουμε ˆ ˆ ˆ 0 Β+Β+Β 0 = 80 4Β= ˆ 00 Β= ˆ Άρα έχουμε και Α= ˆ 00 και Γ= ˆ 0. Λόγω συμμετρίας ως προς τον άξονα ΑΗ, τα τρίγωνα ΑΒΓ και ΑΒΓ είναι ίσα ( Α Α, αφού το σημείο Α ανήκει στον άξονα συμμετρίας), οπότε θα έχουν τις αντίστοιχες πλευρές τους ίσες, δηλαδή ΑΒ = ΑΒ και ΑΓ = ΑΓ. Άρα τα τρίγωνα ΑΒΒ και ΑΓΓ είναι ισοσκελή. Επιπλέον έχουμε Β=Β= ˆ 50 0, Γ=Γ= ˆ ˆ 0 0, ˆ ΒΑΒ = = 80 και ΓΑΓ= ˆ 80 0 = 0. (β) Από το ορθογώνιο τρίγωνο ΑΗΔ έχουμε την ισότητα: ˆ ΗΑΔ = 90 ΑΔΗ ˆ () Όμως από το τρίγωνο ΑΒΔ λαμβάνουμε την ισότητα: ˆ ˆ 0 ˆ ˆ ΑΔΗ = ΑΔΒ = 80 Β ΔΑΒ = = 80. () Από τις σχέσεις () και () προκύπτει ότι: ˆ 0 0 ΗΑΔ = = 0.

215 Γ τάξη Γυμνασίου Πρόβλημα Αν ισχύει ότι a+ b=, να βρείτε την τιμή της παράστασης 4 4 Α= ( 6a+ b) ( a+ 64 b) + :. Η παράσταση γίνεται 4 4 Α= ( 6a+ b) ( a+ 64 b) + : 4 = ( a+ b) ( a+ b) 4 = ( ) ( ) = + = + = = Πρόβλημα Αν οι θετικοί πραγματικοί αριθμοί x, y ικανοποιούν την ισότητα να βρείτε την τιμή της παράστασης Από τη σχέση οπότε έχουμε: Δεύτερος τρόπος 0 x + 4y = xy, 0 x + y Α=. x y x + 4y = xy λαμβάνουμε: 0 x + 4y + x y = xy+ 4xy ( x+ y) = xy, 0 8 x + 4y x y = xy 4xy ( x y) = xy > 0, xy 4 ή. x y 8 xy ( x+ y) ( ) Α = = = Α= Α= Από τη σχέση x + 4y = xy με διαίρεση των δύο μελών με x u = λαμβάνουμε: y 0 y και την αντικατάσταση

216 x x = 0 u u+ 4= 0 u = 0 y y u = ή u = u = 6 ή u =. x 6y+ y Για u = = 6 λαμβάνουμε x = 6y, οπότε : Α = =. y 6y y x x+ x Για u = = λαμβάνουμε x = y, οπότε : Α = =. y x x Πρόβλημα Να βρείτε τους διψήφιους θετικούς ακέραιους n= ab= 0 a+ b, όπου ab, ψηφία, a 0,που έχουν την ιδιότητα: Το γινόμενο των ψηφίων τους αυξημένο κατά το τετραπλάσιο του αθροίσματος των ψηφίων τους, ισούται με τον αριθμό. Σύμφωνα με την υπόθεση έχουμε την εξίσωση: ab + 4( a + b) = 0a + b, όπου ab, ψηφία, a 0. Ισοδύναμα έχουμε: ab + 4a + 4b = 0a + b ab 6a + b = 0 a( b 6) + ( b 6) = 8 ( a+ )( b 6) = 8 a+ 6 b = 8. ( )( ) Από την τελευταία εξίσωση, δεδομένου ότι 4 a +, προκύπτει ότι: ( a+, 6 b) = ( 6,) ή ( 9, ) ( ab, ) = (,) ή ( 6, 4 ), δηλαδή οι αριθμοί που ζητάμε είναι οι και 64. Πρόβλημα 4 Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές ΑΒ και ΓΔ που είναι κάθετες μεταξύ τους και δεν περνάνε από το κέντρο του κύκλου. Οι δύο χορδές τέμνονται στο σημείο Κ, έτσι ώστε να είναι ΑΚ > ΚΒ. Έστω Μ το συμμετρικό του Β ως προς κέντρο συμμετρίας το σημείο Κ. Να αποδείξετε ότι το σημείο Μ είναι το σημείο τομής των υψών του τριγώνου ΑΓΔ. Έστω ότι η ευθεία ΓΜ τέμνει την πλευρά ΑΔ στο σημείο Ε. Η ΓΕ είναι ύψος του τριγώνου ΑΓΔ, αν είναι ΓΕ ΑΔ ή ΓΕΔ ˆ = 90. Αρκεί να ισχύει: ΕΓΔ ˆ + ΓΔΕ ˆ = 90. Όμως είναι ΕΓΔ ˆ = ΚΓΒ ˆ, () λόγω συμμετρίας ως προς την ευθεία ΓΔ. Επίσης έχουμε ΓΔΕ ˆ = ΓΔΑ ˆ = ΓΒΑ ˆ = ΓΒΚ ˆ, αφού οι γωνίες ΓΔΑ ˆ, ΓΒΑ ˆ είναι εγγεγραμμένες στο ίδιο τόξο του κύκλου. Άρα είναι ΓΔΕ ˆ = ΓΒΚ ˆ, () ως εγγεγραμμένες στο ίδιο τόξο του κύκλου. Με πρόσθεση κατά μέλη των () και () λαμβάνουμε:

217 ˆ ˆ ˆ ˆ 0 ˆ 0 ΕΓΔ + ΔΓΕ = ΚΓΒ + ΓΒΚ = 80 ΓΚΒ = = 90, αφού οι γωνίες ΓΒΚ ˆ και ΚΓΒ ˆ είναι οι δύο οξείες γωνίες του ορθογώνιου τριγώνου ΓΚΒ. Επειδή οι δύο χορδές είναι κάθετες θα είναι και ΑΚ ΓΔ, δηλαδή ΑΚ είναι επίσης ύψος του τριγώνου ΑΓΔ, οπότε το σημείο Μ είναι το σημείο τομής των υψών του τριγώνου ΑΓΔ. Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση m n m m+ n x y y y + x Α=, n m n m+ n y x x x y όπου mn, ακέραιοι και x, y πραγματικοί αριθμοί με xy 0, xy και xy. m n m m m+ n xy xy+ x y y y + x y x Α= = x y x y n m n n m n m+ n xy xy m+ n y x x x m n ( ) ( ) xy x xy + y y = m y x x = m n ( xy + ) ( xy ) ( xy ) n n m m n m+ n ( xy ) m n m n m n n m m+ n ( xy ) + n m n n m m x y =. n m y m+ n Πρόβλημα Να βρεθούν οι ακέραιοι αριθμοί α, β αν γνωρίζετε ότι ισχύουν:

218 α β = α + β και α β + α β + α β α β = 7. Από την ισότητα α β = α + β 0 προκύπτει ότι: = + ( ) α β α β α β = α + β α αβ + β = α + αβ + β αβ = αβ ( α 0 και β 0) ή ( α 0 και β 0. ) Από τη δεύτερη ισότητα λαμβάνουμε: α β + α β + α β α β = 7 α β ( α + β + ) ( α + β + ) = 5 ( α + β + )( α β ) = 5, από την οποία έχουμε ότι ο α β είναι ένας από τους παράγοντες του 5, δηλαδή έχουμε: α β =± ή α β =± 5 ή α β =± 7 ή α β =± 5 α β = ή α β = 0 ή α β = 6 ή α β = 4 ή α β = 8 ή α β = 6 ή α β = 6 ή α β = 4. Οι αποδεκτές περιπτώσεις, αφού α, β και α β 0, είναι οι: α β = 0, η οποία οδηγεί στις λύσεις ( α, β) = ( 0, 7) ή ( α, β) = ( 7,0). α β = 6 αβ = 6 (αφού α, β ετερόσημοι), η οποία οδηγεί στο σύστημα: α + β = ( α, β) = (,) ή ( α, β) = (, ). αβ = 6 Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α. Πάνω στις πλευρές ΒΓ και ΓΔ λαμβάνουμε σημεία Ε και Ζ τέτοια ώστε ΕΓ = ΖΔ = α. Τα ευθύγραμμα τμήματα ΒΖ και ΔΕ τέμνονται στο σημείο Κ. Αν η ευθεία ΑΚ τέμνει την ευθεία ΕΖ στο σημείο Λ, τότε: (α) Να αποδείξετε ότι: ΑΛ ΕΖ (β) Να υπολογίσετε το μήκος της ΑΛ συναρτήσει του α. (α) Τα ορθογώνια τρίγωνα ΑΔΖ και ΔΕΓ έχουν τις κάθετες πλευρές τους ίσες ( ΑΔ = ΔΓ=α, ΔZ = ΕΓ = α ). Άρα είναι ίσα και έχουν ΔΑ ˆZ =ΕΔΓ. ˆ Αν Μ είναι το σημείο τομής ΑΖ και ΔΕ, τότε έχουμε: ΜΔΖ ˆ + ΔΖΜ ˆ = ΔΑΖ ˆ + ΔΖΑ ˆ 0 ˆ 0 = 80 ΑΔΖ= = 90. Άρα είναι ΕΔ ΑΖ και ομοίως αποδεικνύουμε ότι είναι ΖΒ ΑΕ, οπότε το σημείο Κ είναι το σημείο τομής των υψών του τριγώνου ΑΕΖ. Άρα θα είναι και ΑΚ ΕΖ ή ΑΛ ΕΖ.

219 Δ (β) Έχουμε ότι α 5 ( ΑΕΖ ) = ΕΖ ΑΛ = ΑΛ και α 7α ( ΑΕΖ ) = ( ΑΒΓΔ) ( ΑΒΕ) ( ΕΓΖ) ( ΑΔΖ ) = 9α α α =, 7 5α οπότε λαμβάνουμε: ΑΛ =. 5 Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο abc = 00a + 0b + c, όπου abc,, ψηφία, a > 0, ο οποίος ικανοποιεί την ισότητα: Από τη σχέση abc ( a b c ) ( ) abc = a + b + c 00 = + + < 000 προκύπτει ότι: 0 a b c Από τη σχέση (), δεδομένου ότι {,,...,9} Επιπλέον η δεδομένη ισότητα γίνεται: Διακρίνουμε τώρα τις περιπτώσεις: Για c = 0 η εξίσωση () γίνεται: + +, () a και bc, { 0,,,...,9} { 0,,,} και b { 0,,,, 4,5}, συμπεραίνουμε ότι: c. () ( ) 00 0 ( ) abc= a+ b + c a+ b+ c= a+ b + c. () ( ) 00a+ 0b= a+ b, (4) από την οποία για b { 0,,,, 4,5} δεν προκύπτουν ab, που την επαληθεύουν. Πράγματι, τα ψηφία abπου, ικανοποιούν την εξίσωση (4) πρέπει να είναι τέτοια ώστε ο αριθμός a + b να λήγει σε 0. Έτσι πιθανά ζεύγη είναι τα (, ) ( 9,) ή ( 6, ) ή (,) ή ( 4, 4) ή ( 5,5) ab =, από τα οποία κανένα δεν ικανοποιεί την εξίσωση (4).

220 Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, από την οποία προκύπτει ότι ο αριθμός a+ b + πρέπει να λήγει σε ή 9. Έτσι πιθανά ζεύγη είναι τα ( ab, ) = ( 8,0) ή ( 7,) ή ( 9,) ή ( 4, ) ή ( 6, ) ή (,) ή 9, ή, 4 ή 4, 4 ή,5 ή 5,5, ( ) ( ) ( ) ( ) ( ) από τα οποία προκύπτει μόνο η λύση ( ab, ) = ( 4,4) και ο αριθμός abc = 44. Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, η οποία είναι αδύνατη, αφού δεν είναι δυνατόν το τετράγωνο ενός ακεραίου να τελειώνει σε. Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, η οποία είναι αδύνατη, αφού δεν είναι δυνατόν το τετράγωνο ενός ακεραίου να τελειώνει σε. Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το σύστημα είναι ισοδύναμο με το σύστημα x + 4y = 4a y = ax a y = ax a. ax y = a x + 4( ax a) = 4a ( + 4a ) x 6a x+ a = 0 Το σύστημα έχει μία μόνο λύση, αν, και μόνον αν, η εξίσωση ( ) χει μία διπλή ρίζα, δηλαδή, αν, και μόνον αν, ισχύει: Για 0 Για Δ= 6a ( 4a ) = 0 a= 0 ή a= ή a=. xy, = 0,0. a =, το σύστημα έχει τη λύση ( ) ( ) a =± η εξίσωση ( ) χει τη διπλή ρίζα αν a = και ( xy) 4a x 6a x a = γίνεται 4a x 6a x a = έ- x =, οπότε το σύστημα έχει τη μοναδική λύση ( xy), =, 4, αν a =. 4x x = και έ-, =, 4,

221 Πρόβλημα Έστω S = x+ y+ z και S = xy+ yz+ zx, όπου xyz,, τέτοιοι ώστε να ικανοποιούν την ισότητα x y+ z + y z+ x + z x+ y = 6. ( ) ( ) ( ) (α) Να αποδείξετε ότι: xyz = SS 6. (β) Να προσδιορίσετε τους αριθμούς x, yz,, αν είναι S = και S =. (α) Έχουμε x ( y+ z) + y ( z+ x) + z ( x+ y) = 6 x( xy+ xz) + y( yz+ yx) + z( zx+ zy) = 6 x( S yz) + y ( S zx) + z ( S xy) = 6 x + y + z S xyz = 6 xyz = S S 6. ( ) (β) Για S = και S = έχουμε το σύστημα: x+ y+ z = x+ y+ z = xy + yz + zx = xy + yz + zx =, xyz = 0 x = 0 ή y = 0 ή z = 0 από το οποίο εύκολα προκύπτουν οι λύσεις xyz,, =,,0 ή,, 0 ή,0, ή, 0, ή 0,, ή 0,,. ( ) ( ) ( ) ( ) ( ) ( ) ( ) Πρόβλημα Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με Α= ˆ 90. Αν ΑΔ είναι ύψος του τριγώνου και Κ, Κ, Κ είναι τα κέντρα των εγγεγραμμένων κύκλων των τριγώνων ΑΒΔ, ΑΓΔ, ΑΒΓ, αντίστοιχα, να αποδείξετε ότι ΑΚ = ΚΚ. Α Ε Κ Ζ Β Κ Κ Δ Γ Κ Τα σημεία Κ και Κ βρίσκονται πάνω στη διχοτόμο της γωνίας ˆΒ, ενώ τα σημεία και Κ βρίσκονται πάνω στη διχοτόμο της γωνίας ˆΒ. Έτσι έχουμε ˆ ˆ ˆ 0 Β+Γ 0 ΒΚΓ = 80 = = 5 Ομοίως λαμβάνουμε ΒΚΑ= ˆ ˆ 5 και ΓΚΑ= 5 Άρα έχουμε.

222 0 ΚΚΕ=ΚΚΕ=ΚΚΖ=ΖΚΚ ˆ ˆ ˆ ˆ = 45, 0 ως παραπληρώματα κάποιας γωνίας 5. Επομένως τα τρίγωνα ΑΕΚ, Κ ΕΚ και ΚΖΚ είναι ορθογώνια ισοσκελή, οπότε το σημείο Κ είναι ορθόκεντρο του τριγώνου ΑΚΚ. Τα ορθογώνια τρίγωνα ΑΚ Ε και Κ ΕΚ είναι ίσα, γιατί έχουν ΕΚ =ΕΚ και ΚΚΕ=ΕΑΚ ˆ ˆ, αφού έχουν τις πλευρές τους κάθετες. Άρα είναι ΑΚ =ΚΚ Πρόβλημα 4. Να προσδιορίσετε την τιμή του ακέραιου αριθμού k,< k < 0 και μη σταθερό πολυώνυμο P( x ) με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: ( x k) P( x) k( x ) P( x), = για κάθε x. n n Έστω P( x) = anx + an x ax+ a0, an 0, n το ζητούμενο πολυώνυμο. Τότε εξισώνοντας τους συντελεστές των μεγιστοβάθμιων όρων των δύο μελών της δεδομένης ισότητας πολυωνύμων, λαμβάνουμε n n an = kan k =. Επειδή είναι < k < 0 οι μόνες δυνατές τιμές του n είναι οι n= ή n= ή n=. Έτσι η δεδομένη ισότητα γίνεται: n n x P x = x P x, για κάθε x. () ( ) ( ) ( ) ( ) Για n = η () γίνεται ( x ) P( x) ( x ) P( x) x = προκύπτει P ( ) = 0. Άρα είναι P( x) = a ( x ). Για =, για κάθε x, από την οποία για =, για κάθε x, από την οποία για n = η () γίνεται ( x ) P( x) ( x ) P( x) προκύπτει P ( ) = 0 και P ( 9) = 0. Άρα είναι P( x) a ( x )( x ) Για n = η () γίνεται ( x ) P( x) ( x ) P( x) = 9. =, για κάθε x, από την οποία για προκύπτει P ( ) = 0, P ( 9) = 0 και P ( 7) = 0. Άρα είναι P( x) = a ( x )( x )( x ) 9 7.

223 Γ τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου m για τις οποίες το εμβαδόν του τριγώνου που f x = x+, g( x) = mx, m ορίζεται από τις γραφικές παραστάσεις των συναρτήσεων ( ) 6 και τον άξονα των x ισούται με. y y =mx Μ Ο Α(,0) x Από το σύστημα y = mx, y = x+ 6 προκύπτει ότι οι συντεταγμένες του σημείου Μ είναι 6 6m,, οπότε έχουμε: m+ m+ 6m 6m 6m E( ΟΑΜ ) = = = ή = m= ή m=. + m + m + m Πρόβλημα Έστω H το ορθόκεντρο και O το περίκεντρο οξυγωνίου τριγώνουabγ. Έστω ακόμη Δ, Ε και Ζ τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ, αντίστοιχα. Θεωρούμε τα σημεία, λ και λ, με. Δ, Εκαι Ζ έτσι ώστε: ΟΔ = λ ΟΔ ΟΕ = ΟΕ ΟΖ = ΟΖ λ >. Ο κύκλος C α που έχει κέντρο το σημείο Δ και διέρχεται από το H τέμνει την ευθεία ΒΓ στα σημεία Α και Cβ Ε, ΕΗ και Cγ Ζ, ΖΗ ορίζουν τα σημεία B, B και Γ, Γ στις ευθείες ΑΓ και ΑΒ, αντίστοιχα. Να αποδείξετε ότι τα σημεία Α, Α, Β, Β, Γ και Γ είναι ομοκυκλικά. Α. Όμοια, οι κύκλοι ( ) ( ) Έστω Η το ορθόκεντρο του τριγώνου ΑΒΓ. Επειδή τα σημεία Δ, ΕΖ, είναι τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ αντίστοιχα, τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν τις πλευρές τους παράλληλες. Τα τρίγωνα ΔΕΖ και ΔΕΖ έχουν επίσης τις πλευρές τους παράλληλες, γιατί ΟΔ = ΟΔ, ΟΕ = λ ΟΕ και ΟΖ = λ ΟΖ. λ Η ΔΖ είναι μεσοκάθετη της κοινής χορδής ΚΗ των κύκλων C α και C γ. Επειδή η ΔΖ είναι παράλληλη με την ΑΓ, έπεται ότι ΚΗ ΑΓ. Επειδή όμως ισχύει και ότι ΒΗ ΑΓ καταλήγουμε στο συμπέρασμα, ότι τα σημεία ΒΚΗ,, είναι συνευθειακά.

224 Με όμοιο τρόπο, αν ΜΗ, ΛΗ είναι η κοινή χορδή των κύκλων C β, C γ και C α, C β, αντίστοιχα, καταλήγουμε στο συμπέρασμα ότι τα σημεία Α, ΜΗ, και τα σημεία ΓΛΗείναι,, συνευθειακά. Από τη δύναμη του σημείου Β ως προς τους κύκλους C α και C γ, έχουμε: ΒΚ ΒΓ = ΒΑ ΒΑ = ΒΓ ΒΓ, οπότε τα σημεία Α, Α, Γ, Γ είναι ομοκυκλικά στο κύκλο με κέντρο το Ο, που είναι το σημείο τομής των μεσοκαθέτων των τμημάτων ΑΑ και ΓΓ. Όμοια εργαζόμαστε και με τα άλλα ζευγάρια σημείων, οπότε τα σημεία Α, Α, Β, Β, Γ και Γ βρίσκονται σε κύκλο κέντρου Ο. Πρόβλημα Να προσδιορίσετε την τιμή του θετικού ακέραιου k και μη σταθερό πολυώνυμο ( ) βαθμού, με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: x k P x = k x P x, για κάθε x. ( ) ( ) ( ) ( ) P x, n n n Έστω P( x) = anx + an x ax+ a0, an 0, n, το ζητούμενο πολυώνυμο. Τότε εξισώνοντας τους συντελεστές των μεγιστοβάθμιων όρων των δύο μελών της δεδομένης ισότητας πολυωνύμων, λαμβάνουμε n n an = kan k =. Έτσι η δεδομένη ισότητα γίνεται: n n x P x = x P x, n, για κάθε x. () Από την () για ( ) ( ) ( ) ( ) x = προκύπτει ότι ( ) ( k P ) = 0. Συνεχίζοντας έτσι λαμβάνουμε τις σχέσεις ( ) P = 0, οπότε στη συνέχεια για x = προκύπτει P = 0, για k =,... n.

225 Επίσης από την () για x = n λαμβάνουμε: 0= n n P n = 0 P n = 0. ( ) ( ) ( ) k Άρα το ζητούμενο πολυώνυμο n βαθμού έχει τις n ρίζες, k =,,..., n, οπότε n P x = a x x x, a.. Πρόβλημα 4 Δίνεται η συνάρτηση f : με πεδίο ορισμού και σύνολο τιμών, το σύνολο των πραγ-. Αν για οποιουσδήποτε πραγματικούς αριθμούς x, y ισχύει η σχέση: f ( f ( f( x) ) f( y) ) = f( x) f ( f( y) ), () να αποδείξετε ότι η συνάρτηση f, είναι περιττή. ματικών αριθμών ( f ( ) = ) ( ) n( )( ) ( ) Θέτουμε στη δεδομένη σχέση όπου y το f ( x ) και έχουμε: f f f ( x ) f f ( x ) = f ( x ) f f f ( x ) Από τη σχέση () έχουμε τις ισότητες f f f f ( ( ) ( )) ( ( )) f (0) = f( x) f ( f ( f( x) )) f ( f ( f( x) )) = f( x) f(0) ( f f f )( x) = f( x) f(0) (). ( )( x ) = f ( f ( x ) f (0 )) ( f f f f )( x ) = f ( f ( x )) f (0 ) από τις οποίες προκύπτει ότι: f ( f ( x ) f (0 )) = f ( f ( x )) f (0 ). () Από την () για x = 0 παίρνουμε: f f (0 ) f (0 ) = f f (0 ) f (0 ( ) ( ) ) f (0) = f ( f(0) ) f(0) f ( f(0) ) f(0) n = (4). Από τη σχέση () για x = y = 0 και σε συνδυασμό με τη σχέση (4), έχουμε: f f f (0 ) f (0 ) = f (0 ) f f (0 ) ( ( ) ) ( ) f ( f(0) f(0) ) f(0) f(0) f ( f(0) ) f(0) = = (5). Από τις σχέσεις (4) και (5) έχουμε: f (0 ) = 0. Αν τώρα στη σχέση () θέσουμε x = 0 καταλήγουμε στη σχέση: f f f (0 ) f ( y ) = f (0 ) f f ( y ) ( ( ) ) ( ) f ( f( y) ) = f ( f( y) ). Επειδή όμως σύνολο τιμών της συνάρτησης f είναι το, έπεται ότι για κάθε x θα υπάρχει ένα τουλάχιστον y τέτοιο, ώστε f ( y ) = x. Άρα έχουμε f ( x ) = f ( x ), για κάθε x, δηλαδή η συνάρτηση f είναι περιττή.,

226 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 7 Φεβρουαρίου 00 στην Αθήνα. Από το διαγωνισμό αυτό και επί πλέον από ένα τελικό προκριματικό διαγωνισμό στην Ε.Μ.Ε. συνοδευόμενο από μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγούν οι εθνικές ομάδες, που θα συμμετάσχουν στην 7 η Βαλκανική Μαθηματική Ολυμπιάδα (Μολδαβία, Μάιος 00), στην 4 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ρουμανία, Ιούνιος 00) και στην 5η Διεθνή Μαθηματική Ολυμπιάδα (Αστάνα, Καζακστάν, Ιούλιος 00). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ μαζί με τα γραπτά να μας στείλει το ονοματεπώνυμο και την ταχ. Δ/νση όλων των επιτηρητών για να τους σταλεί ονομαστική ευχαριστήρια επιστολή από το Δ.Σ. της ΕΜΕ. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόρης Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

227 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 B τάξη Γυμνασίου Πρόβλημα (α) Να υπολογίσετε την τιμή της παράστασης Α= Μονάδες (β) Να συγκρίνετε τους αριθμούς 0 Β= : και Γ= Μονάδες Πρόβλημα Ο τριψήφιος θετικός ακέραιος x = αβγ = 00α + 0 β + γ, α 0, έχει άθροισμα ψηφίων 0. Αν εναλλάξουμε το ψηφίο των εκατοντάδων με το ψηφίο των μονάδων του, τότε προκύπτει ακέραιος μικρότερος από τον x κατά 97. Ποιες είναι οι δυνατές τιμές του x ; Μονάδες 5 Πρόβλημα Ορθογώνιο ΑΒΓΔ έχει πλάτος ΑΒ = x μέτρα και μήκος ΒΓ= y μέτρα, το οποίο είναι διπλάσιο του πλάτους του. Αν αυξήσουμε το πλάτος του κατά 5%, να βρείτε πόσο επί τα εκατό πρέπει να ελαττώσουμε το μήκος του, ώστε το εμβαδόν του να μείνει αμετάβλητο. Μονάδες 5 Πρόβλημα 4 Στο διπλανό σχήμα το τετράπλευρο ΑΒΓΔ είναι ρόμβος πλευράς α και το τρίγωνο ΓΕΖ είναι ισόπλευρο πλευράς α. Τα σημεία Ε και Ζ βρίσκονται πάνω στις πλευρές ΑΒ και ΑΔ, αντίστοιχα. Να βρείτε τις γωνίες του ρόμβου ΑΒΓΔ. Μονάδες 5 Ε Β Α Ζ Γ Δ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

228 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 Γ τάξη Γυμνασίου Πρόβλημα Έστω ο ακέραιος ν ν ν 4ν Α= ( ) + ( ) + ( ) + ( ) ν, όπου ν θετικός ακέραιος. Αν ο Α είναι διαιρέτης του 4, να βρείτε τις δυνατές τιμές του ν. Μονάδες 5 Πρόβλημα Υπάρχει διψήφιος θετικός ακέραιος N = ab= 0 a+ b, όπου ab, ψηφία με a 0, που ισούται με το γινόμενο των ψηφίων του ελαττωμένο κατά το άθροισμα των ψηφίων του; Μονάδες 5 Πρόβλημα Να υπολογίσετε την τιμή της παράστασης S = Μονάδες 5 Πρόβλημα 4 Στο παρακάτω σχήμα δίνεται ότι το σημείο Δ είναι το μέσο της πλευράς ΑΓ= β του τριγώνου ΑΒΓ, ˆ ΔΑΕ = 90, η ευθεία ΔΕ είναι κάθετη προς την ευθεία ΒΓ, ΑΔΕ ˆ = ΓΔΖ ˆ = θ και ΓΖΔ ˆ = 0 0. (i) Να βρείτε τη γωνία θ. Μονάδες (ii) Να υπολογίσετε το μήκος του ευθύγραμμου τμήματος ΕΖ συναρτήσει του β. Μονάδες 4 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

229 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 Α τάξη Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές του ρητού αριθμού α, για τις οποίες ο αριθμός Α= α είναι ρητός. Μονάδες (ii) Να αποδείξετε ότι ο αριθμός Β= ( + ) είναι άρρητος. Μονάδες Πρόβλημα Να αποδείξετε ότι η εξίσωση x + x = α x, έχει, για κάθε τιμή της παραμέτρου α, μία τουλάχιστον πραγματική λύση. Για ποιες τιμές του α η εξίσωση έχει δύο διαφορετικές μεταξύ τους πραγματικές λύσεις; Μονάδες 5 Πρόβλημα Δίνεται τρίγωνο ABC εγγεγραμμένο σε κύκλο COR (, ) και έστω A, B, C τα αντιδιαμετρικά σημεία των κορυφών του A, B, C. Στις ευθείες που ορίζουν οι πλευρές BC, ACAB, θεωρούμε τα σημεία A, B, C, αντίστοιχα, και έστω (ε ) η ευθεία που ορίζουν τα σημεία A, A, (ε ) η ευθεία που ορίζουν τα σημεία B, B και (ε ) η ευθεία που ορίζουν τα σημεία C, C. Έστω ακόμη (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο A προς την (ε ), (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο B προς την (ε ) και (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο C προς την (ε ). Να αποδείξετε ότι οι ευθείες (ε ), (ε ) και (ε ) συντρέχουν (δηλαδή, περνάνε από το ίδιο σημείο), αν, και μόνο αν, οι ευθείες (δ ), (δ ) και (δ ) συντρέχουν. Μονάδες 5 Πρόβλημα 4 Οι πραγματικοί αριθμοί x, y και z ικανοποιούν τις ισότητες: x y = 6z x y xy = 6 z. (α) Να εκφράσετε τους x, y συναρτήσει του z. Μονάδες (β) Αν επιπλέον ισχύει ότι x+ y+ z = 8, να βρείτε τους πραγματικούς αριθμούς x, y και z. Μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

230 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 Να προσδιορίσετε όλες τις τριάδες (,, ) x yz πραγματικών αριθμών που είναι λύσεις του συστήματος: Β τάξη Λυκείου x + y = 65z x y+ xy = 0z x y+ z = 0. Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC, K τυχόν σημείο στο εσωτερικό του και τα ύψη του AH, BH, CH. Ο περιγεγραμμένος κύκλος του τριγώνου AH H τέμνει την ημιευθεία AK στο σημείο K, ο περιγεγραμμένος κύκλος του τριγώνου BHH τέμνει την ημιευθεία BK στο σημείο K και ο περιγεγραμμένος κύκλος του τριγώνου CHH τέμνει τη ημιευθεία CK στο σημείο K. Να αποδείξετε ότι τα σημεία K, K, K, H και K είναι ομοκυκλικά, δηλαδή ανήκουν στον ίδιο κύκλο, όπου H είναι το ορθόκεντρο του τριγώνου ABC. Πρόβλημα Να αποδείξετε ότι η εξίσωση x x x αx + + =, α, έχει, για κάθε α, δύο διαφορετικές μεταξύ τους ρίζες στο σύνολο. Για ποιες τιμές του α οι δύο ρίζες είναι ετερόσημες; Πρόβλημα 4 Να λύσετε στους πραγματικούς αριθμούς την εξίσωση x x x x x = +. Μονάδες 5 Μονάδες 5 Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

231 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 Γ τάξη Λυκείου Πρόβλημα * Η ακολουθία a,, n n ορίζεται αναδρομικά από τις σχέσεις * a = n a + + n kn, n, όπου k θετικός ακέραιος και a =. Να βρείτε για ποια τιμή του k ο αριθμός 0 είναι όρος * της ακολουθίας a,. n n. Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC και έστω M, M, M τυχόντα σημεία των πλευρών του BC, AC, AB αντίστοιχα. Έστω ακόμη τα ύψη του AH, BH, CH. Να αποδείξετε ότι οι περιγεγραμμένοι κύκλοι των τριγώνων AH H, BMH, CMH περνάνε από το ίδιο σημείο (έστω K ), οι περιγεγραμμένοι κύκλοι των τριγώνων BH H, AM H, CM H περνάνε από το ίδιο σημείο (έστω K ) και οι περιγεγραμμένοι κύκλοι των τριγώνων CHH, AM H, BM H περνάνε από το ίδιο σημείο (έστω K ). Στη συνέχεια, να αποδείξετε ότι οι ευθείες AK, BK, CK συντρέχουν ( δηλαδή, περνάνε από το ίδιο σημείο), αν, και μόνο αν, οι ευθείες AM, BM, CM συντρέχουν. Μονάδες 5 Πρόβλημα Αν,,,, 0,0 xy, 0,0 και ισχύουν abxy με ( ab) ( ) και ( ) ( ) ( ) ( ) ( ) ( ) a x y bxy = x a b aby b x y + axy = y a b + abx, να αποδείξετε ότι x = a και y = b. Πρόβλημα 4 Μονάδες 5 Σημείο Μ βρίσκεται στο εσωτερικό κύκλου C ( O, r), όπου r = 5cm, σε απόσταση 9cm από το κέντρο του κύκλου. Να βρείτε τον αριθμό των χορδών του κύκλου C ( O, r) που περνάνε από το σημείο Μ και το μήκος τους είναι ακέραιος αριθμός. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

232 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B Γυμνασίου Πρόβλημα (α) Να υπολογίσετε την τιμή της παράστασης Α= (β) Να συγκρίνετε τους αριθμούς 0 Β= : και Γ= (α) Χρησιμοποιώντας την επιμεριστική ιδιότητα λαμβάνουμε: Α= = ( ) = = = 408. (β) Έχουμε Β= : = 4 = 4 = = = Γ= + = + = = Επειδή ισχύει ότι: Β Γ= = = = > 0, έπεται ότι είναι Β>Γ. Πρόβλημα Ο τριψήφιος θετικός ακέραιος x = αβγ = 00α + 0 β + γ, α 0, έχει άθροισμα ψηφίων 0. Αν εναλλάξουμε το ψηφίο των εκατοντάδων με το ψηφίο των μονάδων του, τότε προκύπτει ακέραιος μικρότερος από τον x κατά 97. Ποιες είναι οι δυνατές τιμές του x ; Ο ακέραιος που προκύπτει μετά την εναλλαγή των ψηφίων των εκατοντάδων και μονάδων είναι ο y = 00γ + 0β + α και, σύμφωνα με την υπόθεση του προβλήματος, ισχύει ότι: x y = 97 ( 00α + 0β + γ ) ( 00γ + 0β + α) = α γ = 97 α γ =. ( )

233 Άρα οι δυνατές τιμές για τα ψηφία α και γ είναι: α =, γ = 0 ή α = 4, γ = ή α = 5, γ = ή α = 6, γ = ή α = 7, γ = 4 ή α = 8, γ = 5 ή α = 9, γ = 6. Επειδή από την υπόθεση δίνεται ότι α + β + γ = 0, οι ζητούμενοι ακέραιοι x = αβγ είναι οι: 70, 45, 5, 6. Πρόβλημα Ορθογώνιο ΑΒΓΔ έχει πλάτος ΑΒ = x μέτρα και μήκος ΒΓ= y μέτρα, το οποίο είναι διπλάσιο του πλάτους του. Αν αυξήσουμε το πλάτος του κατά 5%, να βρείτε πόσο επί τα εκατό πρέπει να ελαττώσουμε το μήκος του, ώστε το εμβαδόν του να μείνει αμετάβλητο. 5x 5x 5x Μετά την αύξηση κατά 5% το πλάτος του ορθογωνίου γίνεται x = x+ = = Έστω ότι πρέπει να ελαττώσουμε το μήκος του ορθογωνίου κατά α %, έτσι ώστε να μείνει το εμβαδό του αμετάβλητο. Τότε το μήκος του θα γίνει: α y ( 00 α) y ( 00 α) x y = y = =, ενώ θα ισχύει η ισότητα 5x ( 00 α ) x 00 α xy = xy x x = x = x α 00 α x = 0 = 0 (αφού x 0) α = 0 α = 0. Άρα πρέπει να ελαττώσουμε το μήκος του ορθογωνίου κατά 0%. Πρόβλημα 4. Στο διπλανό σχήμα το τετράπλευρο ΑΒΓΔ είναι ρόμβος πλευράς α και το τρίγωνο ΓΕΖ είναι ισόπλευρο πλευράς α.τα σημεία Ε και Ζ βρίσκονται πάνω στις πλευρές ΑΒ και ΑΔ, αντίστοιχα. Να βρείτε τις γωνίες του ρόμβου ΑΒΓΔ. Α Ζ Δ Ε Β Γ Σχήμα Επειδή είναι ΒΓ = ΓΕ = α, το τρίγωνο ΒΓΕ είναι ισοσκελές και έχει: Β ˆ =Ε ˆ () Επειδή είναι ΑΒ ΓΔ και η ΕΓ είναι τέμνουσα των ΑΒ και ΓΔ έχουμε ότι: ˆ ˆ ˆ ˆ Ε =ΕΓΔ=Γ +Γ = 60 +Γ ˆ, ()

234 αφού κάθε γωνία ισόπλευρου τριγώνου είναι 60. Επίσης από τα ισοσκελή τρίγωνα ΒΓΕ και ΓΖΔ με ίσες πλευρές ΒΓ = ΓΖ=α, ΓΕ = ΓΔ = α, προκύπτει ότι: 0 0 Γ ˆ ˆ ˆ ˆ = 80 Β= 80 Δ=Γ, () αφού οι απέναντι γωνίες ρόμβου είναι ίσες, Από την παραλληλία των πλευρών ΑΒ και ΓΔ έχουμε 0 0 Β+Γ= ˆ ˆ 80 Ε ˆ ˆ ˆ +Γ +ΕΓΔ= 80 (λόγω της () ) ˆ ˆ 0 Γ Γ = 80 (λόγω της ()) Άρα είναι: 80 0 ( ) Γ ˆ + 0 = 80 Γ ˆ = ˆ 0 Β= = 80, ˆ ˆ 80 0 Δ=Β= και Γ Γυμνασίου ˆ ˆ Α=Γ= = 00. Πρόβλημα Έστω ο ακέραιος ν ν ν 4ν Α= ( ) + ( ) + ( ) + ( ) ν, όπου ν θετικός ακέραιος. Αν ο Α είναι διαιρέτης του 4, να βρείτε τις δυνατές τιμές του ν. Έχουμε ν ν ν 4ν ν ν Α= ( ) + ( ) + ( ) + ( ) ν = ( ) + + (( ) ) + ν ν 4 ν, αν ν άρτιος = + ( ) ν = 0, αν ν περιττός. Επειδή ο ακέραιος Α είναι διαιρέτης του 4, έπεται ότι: Α 0, οπότε ο ν δεν μπορεί να είναι περιττός. Ο θετικός ακέραιος Α= 4 ν, όπου ν άρτιος θετικός ακέραιος, ανήκει στο σύνολο των άρτιων θετικών διαιρετών του 4, δηλαδή είναι: 4ν {,4,6,8,,4 }, όπου ν άρτιος θετικός ακέραιος, ν,,,,,6,όπου ν άρτιος θετικός ακέραιος, ν = ή ν = 6. Άρα οι δυνατές τιμές του ν είναι το και το 6. Πρόβλημα Υπάρχει διψήφιος θετικός ακέραιος N = ab= 0 a+ b, όπου ab, ψηφία με a 0, που ισούται με το γινόμενο των ψηφίων του ελαττωμένο κατά το άθροισμα των ψηφίων του; Ο ζητούμενος διψήφιος θετικός ακέραιος N = ab= 0 a+ b, όπου ab, ψηφία με a 0, ικανοποιεί την εξίσωση 0a+ b= ab a+ b a = ab b b a = b. ( ) ( )

235 Η τελευταία εξίσωση δεν είναι δυνατόν να ισχύει, γιατί ο όρος ( b) a του πρώτου μέλους είναι θετικός, ενώ ο όρος του δευτέρου μέλους είναι μικρότερος ή ίσος με το μηδέν. Άρα δεν υ- πάρχει ο ζητούμενος διψήφιος θετικός ακέραιος. Πρόβλημα Να υπολογίσετε το άθροισμα: S = Παρατηρούμε ότι το άθροισμα S είναι άθροισμα 50 αθροισμάτων της μορφής ( ) ( ) ( ) ( ) Sk = 4k+ 4k+ 4k+ + 4k+ 4, για k = 0,,,,...,49. Όμως έχουμε Άρα έχουμε k ( 4 ) ( 4 ) ( 4 ) ( 4 4) S = k+ k+ k+ + k+ 6k 8k 6k 6k 4 6k 4k 9 6k k 6 = = 4, για κάθε k = 0,,,,..., 49. S = S + S S = = 50 4 = Πρόβλημα 4 Στο παρακάτω σχήμα δίνεται ότι: το σημείο Δ είναι το μέσο της πλευράς ΑΓ= β του τριγώνου ΑΒΓ, ˆ ΔΑΕ = 90, η ΔΕ είναι κάθετη προς τη ΒΓ, ΑΔΕ ˆ = ΓΔΖ ˆ = θ και ΓΖΔ ˆ = 0 0. (i) Να βρείτε τη γωνία θ. (ii) Να υπολογίσετε το μήκος του ευθύγραμμου τμήματος ΕΖ συναρτήσει του β. Σχήμα (i) Έστω ότι η ευθεία ΔΕ τέμνει τη ΒΓ στο σημείο Η. Τότε θα είναι ΗΔΓ ˆ = θ (ως κατά κορυφή) και ΗΔΖ ˆ = ΗΔΓ ˆ + ΓΔΖ ˆ = θ, οπότε από το τρίγωνο ΗΔΖ έχουμε: θ + 0 = 80 θ = 0

236 (ii) Το τρίγωνο ΗΕΖ είναι ορθογώνιο με υποτείνουσα ΕΖ, οπότε για τον υπολογισμό της ΕΖ θα χρησιμοποιήσουμε το Πυθαγόρειο θεώρημα. Πρέπει όμως να έχουμε υπολογίσει τις κάθετες πλευρές ΗΖ και ΗΕ συναρτήσει του β. Από το τρίγωνο ΗΔΓ που είναι ορθογώνιο στο Η με β ΓΔ= και έχει ΗΔΓ ˆ = θ = 0 0 λαμβάνουμε: 0 0 ΗΔ = ΔΓ συν 0 = β = β και ΗΓ = ΔΓ ημ0 = β = β. 4 4 Διαφορετικά, θα μπορούσαμε να υπολογίσουμε τα μήκη των ΗΔ και ΗΓ από το ορθογώνιο τρίγωνο ΗΔΓ με ΗΔΓ ˆ = θ = 0 0, οπότε η κάθετη πλευρά που βρίσκεται απέναντι από την οξεία 0 β γωνία των 0 θα ισούται με το μισό της υποτείνουσας, δηλαδή είναι ΗΓ= και στη συνέχεια από το Πυθαγόρειο θεώρημα υπολογίζουμε και την πλευρά ΗΔ =. 4 β 4 0 Το τρίγωνο ΓΔΖ είναι ισοσκελές ( ΓΖΔ ˆ = ΓΔΖ ˆ = 0 ), οπότε θα είναι β ΓΖ=ΓΔ= και β β β ΗΖ = ΗΓ + ΓΖ = + =. 4 4 Επιπλέον, από το ορθογώνιο τρίγωνο ΑΔΕ με ΔΑΕ ˆ = 90, ˆ β ΑΔΕ = 0 0 και ΑΔ=, έχουμε: ΑΔ β / β β ΔΕ = = = =, 0 συν 0 / οπότε θα είναι β β 7β ΗΕ = ΗΔ + ΔΕ = + =. 4 Επομένως, από το Πυθαγόρειο θεώρημα στο τρίγωνο ΗΕΖ με Η= ˆ 90 έχουμε: 7β β β 57 ΕΖ = ΗΕ + ΗΖ = + =. 4 6 Α Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές του ρητού αριθμού α, για τις οποίες ο αριθμός Α= α είναι ρητός. (ii) Να αποδείξετε ότι ο αριθμός Β= ( + ) είναι άρρητος. (i) Για α = 0 είναι Α= 0, ρητός. Έστω α 0. Αν ήταν ο Α= α ρητός, τότε ο αριθμός Α =, θα ήταν επίσης ρητός, ως πηλίκο δύο ρητών αριθμών, που είναι άτοπο. α Επομένως, ο αριθμός Α είναι ρητός μόνο για α = 0. (ii) Έχουμε Β= ( + ) = 4+. Αν ο αριθμός Β ήταν ρητός, τότε ο αριθμός Β 4= θα ήταν επίσης ρητός, ως διαφορά δύο ρητών, το οποίο είναι άτοπο, σύμφωνα με το (i).

237 Πρόβλημα Να αποδείξετε ότι η εξίσωση x + x = α x, έχει, για κάθε τιμή της παραμέτρου α, μία τουλάχιστον πραγματική λύση. Για ποιες τιμές του α η εξίσωση έχει δύο διαφορετικές μεταξύ τους πραγματικές λύσεις; Επειδή στην εξίσωση εμφανίζεται η απόλυτη τιμή του αγνώστου x διακρίνουμε δύο περιπτώσεις: (i) Έστω x 0. Τότε ισχύει x = x και η δεδομένη εξίσωση είναι ισοδύναμη με το σύστημα: x+ x= αx, x 0 ( α + ) x=, x 0 x =, αν α > α + αδύνατο, αν α. (ii) Έστω x < 0. Τότε ισχύει x = x και η δεδομένη εξίσωση είναι ισοδύναμη με το σύστημα: x+ + x= αx, x< 0 ( α ) x=, x< 0 x =, αν α < α αδύνατο, αν α. Επομένως, για κάθε τιμή της παραμέτρου α, η εξίσωση έχει μία τουλάχιστον πραγματική λύση. Η εξίσωση έχει πραγματικές λύσεις διαφορετικές μεταξύ τους, αν ισχύει: < α <. Πράγματι, για < α < η εξίσωση έχει τις λύσεις x διαφορετικές μεταξύ τους. = < 0 και x = > 0 που είναι α α + Πρόβλημα Δίνεται τρίγωνο ABC εγγεγραμμένο σε κύκλο COR (, ) και έστω A, B, C τα αντιδιαμετρικά σημεία των κορυφών του A, BC., Στις ευθείες που ορίζουν οι πλευρές BC, ACAB, θεωρούμε τα σημεία A, B, C αντίστοιχα και έστω (ε ) η ευθεία που ορίζουν τα σημεία A, A, (ε ) η ευθεία που ορίζουν τα σημεία B, B και (ε ) η ευθεία που ορίζουν τα σημεία C, C. Έστω ακόμη (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο A προς την (ε ), (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο B προς την (ε ) και (δ ) η παράλληλη ευθεία που φέρουμε από το σημείο C προς την (ε ). Να αποδείξετε ότι οι ευθείες (ε ), (ε ) και (ε ) συντρέχουν (περνάνε από το ίδιο σημείο), αν, και μόνο αν, οι ευθείες (δ ), (δ ) και (δ ) συντρέχουν Οι ευθείες (ε ) και (δ ) είναι συμμετρικές ως προς το κέντρο O του περιγεγραμμένου κύκλου του τριγώνου ABC, αφού το O είναι μέσο της AA. Οι ευθείες (ε ) και (δ ) είναι συμμετρικές ως προς το κέντρο O του περιγεγραμμένου κύκλου του τριγώνου ABC, αφού το O είναι μέσο της BB.

238 Οι ευθείες (ε ) και (δ ) είναι συμμετρικές ως προς το κέντρο O του περιγεγραμμένου κύκλου του τριγώνου ABC, αφού το O είναι μέσο της CC. 0 Σύμφωνα με τη θεωρία, αν περιστρέψουμε μία ευθεία κατά 80 γύρω από το κέντρο συμμετρίας, τότε αυτή θα συμπέσει με τη συμμετρική της ευθεία, ως προς κέντρο το σημείο O. Επομένως, οι ευθείες (ε ), (ε ) και (ε ) συντρέχουν, έστω στο σημείο K, αν, και μόνο αν, οι ευθείες (δ ), (δ ) και (δ ) συντρέχουν στο σημείο K, που είναι το συμμετρικό του σημείου K ως προς το σημείο O. Σχήμα Παρατήρηση Το σημείο K ταυτίζεται με το ορθόκεντρο του τριγώνου ABC, αν, και μόνο αν, τα σημεία A,B, C είναι τα μέσα των πλευρών BC,AC, AB αντίστοιχα. Στη περίπτωση αυτή μπορούμε να χρησιμοποιήσουμε τη γνωστή πρόταση: Τα συμμετρικά του ορθοκέντρου ως προς τα μέσα των πλευρών τριγώνου, βρίσκονται επάνω στο περιγεγραμμένο του κύκλο και είναι αντιδιαμετρικά των κορυφών του Πρόβλημα 4 Οι πραγματικοί αριθμοί x, y και z ικανοποιούν τις ισότητες: x y = 6z x y xy = 6 z. (α) Να εκφράσετε τους x, y συναρτήσει του z. (β) Αν επιπλέον ισχύει ότι x+ y+ z = 8, να βρείτε τους πραγματικούς αριθμούς x, y και z. Πολλαπλασιάζουμε την δεύτερη ισότητα επί και την αφαιρούμε από την πρώτη, οπότε λαμβάνουμε Τότε η δεύτερη ισότητα γίνεται: ( ) x y = 8z x y = z. ()

239 zxy 6 οπότε διακρίνουμε δύο περιπτώσεις: (i) Έστω z 0. Τότε η () είναι ισοδύναμη με την σχέση xy = z, () Από τις () και (), προκύπτει η σχέση x( x z) = z x zx z = 0 x= z ή x= z, οπότε θα είναι x = z, y = z ή x= z, y = z. (ii) Για z = 0 οι δύο πρώτες εξισώσεις γίνονται: ( x y)( x + xy+ y ) = 0 x y = 0 ή x = y = 0, xy ( x y) = 0 οπότε προκύπτει ότι: x = y, ανεξάρτητα από το z. = z, () (β) Για x, zy z (,, ) (,,) = = η εξίσωση x+ y+ z = 8 γίνεται 8z = 8 z =, οπότε έχουμε ότι xyz =, ενώ για x = zy, = z, η εξίσωση γίνεται 4z= 8 z=, οπότε έχουμε ότι ( xyz,, ) = (,6, ). Για z = 0, είναι x = y, οπότε από την εξίσωση x+ y+ z = 8 προκύπτει ότι 8 8,, =,,0. ( xyz) Β Λυκείου Πρόβλημα Να προσδιορίσετε όλες τις τριάδες ( x, yz, ) πραγματικών αριθμών που είναι λύσεις του συστήματος: x + y = 65z x y+ xy = 0z x y+ z = 0. Πολλαπλασιάζουμε την δεύτερη εξίσωση επί και την προσθέτουμε στην πρώτη, οπότε λαμβάνουμε την εξίσωση ( ) x + y = 5z x+ y = 5z. () Τότε η δεύτερη εξίσωση γίνεται 5zxy 0z οπότε διακρίνουμε δύο περιπτώσεις: (i) Έστω z 0. Τότε από την εξίσωση () λαμβάνουμε: xy z Από τις () και (), προκύπτει η εξίσωση x( 5z x) = 4z x 5zx+ 4z = 0 x= 4z ή x= z, οπότε θα είναι x = 4 zy, = zή x= zy, = 4z. =, () = 4. ()

240 Για x 4, zy z = = η τρίτη εξίσωση του συστήματος γίνεται 5z = 0 z =, οπότε το σύστημα έχει τη λύση (,, ) ( 8,,) xyz =, ενώ για x = z, y= 4z η τρίτη εξίσωση γίνεται z= 0 z= 0, οπότε το σύστημα έχει τη λύση ( xyz,, ) = ( 0, 40, 0). (ii) Για z = 0 οι δύο πρώτες εξισώσεις γίνονται: ( x+ y)( x xy+ y ) = 0 x + y = 0 ή x = y = 0 x = y, xy ( x + y) = 0 xyz,, = 5, 5, 0. οπότε από την τρίτη εξίσωση προκύπτει ότι ( ) ( ) Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC, K τυχόν σημείο στο εσωτερικό του και τα ύψη του AH, BH, CH. Ο περιγεγραμμένος κύκλος του τριγώνου AH H τέμνει την ημιευθεία AK στο σημείο K, ο περιγεγραμμένος κύκλος του τριγώνου BHH τέμνει την ημιευθεία BK στο σημείο K και ο περιγεγραμμένος κύκλος του τριγώνου CHH τέμνει τη ημιευθεία CK στο σημείο K. Να αποδείξτε ότι τα σημεία K, K, K, H και K είναι ομοκυκλικά ( δηλαδή ανήκουν στον ίδιο κύκλο), όπου H είναι το ορθόκεντρο του τριγώνου ABC. Έστω (c ) ο περιγεγραμμένος κύκλος του τριγώνου AH H, (c ) ο περιγεγραμμένος κύκλος του τριγώνου BH H και (c ) ο περιγεγραμμένος κύκλος του τριγώνου CH H. Σχήμα 4 Το τετράπλευρο AH HH είναι εγγράψιμο, οπότε ο κύκλος (c ) περνάει από το σημείο H. Το τετράπλευρο BH HH είναι εγγράψιμο, οπότε ο κύκλος (c ) περνάει από το σημείο H. Το τετράπλευρο CH HH είναι εγγράψιμο, οπότε ο κύκλος (c ) περνάει από το σημείο H. Τελικά, οι τρεις κύκλοι (c ), (c ) και (c ) περνάνε από το ορθόκεντρο H του τριγώνου ABC.

241 Ο κύκλος (c ) έχει διάμετρο την AH, οπότε HK AK, δηλαδή το σημείο K ανήκει στο κύκλο διαμέτρου HK. Όμοια αποδεικνύουμε ότι και τα σημεία K, K, ανήκουν στον ίδιο κύκλο. Πρόβλημα Να αποδείξετε ότι η εξίσωση x x x αx + + =, α, έχει για κάθε α δύο διαφορετικές μεταξύ τους λύσεις στο σύνολο. Για ποιες τιμές του α οι δύο ρίζες είναι ετερόσημες; Λόγω της ύπαρξης του x, διακρίνουμε δύο περιπτώσεις: (i) Έστω x 0. Τότε η εξίσωση γίνεται: x + x+ x= αx, α x α + x+ = 0, α, () ( ) η οποία έχει διακρίνουσα ( α ) 4 ( α )( α ) Δ = + = +. Άρα η εξίσωση () έχει πραγματικές ρίζες, όταν είναι α ή α. Επειδή το γινόμενο των ριζών είναι P = > 0 οι ρίζες είναι ομόσημες, οπότε για να είναι και οι δύο θετικές πρέπει και αρκεί S = α + > 0 α >. Επομένως έχουμε: Για α >, η εξίσωση () έχει δύο ακριβώς διαφορετικές θετικές ρίζες στο. Για α =, η εξίσωση () έχει τη διπλή θετική ρίζα x = στο. Για α <, η εξίσωση () δεν έχει μη αρνητικές ρίζες στο. (ii) Έστω x < 0. Τότε η εξίσωση γίνεται: x + x+ + x= αx, α x α x+ = 0, α, () ( ) η οποία έχει διακρίνουσα ( α ) 4 ( α 5)( α ) Δ = =. Άρα η εξίσωση () έχει πραγματικές ρίζες όταν είναι α ή α 5. Επειδή το γινόμενο των ριζών είναι P = > 0 οι ρίζες είναι ομόσημες, οπότε για να είναι και οι δύο αρνητικές πρέπει και αρκεί S = α < 0 α <. Επομένως έχουμε: Για α <, η εξίσωση () έχει δύο ακριβώς διαφορετικές αρνητικές ρίζες στο Για α =, η εξίσωση () έχει τη διπλή αρνητική ρίζα x = στο. Για α >, η εξίσωση () δεν έχει αρνητικές ρίζες στο. Από τις περιπτώσεις () και () προκύπτει ότι η δεδομένη εξίσωση έχει, για κάθε α, δύο πραγματικές ρίζες διαφορετικές μεταξύ τους, οι οποίες είναι ετερόσημες για α =. Πρόβλημα 4 Να λύσετε στους πραγματικούς αριθμούς την εξίσωση Κατ αρχή παρατηρούμε ότι ισχύει: Αν θέσουμε x + x+ x + x+ = x+. a x x, b x x, x x + x+ > x + x+ > για κάθε x. 0 και 0, = + + = + +, τότε λαμβάνουμε: ( ) ( ) ( ) a b = x + x+ x + x+ = x + x+ = x+, οπότε από τη δεδομένη εξίσωση προκύπτει η εξίσωση με αγνώστους ab,,

242 αφού είναι b 0 ( ) ( ) a b = a b ab b = b a b = a= b ,. Έτσι έχουμε την εξίσωση 4 x + x+ = 5 x + x+, της οποίας τα δύο μέλη είναι θετικά, για κάθε x, οπότε είναι ισοδύναμη με την εξίσωση 6 x + x+ = 5 x + x+ ( ) ( ) ± 7 7x + x+ 7= 0 x= Με έλεγχο διαπιστώνουμε ότι η τιμή x = δεν επαληθεύει την εξίσωση, οπότε η μοναδική ρίζα της είναι η x =. Αυτό θα μπορούσε να προκύψει και από τη σχέση a b< 0 η οποία αληθεύει για κάθε x, οπότε πρέπει να είναι x <. Πρόβλημα Γ Λυκείου * Η ακολουθία a,, n n ορίζεται αναδρομικά από τις σχέσεις * a = n a + + n kn, n, όπου k θετικός ακέραιος και a =. Να βρείτε για ποια τιμή του k ο αριθμός 0 είναι όρος * της ακολουθίας a,. n n Από τη δεδομένη αναδρομική σχέση έχουμε a = a = a+ k a = a + k... n n ( ) ( ) an = an + n k a = a + n k από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε k( n ) n an = + k( n ) = + k( n ) = +. Επομένως, αρκεί να προσδιορίσουμε τις τιμές των k και n για τις οποίες ισχύει η ισότητα: k( n ) n an = + = 0 k( n ) n= 400 k( n ) n= ( nk, ) = (, 00) ή ( nk, ) = (,670) ή ( nk, ) = ( 4,5) ή ( nk, ) = ( 5, 0) ή ( nk, ) = ( 6,4) Επομένως, για k = 00 είναι a = 0, για k = 670 είναι a = 0, για k = 5 είναι a 4 = 0, για k = 0 είναι a 5 = 0και για k = 4 είναι a 6 = 0..

243 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC και έστω M, M, M τυχόντα σημεία των πλευρών του BC, ACAB,, αντίστοιχα. Έστω ακόμη τα ύψη του AH, BH, CH. Να αποδείξετε ότι οι περιγεγραμμένοι κύκλοι των τριγώνων AH H, BMH, CMH περνάνε από το ίδιο σημείο (έστω K ), οι περιγεγραμμένοι κύκλοι των τριγώνων BHH, AMH, CMH περνάνε από το ίδιο σημείο (έστω K ) και οι περιγεγραμμένοι κύκλοι των τριγώνων CHH, AM H, BM H περνάνε από το ίδιο σημείο (έστω K ). Στη συνέχεια να αποδείξετε ότι οι ευθείες AK, BK, CK συντρέχουν, δηλαδή περνάνε από το ίδιο σημείο, αν, και μόνο αν, οι ευθείες AM, BM, CM συντρέχουν. Έστω (c ) ο περιγεγραμμένος κύκλος του τριγώνου BM H, (c ) ο περιγεγραμμένος κύκλος του τριγώνου CM H, (c ) ο περιγεγραμμένος κύκλος του τριγώνου AH H και (c) ο περιγεγραμμένος κύκλος του εγγράψιμου τετραπλεύρου BH H C. Σχήμα 5 Θεωρώντας τις τέμνουσες AB και AC του κύκλου (c), συμπεραίνουμε: AB AH = AC AH. Το γινόμενο όμως AB AH εκφράζει τη δύναμη του σημείου A ως προς το κύκλο (c ) ενώ το γινόμενο AC AH εκφράζει τη δύναμη του σημείου A ως προς το κύκλο (c ). Άρα το σημείο A, ανήκει στον ριζικό άξονα των κύκλων (c ) και (c ). Έστω τώρα ότι οι κύκλοι (c ) και (c ) τέμνονται στο σημείο K (εκτός βέβαια από το σημείο M ). Τότε η ευθεία που ορίζουν τα σημεία αυτά (δηλαδή τα K και M ) είναι ο ριζικός άξονας των κύκλων (c ) και (c ). Από τους παραπάνω συλλογισμούς προκύπτει ότι τα σημεία A,K και M είναι συνευθειακά. Θα αποδείξουμε ότι και ο κύκλος (c ) περνάει από το σημείο K, δηλαδή ότι το τετράπλευρο AH K είναι εγγράψιμο. H

244 Από το εγγράψιμο τετράπλευρο BH H C έχουμε: ˆ ϕ = Bˆ. Από το εγγεγραμμένο τετράπλευρο BM KH έχουμε: ˆ ω = Bˆ. Άρα είναι ˆ ω = ˆ ϕ και κατά συνέπεια το τετράπλευρο AH KH είναι εγγράψιμο. Με όμοιο τρόπο αποδεικνύουμε ότι και οι δύο άλλες τριάδες κύκλων, περνάνε από το ίδιο σημείο. Προφανώς τώρα οι ευθείες AK,BK, CK συντρέχουν, αν, και μόνο αν, συντρέχουν οι ευθείες AM,BM, CM (δεδομένου ότι τα σημεία A,K, M, τα σημεία B,K, M και τα σημεία C,K, M, είναι συνευθειακά. Πρόβλημα Αν,,, abxy με ( ab, ) ( 0,0) και (, ) ( 0,0) xy και ισχύουν ( ) ( ) ( ) ( ) a x y bxy = x a b aby b x y + axy = y a b + abx, να αποδείξετε ότι x = a και y = b. Σύμφωνα με τον ορισμό της ισότητας μιγαδικών αριθμών, προκύπτει ότι το σύστημα των δύο δεδομένων εξισώσεων είναι ισοδύναμο με την εξίσωση: a ( x y ) bxy b( x y ) axy i x( a b ) aby y ( a b ) abx + + = + + i ( a + bi) ( x y ) xyi ( a b ) abi + = + ( x + yi) ( a + bi) ( x + yi) = ( a + bi) ( x + yi) x+ yi = a+ bi (αφού ( α, β) ( 0,0) και ( x, y) ( 0,0 )) x= a, y = b. Πρόβλημα 4 Σημείο Μ βρίσκεται στο εσωτερικό κύκλου C ( O, r), όπου r = 5cm, σε απόσταση 9cm από το κέντρο του κύκλου. Να βρείτε τον αριθμό των χορδών του κύκλου C ( O, r) που περνάνε από το σημείο Μ και το μήκος τους είναι ακέραιος αριθμός. Θεωρούμε τη χορδή ΑΒ που περνάει από το σημείο Μ και το κέντρο O του κύκλου, καθώς και την κάθετη προς αυτήν χορδή ΓΜΔ, οπότε το σημείο Μ είναι το μέσο της χορδής ΓΔ. Η χορδή ΑΒ έχει ακέραιο μήκος 0cm. Από το θεώρημα τεμνομένων χορδών έχουμε ότι: ΓΔ ΓΔ ΓΔ ΓΜ ΜΔ = ΑΜ ΜΒ = 6 ( 9 + 5) = 44 = ΓΔ = 4. C O, r που περνάνε από το σημείο Μ και Έτσι μέχρι τώρα έχουμε βρει δύο χορδές του κύκλου ( ) έχουν ακέραιο μήκος. Θεωρούμε τυχούσα χορδή ΚΛ του κύκλου C ( O, r) που περνάει από το Μ και έστω ΜΕ = x, ΜΟΕ ˆ = θ, όπου Ε είναι το μέσο της ΚΛ, σχήμα 6. Αν υποθέσουμε ότι π 0 θ, τότε έχουμε θεωρήσει όλες τις χορδές του κύκλου C ( O, r) που περνάνε από το Μ και τα άκρα τους Κ και Λ βρίσκονται στα ελάσσονα τόξα ΑΓ και ΒΔ, αντίστοιχα. Για κάθε

245 μία από αυτές τις χορδές αντιστοιχεί και μία ακόμη που είναι η συμμετρική της ως προς τη διάμετρο ΑΒ. Σχήμα 6 Για τη χορδή ΚΛ, αν συμβολίσουμε το μήκος της ως ( θ ) ( ) 5 8, 0, έχουμε π θ = συν θ θ. 8ημ θ π Επειδή είναι ( θ) = > 0, θ 0,, έπεται ότι η συνάρτηση ( θ ) είναι 5 8συν θ π γνησίως αύξουσα στο διάστημα 0,, οπότε η συνάρτηση ( ) θ έχει σύνολο τιμών το διάστημα ( 0, ) = [ 4,0] π. Άρα το μήκος της χορδής ΚΛ μπορεί να πάρει όλες τις ακέραι- 4,0. Αν λάβουμε υπόψιν και τη συμμετρική χορδή της ΚΛ ως ες τιμές του διαστήματος [ ] προς τη διάμετρο ΑΒ, τότε τα πέντε μήκη 5, 6, 7, 8, 9 λαμβάνονται δύο φορές το καθένα, ενώ τα μήκη 4 και 0 λαμβάνονται από μία φορά. Έτσι έχουμε συνολικά χορδές που περνάνε από το Μ με ακέραιο μήκος. Παρατήρηση Θα μπορούσαμε επίσης να χρησιμοποιήσουμε το θεώρημα μέγιστης και ελάχιστης τιμής για τη π συνεχή συνάρτηση ( θ) = 5 8 συν θ, 0 θ, η οποία έχει ελάχιστη τιμή την π ( 0) = 4 και μέγιστη τιμή την = 0. Αυτό προκύπτει από την παρατήρηση ότι τα μήκη των χορδών είναι αντιστρόφως ανάλογα από τα αποστήματά τους και ότι το μέγιστο απόστημα π λαμβάνεται για θ = 0, ενώ το ελάχιστο απόστημα λαμβάνεται για θ =. Παρατήρηση Σημειώνουμε ακόμη ότι οι χορδές με ακέραια μήκη 5, 6, 7, 8, 9, μπορούν να κατασκευαστούν γεωμετρικά, αφού αν θέσουμε ΚΜ = x και ΜΛ= y, τότε έχουμε { } x+ y = m, m 5,6,7,8,9 και xy = 44 =. Έτσι εξασφαλίζουμε την ύπαρξη αυτών των χορδών με ακέραιο μήκος, χωρίς τη χρήση του διαφορικού λογισμού.

246 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 6 Φεβρουαρίου 0 στην Αθήνα. Από το διαγωνισμό αυτό και επί πλέον από ένα τελικό προκριματικό διαγωνισμό στην Ε.Μ.Ε. συνοδευόμενο από μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγούν οι εθνικές ομάδες, που θα συμμετάσχουν στην 8 η Βαλκανική Μαθηματική Ολυμπιάδα (Ρουμανία, Μάιος 0), στην 5 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Κύπρος, Ιούνιος 0) και στην 5η Διεθνή Μαθηματική Ολυμπιάδα (Ολλανδία, Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμαι τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόρης Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

247 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 Αθήνα, 5 Ιανουαρίου 0 Αγαπητοί μαθητές, Σας καλωσορίζουμε στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ) ΕΥΚΛΕΙΔΗΣ. Σήμερα δεν δίνετε τις συνηθισμένες εξετάσεις. Συμμετέχετε σε έναν αγώνα του πνεύματος. Και μόνο η απόφασή σας για συμμετοχή και η πρόκρισή σας από τον προηγούμενο διαγωνισμό ΘΑΛΗΣ είναι μια επιτυχία. Με την ευκαιρία αυτής μας της επικοινωνίας θα θέλαμε να σας πληροφορήσουμε για τα εξής : Στα περιοδικά της ΕΜΕ Ευκλείδης Α και Ευκλείδης Β δημοσιεύονται εκτός των άλλων θεμάτων ανά τάξη και θέματα με τις λύσεις τους από Διεθνείς Μαθηματικούς Διαγωνισμούς. Επίσης έχουν εκδοθεί βιβλία της ΕΜΕ με τα θέματα των Διεθνών Μαθηματικών Ολυμπιάδων ( τεύχη), Βαλκανικών Μαθηματικών Ολυμπιάδων ( ), Θεωρίας αριθμών και τα βιβλία με τα Θέματα των Ελληνικών Μαθηματικών Διαγωνισμών σε τεύχη. Επιπλέον, η ΕΜΕ θα οργανώσει Θερινά Σχολεία διάρκειας μιας εβδομάδας προς το τέλος Ιουλίου και αρχές Αυγούστου 0. Τα μαθήματα θα επικεντρωθούν σε ειδικά Κεφάλαια της σχολικής ύλης και σε θέματα Μαθηματικών Ολυμπιάδων. Λεπτομέρειες θα ανακοινωθούν στον επόμενο διαγωνισμό και στην ιστοσελίδα της ΕΜΕ. Για το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα καλή χρονιά, προσωπική και οικογενειακή ευτυχία. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόρης Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

248 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 Α= : και : + + Β= Μονάδες 4 γ (β) Αν ισχύει ότι: + + =, α β 6 6 να βρείτε την τιμή της παράστασης: 8 α β γ Γ= α β Μονάδες Πρόβλημα Ένας έμπορος αυτοκινήτων είχε στο κατάστημά του την αρχή της περυσινής χρονιάς 0 αυτοκίνητα τύπου Α και 60 αυτοκίνητα τύπου Β. Η τιμή πώλησης για κάθε αυτοκίνητο τύπου Α είναι 0000 ευρώ, ενώ για κάθε αυτοκίνητο τύπου Β είναι 000 ευρώ. Στο τέλος της χρονιάς είχε πουλήσει το 0% των αυτοκινήτων τύπου Α και το 60% του συνόλου των αυτοκινήτων τύπου Α και Β. Να βρείτε ποιο θα είναι το κέρδος του από την πώληση των αυτοκινήτων, αν γνωρίζετε ότι από καθένα αυτοκίνητο τύπου Α κερδίζει το 5% της τιμής πώλησής του, ενώ από καθένα αυτοκίνητο τύπου Β κερδίζει το 0% της τιμής πώλησής του. Μονάδες 5 Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και Α= ˆ 6 0. Από την κορυφή Α φέρουμε ευθεία ε παράλληλη προς την πλευρά ΒΓ. Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ και την ευθεία ε στο σημείο Ε. Να αποδείξετε ότι τα τρίγωνα ΑΒΔ, ΒΓΔ, ΑΔΕ και ΑΒΕ είναι ισοσκελή. Μονάδες 5 Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 7, όπου Β= αγβ = 00α + 0γ + β. (ii) Το άθροισμα των ψηφίων β, γ ισούται με το μικρότερο ακέραιο που είναι λύση της ανίσωσης: x + < 5x. (iii) Ο αριθμός Α διαιρείται με το. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

249 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Γυμνασίου Πρόβλημα (α) Να λύσετε την εξίσωση: x x =. Μονάδες 4 8 (β) Να βρείτε την τιμή της παράστασης: Α= + 9β 0, β 9 β για β =. Μονάδες Πρόβλημα Οι ακέραιοι α, β είναι μεγαλύτεροι ή ίσοι του 0 και τέτοιοι ώστε ( ) ( ) α 0, β και α 40 β 0. Να βρείτε τη μεγαλύτερη και τη μικρότερη της παράστασης Α = α β. Μονάδες 5 Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α και ισόπλευρο τρίγωνο ΑΒΕ εξωτερικά του τετραγώνου ΑΒΓΔ. Δίνεται ακόμη ότι ο κύκλος C που περνάει από τα σημεία Γ, Δ και Ε έχει ακτίνα 4 cm. (i) Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ισοσκελές. Μονάδες (ii) Να βρείτε την πλευρά α του τετραγώνου. Μονάδες (iii) Να βρείτε το εμβαδόν της επιφάνειας που βρίσκεται εξωτερικά του σχήματος ΕΑΒΓΔΕ και εσωτερικά του κύκλου C. Μονάδες Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 98, όπου Β= γβα = 00γ + 0β + α. x + α γ α γ (ii) Η εξίσωση = έχει δύο ρίζες με άθροισμα 4. α γ x (iii) Ο αριθμός Α διαιρείται με το 9. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

250 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Α τάξη Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές των ρητών αριθμών α, β για τις οποίες ο αριθμός α + β 0 είναι ρητός. Μονάδες (ii) Να αποδείξετε ότι ο αριθμός x = 5 + είναι άρρητος. Μονάδες Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης ( ) x = x + 4α, για τις διάφορες τιμές του πραγματικού αριθμού α. Μονάδες 5 Πρόβλημα Δίνεται τρίγωνο ΑΒΓ και ευθεία ( ε ) που διέρχεται από την κορυφή του Α και είναι παράλληλη προς τη πλευρά ΒΓ. Η διχοτόμος της γωνίας ˆΒ τέμνει την ευθεία (ε ) στο σημείο Δ και έ- στω Ε το συμμετρικό του Δ ως προς τη κορυφή Α. Από το Α τέλος θεωρούμε παράλληλη προς την ΕΒ η οποία τέμνει τη ΒΔ στο σημείο M και τη ΒΓ στο σημείο Κ. Να αποδείξετε ότι: ΑΒ = ΒΚ = ΚΔ = ΔΑ. Μονάδες 5 Πρόβλημα 4 Να προσδιορίσετε τους πραγματικούς αριθμούς α, βγ, που ικανοποιούν τις ισότητες α + β + γ = 00 και αβ + βγ + γα = Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

251 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση ( ) x = x + α, για τις διάφορες τιμές του πραγματικού αριθμού α. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + y + z = 8 x + y + z = 6 Πρόβλημα Αν οι αβγ,, ( ) xy + xz = yz +. είναι θετικοί πραγματικοί αριθμοί τέτοιοι ώστε + + =, να αποδεί- α β γ αβγ ξετε ότι: ( α +β ) γ ( β +γ ) α ( γ +α ) β + + <. α +β β +γ γ +α Πότε ισχύει η ισότητα; Μονάδες 5 Μονάδες 5 Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ΑΒΓ (με ΑΒ< AΓ) εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Από το σημείο Α φέρνουμε τις δύο εφαπτόμενες προς τον κύκλο ( c ), που έχει κέντρο το σημείο O και ακτίνα r = OM ( M είναι το μέσο της BΓ ). Η μία εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο T, τέμνει την ΒΓ στο σημείο Ν και το κύκλο () c στο σημείο N (θεωρούμε BN < BM ). Η άλλη εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο Σ, τέμνει την ΒΓ στο σημείο K και το κύκλο () c στο σημείο K (θεωρούμε ΓK< ΓM). Να αποδείξετε ότι οι ευθείες BN, ΓΚ και AM περνάνε από το ίδιο σημείο (συντρέχουν). Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

252 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Λυκείου Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με άθροισμα, να αποδείξετε ότι: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + > 4αβ 4βγ 4γα Μονάδες 5 Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + xy = 5 y xy =. Μονάδες 5 Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Ο περιγεγραμμένος κύκλος του τριγώνου ΑOB (έστω ( c )), τέμνει την AΓ στο σημείο K και την ΒΓ στο σημείο Ν. Έστω (c ) ο περιγεγραμμένος κύκλος του τριγώνου ΓΚΝ και (c ) ο περιγεγραμμένος κύκλος του τριγώνου O ΓΚ. Να αποδείξετε ότι οι κύκλοι ( c ), (c ) και ( c ) είναι ίσοι μεταξύ τους. Μονάδες 5 Πρόβλημα 4 * Η ακολουθία a, n n, ορίζεται αναδρομικά από τις σχέσεις k * a = n a + n, n, n a =, όπου k θετικός ακέραιος. (i) Να προσδιορίσετε το γενικό όρο an της ακολουθίας ως συνάρτηση των n και k. Μονάδες (ii) Να αποδείξετε ότι υπάρχουν μοναδικοί θετικοί ακέραιοι k, n τέτοιοι ώστε : a n =. 000 Μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

253 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 Α= : και : + + Β= (β) Αν ισχύει ότι: 4 γ + + =, α β 6 6 να βρείτε την τιμή της παράστασης: 8 α β γ Γ= α β (α) Έχουμε 9 Α= : = + + = + = =, Β= : : :. = 7 = = = Άρα είναι Α=Β. Σημείωση. Λόγω της μη ύπαρξης παρενθέσεων που να δίνουν προτεραιότητα στις πράξεις διαίρεσης και πολλαπλασιασμού θεωρούμε δεκτή και τη λύση της μορφής Β= : : : :. = 7 = = = Στην περίπτωση αυτή είναι Α <<Β, δηλαδή Α < Β. (β) Λόγω της υπόθεσης 4 γ + + =, έχουμε ότι: α β α β γ 8 α β γ Γ= + + = + + 4α β 4α 4α β β 4 γ 4 γ 7 = + + = = =. α 4 β 6 4 α β

254 Πρόβλημα Ένας έμπορος αυτοκινήτων είχε στο κατάστημά του την αρχή της περυσινής χρονιάς 0 αυτοκίνητα τύπου Α και 60 αυτοκίνητα τύπου Β. Η τιμή πώλησης για κάθε αυτοκίνητο τύπου Α είναι 0000 ευρώ, ενώ για κάθε αυτοκίνητο τύπου Β είναι 000 ευρώ. Στο τέλος της χρονιάς είχε πουλήσει το 0% των αυτοκινήτων τύπου Α και το 60% του συνόλου των αυτοκινήτων τύπου Α και Β. Να βρείτε ποιο θα είναι το κέρδος του από την πώληση των αυτοκινήτων, αν γνωρίζετε ότι από καθένα αυτοκίνητο τύπου Α κερδίζει το 5% της τιμής πώλησής του, ενώ από καθένα αυτοκίνητο τύπου Β κερδίζει το 0% της τιμής πώλησής του. 0 Το 0% των αυτοκινήτων τύπου Α είναι 0 = 6 αυτοκίνητα, ενώ το 60% του συνόλου των αυτοκινήτων τύπου Α και Β είναι ( ) = 80 = 48 αυτοκίνητα. Επομένως από τα αυτοκίνητα τύπου Β πουλήθηκαν 48 6 = 4 αυτοκίνητα. 5 Από την πώληση καθενός αυτοκινήτου τύπου Α κερδίζει 0000 = 500 ευρώ, ενώ από 00 0 την πώληση καθενός αυτοκινήτου τύπου Β κερδίζει 000 = 00 ευρώ. Επομένως από 00 την πώληση των αυτοκινήτων ο έμπορος κέρδισε = = 5400 ευρώ. Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και Α= ˆ 6 0. Από την κορυφή Α φέρουμε ευθεία ε παράλληλη προς την πλευρά ΒΓ. Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ και την ευθεία ε στο σημείο Ε. Να αποδείξετε ότι τα τρίγωνα ΑΒΔ, ΒΓΔ, ΑΔΕ και ΑΒΕ είναι ισοσκελή. Σχήμα Το άθροισμα των γωνιών του ισοσκελούς τριγώνου ΑΒΓ είναι 80 o Α= ˆ 6 o, θα έχουμε: Β=Γ= ˆ ˆ 7 o. ˆ o Η ΒΔ είναι διχοτόμος της γωνίας ˆΒ, οπότε ˆ ˆ Β 7 o Β =Β = = = 6. Επειδή όμως ισχύει

255 o Επειδή τώρα A ˆ ˆ = Β = 6, το τρίγωνο ΑΒΔ είναι ισοσκελές. Στο τρίγωνο ΒΓΔ ισχύει Β ˆ = 6 o και Γ= ˆ 7 o. Άρα Δ ˆ = 7 o. Από την ισότητα των γωνιών Γ=Δ ˆ ˆ = 7 o, προκύπτει ότι το τρίγωνο ΒΓΔ είναι ισοσκελές. Οι γωνίες ˆΑ και ˆΓ είναι ίσες διότι είναι εντός εναλλάξ των παραλλήλων ΑΕ και ΒΓ που τέμνονται από την ΑΓ. Από την ισότητα τέλος των γωνιών Δ ˆ ˆ =Δ = 7 o (ως κατά κορυφή), προκύπτει η ισότητα Δ ˆ ˆ = Α = 7 o. Επομένως το τρίγωνο ΑΕΔ είναι ισοσκελές. Οι γωνίες ˆΒ και ˆΕ είναι ίσες διότι είναι εντός εναλλάξ των παραλλήλων ΑΕ και ΒΓ που ˆ τέμνονται από την ΒΕ. Επίσης ˆ ˆ Β o Β =Β = = 6, οπότε θα είναι και Β ˆ ˆ =Ε. Επομένως και το τρίγωνο ΑΒΕ είναι ισοσκελές. Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 7, όπου Β= αγβ = 00α + 0γ + β. (ii) Το άθροισμα των ψηφίων β, γ ισούται με το μικρότερο ακέραιο που είναι λύση της ανίσωσης: x + < 5x. (iii) Ο αριθμός Α διαιρείται με το. Σύμφωνα με την πρόταση (i) έχουμε: Α Β= 7 9β 9γ = 7 9 β γ = 7 β γ =. () ( ) Για την ανίσωση του ερωτήματος (ii) έχουμε: x+ < 5x x 5x< x< x> x>. Άρα, ο μικρότερος ακέραιος που είναι λύση της είναι ο 7, οπότε έχουμε: β + γ = 7. () Με πρόσθεση και αφαίρεση κατά μέλη των () και () λαμβάνουμε β = 0, γ = 4 β = 5, γ =. Διαφορετικά, θα μπορούσαμε να σκεφθούμε ως εξής: Επειδή οι ακέραιοι β, γ είναι ψηφία με διαφορά β γ = θα είναι β > γ και επειδή επιπλέον έχουν άθροισμα 7, οι δυνατές τιμές τους είναι β = 7, γ = 0 ή β = 6, γ = ή β = 5, γ = ή β = 4, γ =. Επειδή πρέπει β γ = οι αποδεκτές τιμές είναι β = 5, γ =. Άρα ο θετικός ακέραιος Α θα έχει τη μορφή Α= α5 με άθροισμα ψηφίων α + 7. Επειδή, σύμφωνα με την πρόταση (iii) ο Α διαιρείται με το, πρέπει και αρκεί ο ακέραιος α + 7 να είναι πολλαπλάσιο του, οπότε, αφού το α είναι ψηφίο, οι κατάλληλες τιμές του είναι: α = ή α = 5 ή α = 8. Επομένως, έχουμε Α= 5 ή Α= 55 ή Α= 85

256 4 Γ τάξη Γυμνασίου Πρόβλημα (α) Να λύσετε την εξίσωση: x x =. 4 8 (β) Να βρείτε την τιμή της παράστασης: Α= + 9β 0, β 9 β για β =. (α) Έχουμε x+ 8 7 x = ( x+ 8) ( 7 x) = 8 4x x= x+ 9= 8 7x= 8 9 7x= x=. (β) Για β = η παράσταση Α γίνεται: Α= + 9 0= = 9+ ( ) 0= + ( ) 0= = = Πρόβλημα Οι θετικοί ακέραιοι α, β είναι μεγαλύτεροι ή ίσοι του 0 και τέτοιοι ώστε ( ) ( ) α 0, β και α 40 β 0. Να βρείτε τη μεγαλύτερη και τη μικρότερη τιμή της παράστασης Α = α β. Είναι α 0, οπότε α < 0. Άρα, για να αληθεύει η ανίσωση ( α )( 40 β) 0, αρκεί να ισχύει ότι: 40 β 0 40 β β 0. Έτσι έχουμε: 0 α 0 και β 0 0 α 0 και 4 β 40 0 α 0 και 40 β 4, από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: 40 Α= α β 6, οπότε η μεγαλύτερη τιμή της παράστασης Α είναι 6, ενώ η μικρότερη τιμή της είναι -40. Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α και ισόπλευρο τρίγωνο ΑΒΕ εξωτερικά του τετραγώνου ΑΒΓΔ. Δίνεται ακόμη ότι ο κύκλος C που περνάει από τα σημεία Γ, Δ και Ε έχει ακτίνα 4 cm.

257 (i) (ii) (iii) Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ισοσκελές. Να βρείτε την πλευρά α του τετραγώνου. Να βρείτε το εμβαδόν της επιφάνειας που βρίσκεται εξωτερικά του σχήματος ΕΑΔΓΒΕ και εσωτερικά του κύκλου () c. 5 (i) Στα τρίγωνα ΑΕΔ και ΒΕΓ ισχύουν: ˆ ˆ o o o ΕΑΔ = ΕΒΓ = = 50. ΑΕ=ΒΕ= α, ΑΔ=ΒΓ= α και Σχήμα Άρα τα τρίγωνα ΑΕΔ και ΒΕΓ είναι ίσα και κατά συνέπεια ΕΔ=ΕΓ, δηλαδή το τρίγωνο ΕΔΓ είναι ισοσκελές. (ii) Εφόσον ΕΔ = ΕΓ, το σημείο Ε ανήκει στη μεσοκάθετη του τμήματος ΔΓ (που ταυτίζεται με τη μεσοκάθετη του τμήματος ΑΒ ). Επίσης ΕΑ=ΕΒ, οπότε το σημείο Ε ανήκει στη μεσοκάθετη του τμήματος ΑΒ. Άρα η OE είναι μεσοκάθετη της ΑΒκαι κατά συνέπεια διχοτόμος της γωνίας ΑΕΒ ˆ του ισόπλευρου τριγώνου ΑΕΒ. Άρα είναι Ε ˆ = 0 o. ΑΕ = ΑΔ = α ΟΑ μεσοκάθετη της ΕΔ ΟΑ διχοτόμος της ΔΑΕ ˆ Α ˆ = 75 o. ΟΕ = ΟΔ = 4 Στο τρίγωνο ΑΟΕ έχουμε: Α ˆ = 75 o και Ε ˆ = 0 o. Άρα Ο ˆ = 75 o, οπότε το τρίγωνο ΑΟΕ είναι ισοσκελές με ΕΑ = ΕΟ = α = 4cm. (iii) Το εμβαδόν του κύκλου ( c ) είναι: Ε c = π 4 = 6π. Το εμβαδόν του τετραγώνου ΑΒΓΔ είναι: Ε τετ = 4 = 6, ενώ το εμβαδόν του τριγώνου ΑΒΕ είναι: Ε τρ = 4. Άρα το εμβαδόν της ζητούμενης επιφάνειας είναι: Ε= 6π 6 4. Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 98, όπου Β= γβα = 00γ + 0β + α,

258 6 x + α γ α γ (ii) Η εξίσωση = έχει δύο ρίζες με άθροισμα 4. α γ x (iii) Ο αριθμός Α διαιρείται με το 9. Σύμφωνα με την πρόταση (i) έχουμε: Α Β= α γ = 98 α γ =. () ( ) Η εξίσωση της πρότασης (ii), αν γ α και x 0, γράφεται: x+ α γ α γ x+ α γ x+ α γ = 0 = 0 ( x + α γ) = 0 α γ x α γ x α γ x x+ α γ = 0 ή = 0 x= γ α ή x= α γ α γ x Επειδή, λόγω της (ii) το άθροισμα των ριζών της εξίσωσης είναι 4, έχουμε ότι γ α + α γ = 4 α + γ = 4, () ( ) ( ) με τους περιορισμούς για τις παραμέτρους γ α και α γ. Από τις () και () με πρόσθεση και αφαίρεση κατά μέλη λαμβάνουμε α = 6, γ = α =, γ = και εύκολα διαπιστώνουμε ότι ικανοποιούνται οι περιορισμοί για την εξίσωση. Άρα ο θετικός ακέραιος Α θα έχει τη μορφή Α= β με άθροισμα ψηφίων 4+ β. Επειδή, σύμφωνα με την πρόταση (iii) ο Α διαιρείται με το 9, πρέπει και αρκεί 4 + β = πολ.(9), οπότε, αφού το β είναι ψηφίο, η μοναδική δυνατή τιμή του είναι β = 5. Επομένως, ο ζητούμενος θετικός ακέραιος Α είναι ο 5.

259 Α τάξη Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές των ρητών αριθμών α, β για τις οποίες ο αριθμός α + β 0 είναι ρητός. 7 (ii) Να αποδείξετε ότι ο αριθμός x = 5 + είναι άρρητος. (i) Κατ αρχή παρατηρούμε ότι για β = 0, ο αριθμός α + β 0 = α είναι ρητός, για κάθε ρητό αριθμό α. Έστω ότι, για β 0, ο αριθμός ρ = α + β 0 είναι ρητός. Τότε και ο αριθμός ρ α = ( α + β 0 ) α = β 0 ρ α θα είναι ρητός, αλλά και ο αριθμός = 0 θα είναι ρητός, που είναι άτοπο. β Άρα ο αριθμός α + β 0 είναι ρητός, για β = 0 και για κάθε ρητό αριθμό α. (ii) Έστω ότι ο αριθμός x = 5 + είναι ρητός. Τότε και ο αριθμός x = 5 + = = + 0, 4 θα είναι ρητός, το οποίο είναι άτοπο, σύμφωνα με το (i). Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης ( ) x = x + 4α, για τις διάφορες τιμές του πραγματικού αριθμού α. Η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση x 4 x + 4= x + 4α x 4 x + 4= x + 4α x = α. Επειδή είναι x 0, για κάθε πραγματικό αριθμό x, διακρίνουμε τις περιπτώσεις: α <, οπότε είναι α > 0. Τότε η εξίσωση έχει δύο λύσεις: x= α ή x= α. α =, οπότε η εξίσωση έχει μόνο τη λύση x = 0. α >, οπότε η εξίσωση είναι αδύνατη. Πρόβλημα Δίνεται τρίγωνο ΑΒΓ και ευθεία ε που διέρχεται από την κορυφή του Α και είναι παράλληλη προς τη πλευρά ΒΓ. Η διχοτόμος της γωνίας ˆΒ τέμνει την ευθεία ε στο σημείο Δ και έστω Ε το συμμετρικό του Δ ως προς τη κορυφή Α. Από το Α τέλος θεωρούμε παράλληλη προς την ΕΒ η οποία τέμνει τη ΒΔ στο σημείο Μ και τη ΒΓ στο σημείο Κ. Να αποδείξετε ότι : ΑΒ = ΒΚ = ΚΔ = ΔΑ.

260 8 ˆ Επειδή είναι ΑΔ P ΒΓ θα ισχύει: ˆ ˆ Β Δ ˆ =Β = x =. ˆ Επίσης η ΒΔ είναι διχοτόμος της γωνίας ˆΒ, οπότε θα ισχύει: ˆ ˆ Β Β ˆ =Β = x =. ˆ Άρα ˆ ˆ Β Δ ˆ =Β = x = και κατά συνέπεια το τρίγωνο ΑΒΔ είναι ισοσκελές, δηλαδή: ΑΒ=ΑΔ. () Σχήμα Επειδή Ε είναι το συμμετρικό του Δ ως προς το Α, θα ισχύει: ΑΔ=ΑΕ. () Από τις σχέσεις (), () έχουμε ΑΕ = ΑΒ και κατά συνέπεια Ε ˆ ˆ =Β = ˆω. Από το τρίγωνο τώρα ΒΕΔ έχουμε: Δ ˆ +Β ˆ ˆ ˆ +Β +Ε = 80 o o o xˆ+ ˆ ω = 80 xˆ+ ˆ ω = 90, δηλαδή το τρίγωνο ΒΕΔ είναι ορθογώνιο ( ΒΕ ΒΔ) και εφόσον ΑΜP ΒΕ καταλήγουμε: AM ΒΔ. Στο ισοσκελές τρίγωνο ΒΑΔ η ΑΜ είναι ύψος, άρα και μεσοκάθετη της πλευράς ΒΔ. Επειδή τώρα το σημείο Κ ανήκει στη μεσοκάθετη του ΒΔ, το τρίγωνο ΚΒΔ είναι ισοσκελές και ίσο με το ισοσκελές τρίγωνο ΑΒΔ (διότι ˆ ˆ Β ˆ Β =Β = και ΒΔ κοινή πλευρά). Άρα θα έχουν και ΑΒ = ΑΔ = ΒΚ = ΚΔ, οπότε το τετράπλευρο ΑΒΚΔ είναι ρόμβος. Πρόβλημα 4 Να προσδιορίσετε τους πραγματικούς αριθμούς α, βγ, που ικανοποιούν τις ισότητες + + = 00 και + + = α β γ αβ βγ γα Από τις δεδομένες ισότητες λαμβάνουμε ( α + β + γ) = 00 α + β + γ + ( αβ + βγ + γα) = 00 α + β + γ = 00 αβ + βγ + γα Άρα έχουμε ( ) ( ) α + β + γ = α + β + γ = =

261 9 00 α + β + γ ( αβ + βγ + γα) = 00 = 0 0 α + β + γ αβ βγ γα = ( α + β + γ αβ βγ γα) = 0 ( α β) + ( β γ) + ( γ α) = 0 α β = β γ γ α = 0 α = β = γ, γιατί, αν ήταν α β 0 ή β γ 0 ή γ α 0, τότε θα είχαμε ( α β) ( β γ) ( γ α) + + > 0. Επομένως, από την ισότητα α + β + γ = 00 λαμβάνουμε α = β = γ = 670.

262 0 Β τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση ( x ) = x+ α, για τις διάφορες τιμές του πραγματικού αριθμού α. Η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση x x + = x+ α x x + x + α = 0. () ( ) Λόγω της παρουσίας της απόλυτης τιμής του x, διακρίνουμε τις περιπτώσεις: (i) x 0. Τότε η εξίσωση () είναι ισοδύναμη με την εξίσωση x 4x+ α = 0, () Δ = 6 4 α = 4 + α. η οποία είναι δευτέρου βαθμού με διακρίνουσα ( ) ( ) Άρα η εξίσωση () έχει ρίζες στο, αν, και μόνον αν, α. Για να διαπιστώσουμε πόσες από αυτές είναι δεκτές θεωρούμε το γινόμενο και το άθροισμα των ριζών που είναι Ρ= α και S= 4> 0. Έτσι, για την εξίσωση () έχουμε τις υποπεριπτώσεις: Αν α =, τότε η εξίσωση έχει μία διπλή ρίζα, x =. Αν < α, τότε η εξίσωση έχει δύο ρίζες μη αρνητικές, x = ± + α. Ειδικότερα, αν α =, τότε η εξίσωση έχει τις ρίζες x = 4 και x = 0. Αν α >, τότε η εξίσωση έχει μία μόνο ρίζα μη αρνητική, τη x = + + α (ii) x < 0. Τότε η εξίσωση () είναι ισοδύναμη με την εξίσωση x + α = 0, () η οποία έχει μία μόνο αρνητική ρίζα, τη x = α, αν α >. Συνοπτικά, από τις δύο προηγούμενες περιπτώσεις, έχουμε για τη δεδομένη εξίσωση, τα α- κόλουθα συμπεράσματα: Αν α <, η εξίσωση δεν έχει ρίζες στο. Αν α =, τότε η εξίσωση έχει μία διπλή ρίζα, x =. Αν < α, τότε η εξίσωση έχει δύο ρίζες, x = ± + α. Αν α >, τότε η εξίσωση έχει δύο ρίζες, τις x = + + α, x = α. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + y + z = 8 x + y + z = 6 ( ) xy + xz = yz +. Έχουμε x + y + z = 8 x + y + z = 8 x + y + z = 8 x + y + z = 6 ( x + y + z) ( xy + yz + zx) = 6 xy + yz + zx = 9 xy + xz = ( yz + ) xy + xz = ( yz + ) xy + xz = ( yz + )

263 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x + y + z = 8 x + y + z = 8 x + y + z = 8 xy + yz + zx = 9 x y + z + yz = 9 x y + z + yz = 9 9 yz ( yz ) yz yz 8 0 yz = 6 ή yz = = + + = x + ( y + z) = 8 x + y + z = 8 x+ ( y + z) = 8 x+ ( y + z) = 8 x( y + z) + yz = 9 ή x y + z + yz = 9 x( y + z) = 6 ή x( y + z) = 5 yz = yz = 6 yz = yz = 6 x+ ( y + z) = 8 x+ ( y + z) = 8 x+ ( y + z) = 8 x+ ( y + z) = 8 x( 8 x) = 6 ή x( 8 x) = 5 x 8x+ 6= 0 ή x 8x+ 5= 0 yz = yz = 6 yz = yz = 6 ( ) ( ) x+ y + z = 8 x+ y + z = 8 x = 4 x= 4 ή x 8x+ 5= 0(αδύνατη στο ) y + z = 4 yz = yz = 6 yz = x = 4 x = 4 z = 4 y z = 4 y ( x, y, z) = ( 4,,) ή ( x, y, z) = ( 4,, ). y( 4 y) = y 4y+ = 0 Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με + + =, να αποδείξετε ότι: α β γ αβγ ( ) ( ) ( ) α +β γ β +γ α γ +α β + + <. α +β β +γ γ +α Πότε ισχύει η ισότητα; Παρατηρούμε ότι ( α +β ) γ ( α+β)( α αβ+β ) γ ( α+β)( α +β ) γ = < = ( α+β) γ, () α +β α +β α +β α +β ( ) ( ( α+β) α +β γ α +β γ α+β)( α αβ+β ) γ = = ( α+β) γ. () α +β α +β α +β Η ισότητα στη () ισχύει, αν, και μόνον αν, α= β. Άρα έχουμε ( α +β ) γ ( α+β) γ < ( α+β) γ. () α +β Ομοίως λαμβάνουμε ( β +γ ) α ( β + γ) α < ( β + γ) α, (4) β +γ ( γ +α ) β < γ +α β. (5) ( γ +α) β ( ) γ +α Οι ισότητα στις (4) και (5) ισχύει αν, και μόνον αν, β = γκαιγ = α, αντίστοιχα. Από τις (), (4) και (5) με πρόσθεση κατά μέλη λαμβάνουμε :.

264 ( ) ( ) ( ) α +β γ β +γ α γ +α β αβ +βγ + γα + + < αβ +βγ + γα α +β β +γ γ +α ( ) Όμως από την υπόθεση έχουμε: + + = αβ+βγ+γα =, (7) α β γ αβγ οπότε από τις (6) και (7) προκύπτουν οι ζητούμενες ανισότητες. Η ισότητα ισχύει αν, και μόνον αν, α= β= γ, οπότε από τη σχέση αβ+βγ+γα=, προκύ- πτει ότι α= β= γ =. Παρατήρηση. Η δεύτερη ανισότητα είναι γνήσια από την κατασκευή της άσκησης με τους αβγ,, θετικούς πραγματικούς αριθμούς, λόγω της ισότητας + + =. Στην περίπτωση α β γ αβγ που επιτρέψουμε οι αβγ,, να είναι μη αρνητικοί πραγματικοί αριθμοί, δίνοντας στην παραπάνω ισότητα τη μορφή αβ + βγ + γα =, τότε η δεύτερη ανισότητα γίνεται ( ) ( ) ( ) α +β γ β +γ α γ +α β + +, α +β β +γ γ +α όπου η ισότητα ισχύει, αν, και μόνον αν, ένας μόνον από τους α, βγ, είναι μηδέν και οι άλλοι δύο αντίστροφοι. Πρόβλημα 4 Δίνεται οξυγώνιο και σκαληνό τρίγωνο ΑΒΓ (με ΑΒ< AΓ) εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Από το σημείο Α φέρνουμε τις δύο εφαπτόμενες προς τον κύκλο ( c ), που έχει κέντρο το σημείο O και ακτίνα r = OM (M είναι το μέσο της BΓ ). Η μία εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο T, τέμνει την ΒΓ στο σημείο Ν και το κύκλο () c στο σημείο N (θεωρούμε BN < BM ). Η άλλη εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο Σ, τέμνει την ΒΓ στο σημείο K και το κύκλο () c στο σημείο K (θεωρούμε ΓK<ΓM). Να αποδείξετε ότι οι ευθείες BN, ΓΚ και AM περνάνε από το ίδιο σημείο (συντρέχουν). Οι χορδές AN, AΚ και ΒΓ του κύκλου ( c ), είναι εφαπτόμενες του κύκλου ( c ) στα σημεία ΤΣ, και Μ αντίστοιχα. Άρα οι ακτίνες OΤ,ΟΣ και OΜ του κύκλου ( c ), είναι κάθετες προς τις χορδές AN, AΚ και ΒΓ του κύκλου ( c ) αντίστοιχα. Δηλαδή οι ακτίνες OΤ,ΟΣ και OΜ του κύκλου ( c ), είναι τα αποστήματα που αντιστοιχούν στις χορδές AN, AΚ και ΒΓ του κύκλου ( c ). Τα αποστήματα OΤ,ΟΣ και OΜ είναι ίσα μεταξύ τους, αφού είναι ακτίνες του κύκλου ( c ). Άρα AN = AΚ = ΒΓ (*) και τα σημεία Τ, ΣΜ, είναι τα μέσα των χορδών AN, AΚ και ΒΓ, αντίστοιχα. Από τους προηγούμενους συλλογισμούς, προκύπτουν οι παρακάτω ισότητες ευθυγράμμων τμημάτων: ΜΒ=ΜΓ=ΤΑ=ΤΝ =ΣΑ=ΣΚ () Το σημείο N βρίσκεται εκτός του κύκλου ( c ) και NM, NT είναι τα εφαπτόμενα τμήματα, οπότε NM = NT () Συνδυάζοντας τις σχέσεις () και () έχουμε: (6)

265 () : ΜΒ = ΤΝ (:) ΜΒ ΤΝ = ΤΜP ΒΝ () (): ΝΜ = ΝΤ ΜN ΝΤ Συνδυάζοντας και πάλι τις σχέσεις () και () έχουμε: () : ΜΓ = ΤΑ (:) ΜΓ ΤΑ = ΤΜ// ΑΓ (4) (): ΝΜ = ΝΤ ΝΜ ΝΤ Από τις () και (4) έχουμε ΒN Σχήμα 4 P ΑΓ. Με ανάλογο τρόπο αποδεικνύουμε ότι ΓK P ΑΒ. Αν λοιπόν Ρ είναι η τομή των ευθειών ΒN και ΓK, τότε το τετράπλευρο ΑΒΡΓ είναι παραλληλόγραμμο. Άρα οι ευθείες ΒN, ΓK και ΑΜ θα συντρέχουν στο Ρ. (*) Δύο χορδές ενός κύκλου είναι ίσες αν και μόνο αν τα αποστήματά τους είναι ίσα. (Θεώρημα ΙΙΙ, Σελ.46, του Σχολικού βιβλίου της ΕΜΕ)

266 4 Γ τάξη Λυκείου Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με άθροισμα, να αποδείξετε ότι: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + > 4αβ 4βγ 4γα Από τις γνωστές ανισότητες α + 4β 4 αβ, β + 4γ 4 βγ, γ + 4α 4γα, () λαμβάνουμε τις ανισότητες: α + 4β 4αβ ( α + 4β ) γ = ( η ισότητα ισχύει για α = β) γ () 4αβ 4αβ 4αβ β + 4γ 4βγ ( β + 4γ ) α = (ηισότητα ισχύει για β= ) γ α () 4βγ 4βγ 4βγ γ + 4α 4γα ( γ + 4α ) β = (ηισότητα ισχύει για γ = α) β (4) 4γα 4γα 4γα Από τις (), () και (4) με πρόσθεση κατά μέλη λαμβάνουμε: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + α+β + γ =. (5) 4αβ 4βγ 4γα Η ισότητα στη σχέση (5) ισχύει, αν, και μόνον αν, ισχύουν οι ισότητες και στις τρεις σχέσεις (), () και (4) ή ισοδύναμα: α= β, β= γ, γ= α, από τις οποίες προκύπτει ότι α=β=γ= 0, που είναι άτοπο, αφού οι αριθμοί αβγ,, είναι θετικοί. Επομένως έχουμε αποδείξει ότι: ( α + 4β ) γ ( β + 4γ ) α ( γ + 4α ) β + + >. 4αβ 4βγ 4γα Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + xy = 5. ( Σ ) y xy = Αν υποθέσουμε ότι υπάρχει λύση ( x, y ) του συστήματος ( Σ ), με x= 0 ή y = 0, τότε λαμβάνουμε 0 = 5 ή 0 = -, άτοπο. Για xy 0, η μία εξίσωση του συστήματος μπορεί να αντικατασταθεί με αυτήν που προκύπτει από τις δύο εξισώσεις του συστήματος, με διαίρεση κατά μέλη:

267 y + m 5 + = 5m m+ = 0 x + xy 5 x 5 m m = = y y xy y y y m m = = x x x x m= ή m= m= 5 m = 5 ή. y y = x x = m y = x 5 Επομένως έχουμε: 7x 5 7 x + xy = 5 = x x =± x + xy = x = =± ή ή ή 7 Σ x y = x y = y = x x y x x 5 y = y = = ( xy, ) = (,) ή ( xy, ) = (, ) ή ( xy, ) =, ή ( xy, ) =, ( ) Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Ο περιγεγραμμένος κύκλος του τριγώνου ΑOB (έστω ( c ) ), τέμνει την AΓ στο σημείο K και την ΒΓ στο σημείο Ν. Έστω ( c ) ο περιγεγραμμένος κύκλος του τριγώνου ΓΚΝ και ( c ) ο περιγεγραμμένος κύκλος του τριγώνου OΓΚ. Να αποδείξετε ότι οι κύκλοι ( c ), ( c ) και ( c ) είναι ίσοι μεταξύ τους. Έστω R,R, R οι ακτίνες των κύκλων ( c ),( c ) και ( c ) αντίστοιχα. Θα αποδείξουμε ότι R = R = R. Από το εγγεγραμμένο τετράπλευρο AKOB έχουμε: Α ˆ ˆ = B. Από το εγγεγραμμένο τετράπλευρο AOΝB έχουμε: Α ˆ ˆ = Β. Από το ισοσκελές τρίγωνο OBΓ, έχουμε: Β ˆ ˆ = Γ. Από το ισοσκελές τρίγωνο OΑΓ, έχουμε: Α ˆ ˆ = Γ. Από τις παραπάνω ισότητες των γωνιών, προκύπτει ΝΑΓ ˆ = ΚΒΓ ˆ = Γˆ, δηλαδή τα τρίγωνα ΝΑΓ και ΚΒΓ είναι ισοσκελή, οπότε ΝΑ = ΝΓ και ΚΒ = ΚΓ. Τα τρίγωνα τώρα ΟΚΒ και ΟΚΓ είναι ίσα διότι έχουν:. ΟΒ = ΟΓ (ακτίνες του κύκλου ( c ) ). ΟΚ (κοινή). ΚΒ = ΚΓ (από το ισοσκελές τρίγωνο ΚΒΓ ). Εφόσον λοιπόν τα τρίγωνα ΟΚΒ και ΟΚΓ είναι ίσα, θα έχουν ίσους τους περιγεγραμμένους κύκλους τους ( c ) και ( c ). Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Θεωρούμε τώρα τα τρίγωνα ΚΝΒ και ΚΝΓ που έχουν περιγεγραμμένους κύκλους ( c ) και ( c ) αντίστοιχα. 5

268 6 αβγ Θα χρησιμοποιήσουμε στη συνέχεια τον τύπο E = (ΑΒΓ) = που εκφράζει το εμβαδό 4R τριγώνου συναρτήσει του μήκους των πλευρών και της ακτίνας του περιγεγραμμένου κύκλου. Έστω λοιπόν E = (ΚΝΒ) το εμβαδό του τριγώνου ΚΝΒ και E = (ΚΝΓ) το εμβαδό του τριγώνου ΚΝΓ. Τότε: ΝΒ ΝΚ ΒΚ E = (ΚΝΒ) = 4R Ε 4R ΝΒ ΝΚ ΒΚ Ε = R ΝΒ =, () ΝΓ ΝΚ ΓΚ Ε 4R ΝΓ ΝΚ ΓΚ E = (ΚΝΓ) = Ε R ΝΓ 4R (για τη τελευταία συνεπαγωγή χρησιμοποιήσαμε την ισότητα ΚΒ = ΚΓ, που προκύπτει από το ισοσκελές τρίγωνο ΚΒΓ ). Σχήμα 5 Τα τρίγωνα ΚΝΒ και ΚΝΓ έχουν τις γωνίες τους Άρα: E ΝΒ ΝΚ Ε = = E ΝΓ ΝΚ Ε Από τις σχέσεις () και () έχουμε R = R. ΝΒ ΝΓ ˆ ΚΝΒ και ˆ ΚΝΓ παραπληρωματικές.. () Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Για την απόδειξη, θα χρησιμοποιήσουμε το νόμο των ημιτόνων: a β γ = = = R. ημα ημβ ημγ Εφαρμόζοντας το νόμο των ημιτόνων στα τρίγωνα ΚΝΒ και ΚΝΓ έχουμε: ΚΝ ΚΝ = R και = R. ημ( ΚΒΝ ˆ ) ημ( Γˆ ) Από την ισότητα τώρα των γωνιών ΚΒΝ ˆ = Γ ˆ, καταλήγουμε: R = R. Πρόβλημα 4 Η ακολουθία * a,, n n ορίζεται αναδρομικά από τις σχέσεις

269 k * a = n a + n, n, n a =, όπου k θετικός ακέραιος. (i) Να προσδιορίσετε το γενικό όρο a n της ακολουθίας ως συνάρτηση των n και k. (ii) Να αποδείξετε ότι υπάρχουν μοναδικοί θετικοί ακέραιοι k, n τέτοιοι ώστε : a n =. 000 (i) Από τις υποθέσεις έχουμε a = a k, a = a k,..., a k n = an n, n =,,,... από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: n an = a k k n = + n k an = + k k = ( k) +, n=,,,... n (ii) Έστω ότι: k n n an = 000 ( k) + = 000 ( k) + k =, n όπου k θετικός ακέραιος και n *, n>. Τότε έχουμε ( ) n n n = k. 7 n n k = > 0, k Ά. () n Αν υποθέσουμε ότι n > 000 n> 00, τότε από τη σχέση () προκύπτει, ότι k ( 0,), άτοπο. Αν υποθέσουμε ότι n < 000 n< 00, τότε έχουμε: n n 000 n n 00 k = = =, n n n οπότε θα είναι 0< k <, που είναι άτοπο. Άρα είναι n = 000 n= 00, οπότε από την () προκύπτει ότι k =.

270 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και το ΣΤΑΘΕΡΟ και ΚΙΝΗΤΟ ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Μαρτίου 0 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην 9 η Βαλκανική Μαθηματική Ολυμπιάδα (Τουρκία, Μάιος 0), στην 6 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ιούνιος 0) και στην 5 η Διεθνή Μαθηματική Ολυμπιάδα (Αργεντινή, Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γρηγόριος Καλογερόπουλος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών

271 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 8 Α= + + : και Β= : Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = αβγ και αβγ 0, να βρείτε την τιμή της παράστασης: 8 α β 6 γ Γ= + +. α β 4γ Μονάδες Πρόβλημα Ένας πελάτης αγόρασε από μία έκθεση αυτοκινήτων ένα αυτοκίνητο για το οποίο πλήρωσε με μετρητά το μισό της τιμής πώλησης του αυτοκινήτου, ενώ για τα υπόλοιπα συμφωνήθηκε να πληρώσει με 4 μηνιαίες δόσεις των 500 ευρώ. Με αυτόν το διακανονισμό επιβαρύνθηκε με τόκους που συνολικά αντιστοιχούν στο 0% της τιμής πώλησης του αυτοκινήτου. Να βρείτε την τιμή πώλησης του αυτοκινήτου και πόσα συνολικά θα πληρώσει συνολικά ο πελάτης. Μονάδες 5 Πρόβλημα Στο διπλανό σχήμα, το τρίγωνο ΑΒΓ είναι ισοσκελές ( ΑΒ = ΑΓ ) και οξυγώνιο, το τρίγωνο ΑΔΓ είναι ισόπλευρο και Ε είναι το μέσο του ΑΔ. Αν το Κ βρίσκεται στη προέκταση της ΒΓ και οι ΒΔ, ΓΕ τέμνονται στο σημείο Ζ, να αποδείξετε ότι οι γωνίες ˆ ΒΖΓ και ˆ ΚΓΔ, είναι ίσες. Μονάδες 5 Πρόβλημα 4 Γράφουμε στον πίνακα το σύνολο Α που περιέχει όλους τους ακέραιους από το μέχρι και το 0. Διαγράφουμε από το σύνολο Α όλους τους ακέραιους που είναι πολλαπλάσια του 5 και στη συνέχεια, από τους ακέραιους που απέμειναν, διαγράφουμε αυτούς που είναι πολλαπλάσια του 8. Να βρείτε πόσοι ακέραιοι θα απομείνουν στο σύνολο Α. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

272 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Γυμνασίου Πρόβλημα (α) Να βρείτε την τιμή της παράστασης: α α α Α= + β +, β 4β β αν δίνεται ότι α = β =. Μονάδες x (β) Αν τα ποσά x, y είναι ανάλογα με συντελεστή αναλογίας = α > 0, να αποδείξετε ότι η y xy παράσταση Κ= έχει τιμή ανεξάρτητη των τιμών των x, y και ισχύει ότι Κ. x + y Για ποια τιμή του α η παράσταση Κ παίρνει τη μέγιστη τιμή της. Μονάδες Πρόβλημα Στο διπλανό σχήμα, οι μικροί κύκλοι είναι ίσοι μεταξύ τους (με ακτίνα R ), έχουν κέντρα τα σημεία ΚΛ, και εφάπτονται εξωτερικά στο σημείο Μ. Οι διάμετροι ΑΒ και ΓΔ (των μικρών κύκλων) είναι κάθετες στην διάκεντρό τους ΚΛ. Ο μεγάλος κύκλος τέλος, έχει κέντρο το σημείο Μ και περνάει από τα σημεία ΑΒΓΔ.,,, Να υπολογιστεί συναρτήσει του R, το εμβαδό του σκιασμένου χωρίου. Μονάδες 5 Πρόβλημα Γράφουμε στον πίνακα το σύνολο Α που περιέχει όλους τους ακέραιους από το 0 μέχρι και το 0. Διαγράφουμε από το σύνολο Α όλους τους ακέραιους που είναι πολλαπλάσια του και στη συνέχεια, από τους ακέραιους που απέμειναν, διαγράφουμε αυτούς που είναι πολλαπλάσια του 8. Να βρείτε πόσοι ακέραιοι θα απομείνουν στο σύνολο Α. Μονάδες 5 Πρόβλημα 4 Δίνονται τα πολυώνυμα P( x) = ( x )( x+ )( x )( x+ ) και Q( x) = ( αx + βx)( γx + δ) + 4, όπου α, βγδ,,. Αν ισχύει ότι α + β + γ + δ =, να βρείτε τις τιμές των παραμέτρων,,, P x και Q x είναι ίσα. α βγδ για τις οποίες τα πολυώνυμα ( ) ( ) Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

273 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Α τάξη Λυκείου Πρόβλημα Να βρείτε το υποσύνολο των πραγματικών αριθμών στο οποίο συναληθεύουν οι ανισώσεις: ( ) ( ) x x x + x x+ x x+ x+ + και + > Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης ( ax) ( a x) x + x + + ab = x a a b για τις διάφορες τιμές των πραγματικών αριθμών, ( ) ab με ab( a b)( a ), 0. Μονάδες 5 Μονάδες 5 Πρόβλημα Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με ˆ Β= 90 και Α< ˆ 45. Θεωρούμε τα μέσα Δ και Ε των πλευρών ΒΓ και ΑΓ, αντίστοιχα, και σημείο Μ διαφορετικό από το Α στο ευθύγραμμο τμήμα ΑΕ. Αν η μεσοκάθετη του ευθύγραμμου τμήματος ΒΜ τέμνει την ευθεία ΔΕ στο Ζ και την ευθεία ΑΓ στο Θ, να αποδείξετε ότι: (α) ΒΜΖ ˆ = Α. ˆ (β) Η ευθεία ΒΖ διχοτομεί τη γωνία ΘΒΕ ˆ. Μονάδες 5 Πρόβλημα 4 Αν υπάρχουν ακέραιοι x, ya, που επαληθεύουν την εξίσωση ( ) ( ) yx + y a x + y y a = 0, να αποδείξετε ότι ο αριθμός xy είναι τέλειο τετράγωνο ρητού αριθμού. Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

274 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου a 0 για τις οποίες η εξίσωση a + 6 =, a+ ax x x x 4x έχει δύο πραγματικές ρίζες με διαφορά 4. Πρόβλημα Αν y ακέραιος και x, να προσδιορίσετε όλα τα ζευγάρια (, ) συστήματος Μονάδες 5 x y που είναι λύσεις του + y x x+ > 0. ( ) y + x < 0 Να παραστήσετε γραφικά στο Καρτεσιανό επίπεδο Oxy, το σύνολο των σημείων ( x, y) όπου ( x, y ) λύση του συστήματος (Σ). Σ Μ, Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ<ΑΓ, εγγεγραμμένο σε κύκλο cor (, ). Η διχοτόμος της γωνίας ˆΑ τέμνει τον κύκλο cor (, ) στο σημείο Μ. Ο κύκλος c (, ) ΜΑΜ τέμνει την προέκταση της ΑΓ στο σημείο Δ. Να αποδείξετε ότι ΓΔ=ΑΒ. Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός ab, ρητοί τέτοιοι ώστε a < 4b. x + ax + b, όπου Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

275 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Λυκείου Πρόβλημα Να βρεθεί η αριθμητική πρόοδος αν, ν =,,,... που έχει πρώτο όρο α = α 0, διαφορά ω 0 και είναι τέτοια ώστε ο λόγος του αθροίσματος α + + αν των ν πρώτων όρων της προς το άθροισμα αν α ν των επόμενων ν το πλήθος όρων της είναι σταθερός, δηλαδή ανεξάρτητος του ν. Μονάδες 5 Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x = z, y = x, z = y 6 + z 6 + x 6 + y Μονάδες 5 Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο cor (, ). Τα ύψη του ΑΔ, ΒΕ, ΓΖ τέμνουν τον περιγεγραμμένο κύκλο στα σημεία Α, Β, Γ αντίστοιχα. Αν Α, Β, Γ είναι τα μέσα των ευθυγράμμων τμημάτων ΟΔ, ΟE, Ο Z αντίστοιχα, να αποδείξετε ότι οι ευθείες ΑΑ,ΒΒ,ΓΓ περνάνε από το ίδιο σημείο. Μονάδες 5 Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός ab, ρητοί τέτοιοι ώστε a < 6b. 4x ax + b, όπου Μονάδες 5 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

276 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 8 Α= + + : και Β= : (β) Αν ισχύει ότι: ( ) 6 αβ + βγ + γα = αβγ και αβγ 0, να βρείτε την τιμή της παράστασης: 8 α β 6 γ Γ= + +. α β 4γ (α) Έχουμε Α= + + : = 8+ + = 9+ = 9 =, Β= : :. 4 + = 4 + = + = + = Επειδή είναι Α Β= = = < 0, έπεται ότι Α<Β (β) Έχουμε 8 α β 6 γ 8 α β 6 γ Γ= + + = + + α β 4γ α α β β 4γ 4γ = = α β γ 4 α β γ 6 αβ + βγ + γα = αβγ και αβγ 0 με διαίρεση και των δύο μελών Από την υπόθεση ( ) της ισότητας με 6αβγ 0 προκύπτει ότι: 6( αβ + βγ + γα) αβγ = + + =, 6αβγ 6αβγ α β γ 6 οπότε η παράσταση Γ έχει τιμή Γ= = 4 = = =. α β γ 6 6 4

277 Πρόβλημα Ένας πελάτης αγόρασε από μία έκθεση αυτοκινήτων ένα αυτοκίνητο για το οποίο πλήρωσε με μετρητά το μισό της τιμής πώλησης του αυτοκινήτου, ενώ για τα υπόλοιπα συμφωνήθηκε να πληρώσει με 4 μηνιαίες δόσεις των 500 ευρώ. Με αυτόν το διακανονισμό επιβαρύνθηκε με τόκους που συνολικά αντιστοιχούν στο 0% της τιμής πώλησης του αυτοκινήτου. Να βρείτε την τιμή πώλησης του αυτοκινήτου και πόσα συνολικά θα πληρώσει συνολικά ο πελάτης.. Αν υποθέσουμε ότι η τιμή πώλησης του αυτοκινήτου είναι x, τότε, σύμφωνα με την υπόθεση του προβλήματος θα έχουμε την εξίσωση: x 0x x x = x = x+ 5x = 0x+ x x= 0000 x= = Άρα η τιμή πώλησης του αυτοκινήτου είναι x = 0000 ευρώ και ο πελάτης θα πληρώσει συνολικά x + = = = 000 ευρώ. 0x x Πρόβλημα Στο διπλανό σχήμα, το τρίγωνο ΑΒΓ είναι ισοσκελές ( ΑΒ=ΑΓ), το τρίγωνο ΑΔΓ είναι ισόπλευρο και Ε είναι το μέσο του ΑΔ. Αν το Κ βρίσκεται στη προέκταση της ΒΓ και οι ΒΔ, ΓΕ τέμνονται στο σημείο Ζ, να αποδείξετε ότι οι γωνίες ˆ ΒΖΓ και ˆ ΚΓΔ, είναι ίσες. Έστω ΒΑΓ ˆ = ˆx. Από το ισοσκελές τρίγωνο ΑΒΓ με Β ˆ =Γέχουμε: ˆ ˆ ˆ ˆ o ˆ o ˆ ˆ o xˆ Α+Β+Γ= 80 xˆ + Γ= 80 Β=Γ= 90. () Σχήμα Από το ισόπλευρο τρίγωνο ΑΓΔ, έχουμε: ΑΓΔ ˆ = Οι γωνίες τώρα ˆΓ, ΑΓΔ ˆ και ˆΓ είναι διαδοχικές με την πρώτη και την τελευταία πλευρά τους αντικείμενες ημιευθείες, έχουμε ότι ˆΓ +ΑΓΔ ˆ +Γ ˆ = 80 o, οπότε

278 ˆ o o o xˆ ˆ o xˆ Γ = Γ = 0 +. () Στο ισοσκελές τρίγωνο ΑΒΔ, θέτουμε Β ˆ ˆ =Δ = ˆω και παίρνουμε: 0 o xˆ ˆ ω+ xˆ + 60 = 80 ˆ ω = 60. () Από το ορθογώνιο τρίγωνο τέλος ΕΔΖ, έχουμε: Ζ ˆ ˆ ˆ =ΕΖΔ = 90 o ω ˆ o xˆ Ζ = 0 +. (4) Πρόβλημα 4 Γράφουμε στον πίνακα το σύνολο Α που περιέχει όλους τους ακέραιους από το μέχρι και το 0. Διαγράφουμε από το σύνολο Α όλους τους ακέραιους που είναι πολλαπλάσια του 5 και στη συνέχεια, από τους ακέραιους που απέμειναν, διαγράφουμε αυτούς που είναι πολλαπλάσια του 8. Να βρείτε πόσοι ακέραιοι θα απομείνουν στο σύνολο Α. Το σύνολο Α= {,,,..., 0} έχει 0 στοιχεία. Τα πολλαπλάσια του 5 που ανήκουν στο σύνολο Α είναι της μορφής 5 κ, όπου κ ακέραιος τέτοιος ώστε 0 5κ 0 κ κ 40 κ {,,...,40 }, δηλαδή τα πολλαπλάσια του 5 που ανήκουν στο σύνολο Α είναι 40. Τα πολλαπλάσια του 8 που ανήκουν στο σύνολο Α είναι της μορφής 8 κ, όπου κ ακέραιος τέτοιος ώστε 0 4 8κ 0 κ κ 5 κ {,,...,5 }, δηλαδή τα πολλαπλάσια του 8 που ανήκουν στο σύνολο Α είναι 5. Όμως υπάρχουν πολλαπλάσια του 8 που είναι και πολλαπλάσια του 5 και έχουν ήδη δια- ΕΚΠ 5,8 = 40 που ανήκουν στο σύνολο Α. γραφεί. Αυτά είναι όλα τα πολλαπλάσια του { } Εργαζόμενοι ομοίως, από τις ανισώσεις 0 40κ 0 κ κ 50 κ {,,...,50 }, βρίσκουμε ότι τα κοινά πολλαπλάσια των 5 και 8 μέσα στο σύνολο Α είναι 50. Επομένως, διαγράψαμε από το σύνολο Α συνολικά = 60 στοιχεία, οπότε απέμειναν τελικά 0 60 = 409 στοιχεία. Γ τάξη Γυμνασίου Πρόβλημα (α) Να βρείτε την τιμή της παράστασης: α α α Α= + β +, β 4β β αν δίνεται ότι α = β =. x (β) Αν τα ποσά x, y είναι ανάλογα με συντελεστή αναλογίας = α > 0, να αποδείξετε ότι η y

279 xy παράσταση Κ= έχει τιμή ανεξάρτητη των τιμών των x, y και ισχύει ότι Κ. x + y Για ποια τιμή του α η παράσταση Κ παίρνει τη μέγιστη τιμή της. (α) Για α = β = λαμβάνουμε α β = = + = = =. ( ) Η παράσταση Α γράφεται: α α α Α= = ( 8 + 7) β 4 β β 4 = = = 0. (β) Από την υπόθεση έχουμε ότι x = α y, οπότε η παράσταση γράφεται ayy α y α Κ= = =, α y + y ( α + ) y α + δηλαδή είναι ανεξάρτητη των x, y και εξαρτάται μόνο από το λόγο α. Επιπλέον, ισχύει α Κ = α + α α α + 0 ( α ) 0, α + το οποίο είναι αληθές. Επομένως η μέγιστη τιμή της παράστασης είναι και λαμβάνεται όταν α = 0, δηλαδή όταν α =. Πρόβλημα Στο διπλανό σχήμα, οι μικροί κύκλοι είναι ίσοι μεταξύ τους (με ακτίνα R ), έχουν κέντρα τα σημεία ΚΛ, και εφάπτονται εξωτερικά στο σημείο Μ. Οι διάμετροι ΑΒ και ΓΔ (των μικρών κύκλων) είναι κάθετες στην διάκεντρό τους ΚΛ. Ο μεγάλος κύκλος τέλος, έχει κέντρο το σημείο Μ και περνάει από τα σημεία ΑΒΓΔ.,,, Να υπολογιστεί συναρτήσει του R, το εμβαδό του σκιασμένου χωρίου. 4 Σχήμα Επειδή είναι ΑΚ = ΔΛ και ΑΚ ΔΛ, ως κάθετες στη διάκεντρο ΚΛ, το τετράπλευρο ΑΚΛΔ είναι ορθογώνιο, οπότε θα είναι ΑΔ=ΚΛ= R. Ομοίως προκύπτει ότι και το τετρά-

280 πλευρο ΚΒΓΛ είναι ορθογώνιο και ότι ΒΓ=ΚΛ= R Επομένως, το τετράπλευρο ΑΒΓΔ είναι τετράγωνο με πλευρά R και εμβαδό ( ΑΒΓΔ ) = 4R. Το τρίγωνο ΑΚΜ είναι ορθογώνιο με κάθετες πλευρές ΚΑ=ΚΜ= R. Άρα, από το Πυθαγόρειο θεώρημα, έχουμε: ΜΑ = ΜΒ = ΜΓ = ΜΔ = R, δηλαδή ο μεγάλος κύκλος έχει ακτίνα R και κατά συνέπεια το εμβαδό του θα είναι: Ε= π ( R ) = π R. Τα εμβαδά των δύο μικτόγραμμων χωρίων ΜΑΔ και ΜΒΓ είναι ίσα μεταξύ τους και το άθροισμά τους προκύπτει, αν από το εμβαδό του τετραγώνου αφαιρέσουμε το εμβαδό των δύο μικρών ημικυκλίων (δηλαδή το εμβαδό του μικρού κύκλου). Με βάση τους παραπάνω συλλογισμούς προκύπτουν οι σχέσεις: 4 π Ε = ( ΑΒΓΔ) πr Ε = 4R πr Ε = R. πr Για τα εμβαδά των χωρίων Ε έχουμε: Ε = Ε. Άρα το εμβαδό του ζητούμενου χωρίου είναι: Ε+ Ε+ Ε = Ε+ (4 π) R + πr Ε= 4R. Παρατήρηση Το εμβαδό ενός από τα τέσσερα ίσα κυκλικά τμήματα του μεγάλου κύκλου είναι: Ε ( ΑΒΓΔ) π R 4R ( π ) R Ε = = = Ο υπολογισμός όμως δεν είναι απαραίτητος γιατί απλοποιείται με τις πράξεις. Πρόβλημα Γράφουμε στον πίνακα το σύνολο Α που περιέχει όλους τους ακέραιους από το 0 μέχρι και το 0. Διαγράφουμε από το σύνολο Α όλους τους ακέραιους που είναι πολλαπλάσια του και στη συνέχεια διαγράφουμε όλους τους ακέραιους που είναι πολλαπλάσια του 8. Να βρείτε πόσοι ακέραιοι θα απομείνουν στο σύνολο Α. Το σύνολο Α= { 0,0,0,...,0} έχει 0-00 =9 στοιχεία. Τα πολλαπλάσια του που ανήκουν στο σύνολο Α είναι της μορφής κ, όπου κ ακέραιος τέτοιος ώστε κ 0 κ κ 670 κ { 4,5,..., 670 }, δηλαδή τα πολλαπλάσια του που ανήκουν στο σύνολο Α είναι 670 = 67. Τα πολλαπλάσια του 8 που ανήκουν στο σύνολο Α είναι της μορφής 8 κ, όπου κ ακέραιος τέτοιος ώστε κ 0 κ κ 5 κ {,4,..., 5 }, δηλαδή τα πολλαπλάσια του 8 που ανήκουν στο σύνολο Α είναι 5 = 9. Όμως υπάρχουν πολλαπλάσια του 8 που είναι και πολλαπλάσια του και έχουν ήδη δια- ΕΚΠ,8 = 4 που ανήκουν στο σύνολο Α. γραφεί. Αυτά είναι όλα τα πολλαπλάσια του { } Εργαζόμενοι ομοίως, από τις ανισώσεις κ 0 κ 4 κ 8 κ { 5,6,...,8 }, βρίσκουμε ότι τα κοινά πολλαπλάσια των και 8 μέσα στο σύνολο Α είναι 8 4 = 79. Επομένως, διαγράψαμε από το σύνολο Α συνολικά = 797 στοιχεία, οπότε απέμειναν τελικά = 5 στοιχεία. 5

281 6 Πρόβλημα 4 Δίνονται τα πολυώνυμα P x x x x x ( ) ( )( )( )( ) = + + και Q( x) ( αx βx)( γx δ) = , όπου α, βγδ,,. Αν ισχύει ότι α + β + γ + δ =, να βρείτε τις τιμές των παραμέτρων α, βγδ,, για τις οποίες τα πολυώνυμα P( x) και Q( x ) είναι ίσα. Έχουμε ( ) ( )( )( )( ) ( )( ) ( ) ( )( ) P x x x x x x x x x = + + = 4 = και 4 Q x α x β x γ x δ αγ x βγ x αδ x βδ x Τα πολυώνυμα P( x) και ( ) = = Q x είναι ίσα, αν, και μόνον αν, ισχύουν αγ =, βγ = 0, αδ = 5, βδ = 0 { } { } β = 0 ή γ = 0, β = 0ή δ = 0, αγ =, αδ = 5. Οι τιμές γ = 0 και δ = 0 αποκλείονται γιατί δεν επαληθεύουν τις δύο τελευταίες εξισώσεις, 5 οπότε λαμβάνουμε β = 0, γ =, δ, α 0. α = α Από την εξίσωση α + β + γ + δ =, με α- ντικατάσταση των τιμών των β, γ και δ προκύπτει η εξίσωση 5 4 α + = α = α + α 4= 0 α + α = 0 α α α α α + + α = 0 α α + 4 = 0 α = 0 ή α + 4= 0 α = ή α = 4 ( )( ) ( ) ( )( ) Επομένως οι τιμές των παραμέτρων α, βγδ,, πρέπει και αρκεί να είναι 5 α =, β = 0, γ =, δ = 5 ή α = 4, β = 0, γ =, δ =. 4 4 Α τάξη Λυκείου Πρόβλημα Να βρείτε το υποσύνολο των πραγματικών αριθμών στο οποίο συναληθεύουν οι ανισώσεις: Έχουμε ( ) ( ) x x x + x x+ x x+ x+ + και + > x x x + x + x + ( x ) x + x x x 4 4 x + x( x+ ) ( x+ ) + > x + + x( x + ) > ( x + ) 4 4 x+ + x + x> x + 4x+ 4 x> x< Επομένως, οι δύο ανισώσεις συναληθεύουν στο διάστημα [ 4, ) = { x : 4 x< } Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης.

282 7 ( + ax) ( a + x) x + x ab = x a a b για τις διάφορες τιμές των πραγματικών αριθμών, ( ) ( a b) ( ) ab με ab( a b)( a ), 0. Για να ορίζονται οι δεδομένες παραστάσεις πρέπει να ισχύουν: x 0, a 0(υπόθεση) και a b(υπόθεση) x ±. Για x ±, η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση: x ( + ax a x) ab x ( a)( x) ab = = x ( a ) ( a b) x a a b ab x + x = a b x + a b x ab= 0 ( ) ( ) ( ) ( ) Επειδή είναι a b η τελευταία εξίσωση είναι δευτέρου βαθμού και έχει διακρίνουσα Δ= ( a b) 4 + 4ab( a b) = ( a b) ( a b) + 4ab = ( a b) ( a+ b) = ( a b ) 0. Άρα η εξίσωση έχει τις ρίζες (ίσες, αν a = b): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) a b + a b ab b b a b b x = = = = και a b a b a b a b x a b a b ab a a a b a = = = =. a b a b a b a b Παρατηρούμε ότι: b b b b a a 0 και b b a a b b a = = = b a = = + =, a a = a = a b a = b και = a = b a b= 0. a b a b Επομένως, για τιμές των παραμέτρων ab, που ικανοποιούν τις υποθέσεις a 0, b 0, a b και a ±, έχουμε: Αν ( a b)( a b) 0, η εξίσωση έχει δύο ρίζες (ίσες με, αν a = b ): b a x = και x =. a b a b Αν a = b, τότε η εξίσωση έχει μόνο τη ρίζα x =. Αν b a =, τότε η εξίσωση έχει μόνο τη ρίζα x =. Πρόβλημα Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με ˆ Β= 90 και Α< ˆ 45. Θεωρούμε τα μέσα Δ και Ε των πλευρών ΒΓ και ΑΓ, αντίστοιχα, και σημείο Μ Α στο ευθύγραμμο τμήμα ΑΕ. Αν η μεσοκάθετη του ευθύγραμμου τμήματος ΒΜ τέμνει την ευθεία ΔΕ στο Ζ και την ευθεία ΑΓ στο Θ, να αποδείξετε ότι: (α) ΒΜΖ ˆ = Α. ˆ (β) Η ευθεία ΒΖ διχοτομεί τη γωνία ΘΒΕ ˆ.

283 (α) Επειδή το Ζ ανήκει στη μεσοκάθετη του ΒΜ θα είναι ΖΒ = ΖΜ και ΒΜΖ ˆ = ΜΒΖ ˆ = ω. Επειδή είναι ΔΕ ΑΒ και ΑΒ ΒΓ έπεται ότι ΔΕ ΒΓ, δηλαδή η ευθεία ΔΕ είναι μεσοκάθετη της πλευράς ΒΓ. Αφού Ζ ΒΓ θα είναι ΖΒ=ΖΓ και ΖΒΓ ˆ = ΖΓΒ ˆ = ϕ. Επειδή ΜΖ = ΒΖ = ΓΖ θα είναι και ΖΜΓ ˆ = ΖΓΜ ˆ = θ. Από το τρίγωνο ΒΜΓ, λόγω των προηγούμενων ισοτήτων, έχουμε ˆ ˆ ˆ ΜΒΓ + ΒΓΜ + ΓΜΒ = 80 ω+ ϕ+ θ = 80 ω+ ϕ+ θ = 90. () Από το ορθογώνιο τρίγωνο ΑΒΓ λαμβάνουμε ˆ ϕ+ θ =Γ= 90 Αˆ. () Από τις σχέσεις () και () με αφαίρεση κατά μέλη λαμβάνουμε: ΒΜΖ ˆ = ω = Α ˆ. 8 Σχήμα (β) Επειδή το σημείο Θ ανήκει στη μεσοκάθετη του ΒΜ η ΘΖ είναι διχοτόμος της γωνίας ΒΘΕ ˆ. Επίσης, επειδή η ΒΕ είναι διάμεσος του ορθογώνιου τριγώνου ΑΒΓ προς την υποτείνουσα, θα είναι ΒΕ = = ΕΓ, οπότε το τρίγωνο ΒΕΓ είναι ισοσκελές με την ΕΔ ύψος και ΑΓ διχοτόμο της γωνίας ΒΕΓ ˆ, άρα και της γωνίας ΒΕΘ ˆ. Επομένως στο τρίγωνο ΒΘΕ το Ζ είναι το σημείο τομής των διχοτόμων του, οπότε και η ΒΖ διχοτομεί τη γωνία ΘΒΕ ˆ. Πρόβλημα 4 Αν υπάρχουν ακέραιοι x, ya, που επαληθεύουν την εξίσωση ( ) ( ) yx + y a x + y y a = 0, να αποδείξετε ότι ο αριθμός xy είναι τέλειο τετράγωνο ρητού αριθμού. Έστω ότι οι ακέραιοι,, x ya επαληθεύουν την εξίσωση: yx ( y a ) x y ( y a) + + = 0.

284 Μετά τις πράξεις και αναδιάταξη των όρων η εξίσωση, ως προς άγνωστο το a, γράφεται: y x a y a+ y x + xy+ y = 0. ( ) ( ) Σύμφωνα με την υπόθεση, η εξίσωση αυτή με άγνωστο το a έχει ακέραια λύση, αλλά και ακέραιους συντελεστές. Επομένως, η διακρίνουσα της είναι τέλειο τετράγωνο ακεραίου, δηλαδή υπάρχει κ τέτοιο, ώστε 4 ( )( ) ( ) ( ) Δ= 4y 4y y x x + xy+ y = 4y y y x = 4yx = xy x = κ. κ Από την τελευταία ισότητα προκύπτει ότι: xy = x, όπου ο αριθμός κ είναι ρητός. x Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου a 0 για τις οποίες η εξίσωση a + 6 =, a+ ax x x x 4x έχει δύο πραγματικές ρίζες με διαφορά 4. Μετά τις παραγοντοποιήσεις των όρων των κλασμάτων η εξίσωση γράφεται: ( a + ) + =. () a x+ x x x x x+ ( ) ( ) ( )( ) Πρέπει να ισχύουν x 0, ±, δηλαδή η εξίσωση θα λυθεί στο σύνολο {,0, }. Η εξίσωση () στο σύνολο {,0, } είναι ισοδύναμη τελικά με την εξίσωση ( ) ( ) x a x a a = 0, η οποία έχει διακρίνουσα Δ= ( a + ) και ρίζες x = a+ και x a a+ {,0, } a { 4,,0} και a {,0,} a {,0, } =. Επειδή και αφού από την υπόθεση είναι a 0, συμπεραίνουμε ότι η εξίσωση () έχει δύο ρίζες δεκτές, τις x = a και x = a, όταν είναι a, +,, 4. Επειδή είναι a+ ( a) = 4 a+ = 4 a+ = 4 ή a+ = 4 a = ή a =, η τιμή του a που ζητάμε είναι η a =. Πρόβλημα Αν y ακέραιος και x, να προσδιορίσετε όλα τα ζευγάρια (, ) συστήματος 9 x y που είναι λύσεις του + y x x+ > 0. ( Σ ) y + x < 0 Να παραστήσετε γραφικά στο Καρτεσιανό επίπεδο Oxy, το σύνολο των σημείων ( x, y) όπου ( x, y ) λύση του συστήματος (Σ). Μ,

285 0 Έχουμε + y x x+ > 0 + y > x x+ 0, y + x < 0 y < x 0 Από τις δύο τελευταίες εξισώσεις προκύπτει ότι: + y > 0 και y < 0 < y<. Επομένως οι δυνατές τιμές του y είναι y = 0 ή y =. Για y = 0, το σύστημα γίνεται: x x+ < < x x+ < x x+ > 0 και x x< 0 x < < x < < x < ( x< ή x> ) και 0< x< 0< x< ή < x<. 0< x < 4 Για y =, το σύστημα γίνεται: x x+ < < x x+ < x x+ > 0 και x x < 0 x < < x < < x< + < x < < x <. < x < Για τη γεωμετρική αναπαράσταση του συνόλου των λύσεων του συστήματος έχουμε: Σχήμα 4 Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ<ΑΓ, εγγεγραμμένο σε κύκλο cor (, ). Η διχοτόμος της γωνίας ˆΑ τέμνει τον κύκλο cor (, ) στο σημείο Μ. Ο κύκλος c (, ) ΜΑΜ τέμνει την προέκταση της ΑΓ στο σημείο Δ. Να αποδείξετε ότι ΓΔ=ΑΒ. ( ος τρόπος)

286 Έστω Ε το δεύτερο κοινό σημείο των περιφερειών ( c ) και ( c ). Τότε η ΑΕ είναι η κοινή χορδή των δύο κύκλων, άρα η ΟΜ είναι μεσοκάθετη της ΑΕ. Το Μ είναι το μέσο του τόξου ΒΓ (διότι η ΑΜ είναι διχοτόμος της γωνίας ˆΑ ). Άρα η ΟΜ είναι μεσοκάθετη και της ΒΓ. Επειδή οι χορδές ΒΓ και ΑΕ έχουν την ΟΜ κοινή μεσοκάθετη, συμπεραίνουμε ότι το τετράπλευρο ΑΒΓΕ είναι ισοσκελές τραπέζιο, οπότε: ΑΒ=ΕΓ. () Το τρίγωνο ΜΑΔ είναι ισοσκελές, αφού ΜΑ=ΜΔ ως ακτίνες του κύκλου ( c ). Άρα είναι ˆ ˆ Α ˆ ˆ Α =Δ =. Ισχύει επίσης ˆ ˆ Α Α =Ε = (εγγεγραμμένες στον κύκλο ( c ) και βαίνουν στο τόξο ΜΓ ). Σχήμα 5 ˆ Από τις τελευταίες ισότητες γωνιών συμπεραίνουμε ότι ˆ ˆ Α Ε =Δ = και σε συνδυασμό με την ισότητα ΜΔΕ ˆ = ΜΕΔ ˆ (που προκύπτει από το ισοσκελές τρίγωνο ΜΔΕ ), καταλήγουμε στην ισότητα των γωνιών ΓΔΕ ˆ = ΓΕΔ ˆ και στην ισότητα των ευθυγράμμων τμημάτων: ΕΓ=ΔΓ. () Από τις σχέσεις () και () έχουμε το ζητούμενο. ος Τρόπος Το τρίγωνο ΑΜΔ είναι ισοσκελές (ΜΑ=ΜΔ ακτίνες του κύκλου ( c )). Η ΑΜ είναι διχοτόμος της γωνίας ˆΑ, οπότε έχουμε: ˆ ˆ ˆ ˆ Α Α =Α =Δ =. () Από το ισοσκελές τρίγωνο ΑΜΔ, έχουμε: ˆ ˆ o ˆ ˆ o Μ ˆ ˆ + ω =ΑΜΔ= 80 Α Δ = 80 Α ˆ ˆ ˆ ˆ ˆ 80 o o Μ + ω = Α Μ ˆ = 80 Α ω. (4) Επίσης, ισχύουν οι ισότητες γωνιών: Β= ˆ ˆω (είναι εγγεγραμμένες στο κύκλο ( c ) και βαίνουν στο ίδιο τόξο)

287 Μ ˆ ˆ =Γ(είναι εγγεγραμμένες στο κύκλο ( c ) και βαίνουν στο ίδιο τόξο). Άρα έχουμε Μ ˆ = 80 o Α Β=Γ=Μ ˆ ˆ ˆ ˆ. (5) Σχήμα 6 Από τις ισότητες: Μ ˆ ˆ =Μ, ΜΒ = ΜΓ (διότι το Μ είναι μέσο του τόξου ΒΓ ) και ΜΑ = ΜΔ (διότι ΜΑ, ΜΔ ακτίνες του κύκλου ( c )), συμπεραίνουμε ότι τα τρίγωνα ΜΑΒ και ΜΔΓ (*) είναι ίσα, οπότε ΓΔ = ΑΒ. (*) Η ισότητα των τριγώνων, μπορεί να αποδειχθεί και με άλλους τρόπους. Παρατηρήσεις Διαφορετικά, θα μπορούσαμε να αποδείξουμε ότι τα σημεία Μ, Γ και το μέσο της ΔΕ είναι συνευθειακά. Ο κύκλος ( c ) τέμνει και τη προέκταση της ΑΒ. Αν ονομάσουμε Λ το σημείο τομής, τότε θα ισχύει ΒΛ = ΑΓ. Έτσι δημιουργείτε το ισοσκελές τρίγωνο ΑΔΛ με ΑΔ = ΑΛ = ΑΒ + ΑΓ και στη συνέχεια, μπορούμε να αποδείξουμε ότι ΑΜ ΔΛ. Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός ab, ρητοί τέτοιοι ώστε a < 4b. x + ax + b, όπου Επειδή από υπόθεση a 4b< 0, έπεται ότι x + ax+ b> 0, για κάθε x. Αν υποθέσουμε ότι οι αριθμοί x, x + ax + b = y είναι και οι δύο ρητοί, τότε και η διαφορά τους y x= r θα είναι ρητός. Έτσι έχουμε εφόσον + + = + + = = + r b + =, a r a a r και x+ r 0 ή ισοδύναμα, εφόσον r >. x ax b x r x ax b x r x ax b x rx r x Αντίστροφα, αν είναι r b a x=, όπου r ρητός με r >, τότε έχουμε a r

288 ( ) ( r ar+ b) 4 r b r b r ar + a r + br abr + b x + ax+ b= + a + b= = a r a r a r a r οπότε, αφού από υπόθεση a 4b< 0, θα είναι r ar+ b r ar+ b a y = x + ax+ b = =, r >, a r r a δηλαδή ο y είναι ρητός. ( ), Γ τάξη Λυκείου Πρόβλημα Να βρεθεί η αριθμητική πρόοδος αν, ν =,,,... που έχει πρώτο όρο α = α 0, διαφορά ω 0 και είναι τέτοια ώστε ο λόγος του αθροίσματος α + + αν των ν πρώτων όρων της προς το άθροισμα αν α ν των επόμενων ν το πλήθος όρων της είναι σταθερός, δηλαδή ανεξάρτητος του ν. Από την υπόθεση δίνεται ότι: Σ ν α + α ν = = c (ανεξάρτητο του ν ). () Σ ν Σ ν αν+ + αν Επειδή είναι α + ( ν ) ω ν Σ ν = α + + αν = και α + ( ν ) ω ν α + ( ν ) ω ν 4α + ( 8ν ) ω ν Σ ν Σ ν = =, η σχέση () γίνεται α + ( ν ) ω = c ( 8cω ω) ν + 4αc α cω+ ω = 0 4α + ( 8ν ) ω ( 8c ) ων + ( c )( α ω) = 0,για κάθε ν =,,,... ( 8c ) ω = 0 και ( c )( α ω) = 0 8c = 0 και c ή α ω = 0 c=, ω = α, 8 αφού 0 α, α,5 α,..., ν α,.... ω. Επομένως η αριθμητική πρόοδος που ζητάμε είναι η: ( ) Διαφορετικά, στην ισότητα ( 8c ) ων ( c )( α ω) 0 + =, που ισχύει για κάθε ν =,,,... μπορούμε να θεωρήσουμε ν = και ν = και να αφαιρέσουμε κατά μέλη τις ισότητες που προκύπτουν, οπότε λαμβάνουμε ( 8c ) ω = 0 και από αυτή ( c )( α ω) = 0, οπότε έχουμε πάλι το σύστημα: ( 8c ) ω = 0 c = 8, αφού ω 0. ( c )( a ω) = 0 ω = α α, α,5 α,..., ν α,.... Επομένως η αριθμητική πρόοδος που ζητάμε είναι η: ( )

289 4 Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x = z, y = x, z = y z 6 + x 6 + y Παρατηρούμε ότι 4 8z 8z 8z x = = z z,αφού ισχύει :, z 4 + ( z ) 4 + ( z ) και ομοίως λαμβάνουμε ότι: z y και y x. Επομένως, έχουμε: x = y = z. Τότε από την πρώτη εξίσωση λαμβάνουμε: 4 8x 4 x = x 4 ( x 8x + 6) = 0 x ( x 4) = x x= 0 ή x= ή x= (όλες με πολλαπλότητα ). Για x = 0, προκύπτει η λύση ( 0,0,0 ). Για x =, προκύπτουν οι λύσεις: (,, ), (,, ),(,, ) και (,, ). Για,,,,,,,, και,,. x =, προκύπτουν οι λύσεις: ( ) ( ) ( ) ( ) Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο cor (, ). Τα ύψη του ΑΔ, ΒΕ, ΓΖ τέμνουν τον περιγεγραμμένο κύκλο στα σημεία Α, Β, Γ αντίστοιχα. Αν Α, Β, Γ είναι τα μέσα των ευθυγράμμων τμημάτων ΟΔ, ΟE, Ο Z αντίστοιχα, να αποδείξετε ότι οι ευθείες ΑΑ,ΒΒ,ΓΓ περνάνε από το ίδιο σημείο. ( ος τρόπος) Παρατηρούμε ότι το σημείο Α είναι συμμετρικό του ορθοκέντρου Η ως προς την πλευρά ΒΓ. Πράγματι, αν θεωρήσουμε το σημείο Η συμμετρικό του Η ως προς την πλευρά ΒΓ, τότε έχουμε ˆ ˆ ΒΗ ˆ Γ = ΒΗΓ = 80 Α. Άρα το τετράπλευρο ΑΒΗΓ είναι εγγεγραμμένο στον περιγεγραμμένο κύκλο του τριγώνου ΑΒΓ, οπότε το σημείο Η συμπίπτει με το σημείο Α. Έστω Κ το αντιδιαμετρικό του σημείου Α και Μ το σημείο τομής της ΑΑ με την ΗΚ. Τότε στο τρίγωνο ΑΗΚ έχουμε ότι το σημείο Ο είναι μέσο της πλευράς ΑΚ και ότι το σημείο Δ είναι μέσο της πλευράς ΑΗ.(*) Άρα το τμήμα ΟΔ είναι ίσο και παράλληλο με το τμήμα ΗΚ.

290 5 Σχήμα 7 ΗΚ Επειδή τώρα ΟΔ = και η ΑΑ είναι διάμεσος στο τρίγωνο ΑΟΔ, συμπεραίνουμε ότι η ΑΜ είναι διάμεσος του τριγώνου ΑΗΚ. Έστω ότι οι διάμεσες ΑΜ και ΗΟ (του τριγώνου ΑΗΚ) τέμνονται στο σημείο G. Τότε θα ισχύει GΗ = GΟ, δηλαδή το σημείο G χωρίζει το τμήμα HO σε δύο τμήματα με λόγο :. Με ανάλογο τρόπο αποδεικνύουμε ότι και οι ΒΒ, ΓΓ διέρχονται από το σημείο G. ος τρόπος (με ομοιοθεσία) Σχήμα 8 Χρησιμοποιώντας τη πρόταση: Τα συμμετρικά του ορθοκέντρου τριγώνου, ως προς τις πλευρές του, βρίσκονται στο περιγεγραμμένο κύκλο του, που αποδείξαμε στην αρχή της προηγούμενης λύσης, συμπεραίνουμε ότι το Δ είναι μέσο του ΑΗ, το Ε είναι μέσο του ΒΗ και το Δ είναι μέσο του ΓΗ. Άρα το τρίγωνο ΑΒΓ είναι ομοιόθετο του (ορθικού) τριγώνου ΔΕΖ στην ομοιοθεσία με κέντρο το ορθόκεντρο Η και λόγο, ( ΗΑ = ΗΔ). Το Α είναι μέσο του ΟΔ, το Β είναι μέσο του ΟΕ και το Γ είναι μέσο του ΟΖ.

291 Άρα το ορθικό τρίγωνο ΔΕΖ, είναι ομοιόθετο του τριγώνου ΑΒΓ στην ομοιοθεσία με κέντρο το Ο και λόγο, ( ΟΔ = ΟΑ )., δηλαδή το τρίγωνο ΑΒΓ είναι ομοιόθετο του τριγώνου ΑΒΓ. Άρα οι ευθείες ΑΑ, ΒΒ, ΓΓ (που συνδέουν τις ομόλογες κορυφές) θα συντρέχουν στο κέντρο της ομοιοθεσίας (έστω Κ ) το οποίο θα βρίσκεται επάνω στην OΗ. 6 Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός abρητοί, τέτοιοι ώστε a < 6b. 4x ax + b, όπου Επειδή από υπόθεση a 6b< 0, έπεται ότι 4x ax+ b> 0, για κάθε x. Αν υποθέσουμε ότι οι αριθμοί x, 4x ax + b = y είναι και οι δύο ρητοί, τότε και η διαφορά y x= r θα είναι ρητός. Έτσι έχουμε b r 4x ax + b x = r 4x ax + b = x + r 4x ax + b = 4x + 4 rx + r x =, a + 4r εφόσον a r και x r 0 4 a +, ή ισοδύναμα εφόσον r >. 4 b r a Αντίστροφα, αν είναι x=, όπου r ρητός με r >, τότε έχουμε a+ 4r 4 b r a( b r ) 4x ax+ b= 4 + b a+ 4r a+ 4r 4 4r + a r + 4b + 8br + 4abr + 4ar r + ar+ b = = a+ 4r a+ 4r ( ) ( ) ( ) οπότε, αφού από υπόθεση a 6b< 0, θα είναι r + ar+ b r + ar+ b a y = 4 x ax+ b = =, r >, a+ 4r 4r+ a 4 δηλαδή ο y είναι ρητός.,

292 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, το ΣΤΑΘΕΡΟ και ΚΙΝΗΤΟ ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 0 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην 0 η Βαλκανική Μαθηματική Ολυμπιάδα (Αλβανία, Μάιος 0), στην 7 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Αττάλεια, Τουρκία, Ιούνιος 0) και στην 54 η Διεθνή Μαθηματική Ολυμπιάδα (Κολομβία, Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γρηγόριος Καλογερόπουλος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών

293 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 B τάξη Γυμνασίου Πρόβλημα Να συγκρίνετε τους αριθμούς Α= : και Β= : Μονάδες 5 Πρόβλημα Ένας φορητός υπολογιστής έχει τιμή πώλησης 70 ευρώ σε μετρητά. Όταν ο πελάτης τον πληρώσει σε ισόποσες μηνιαίες δόσεις, τότε επιβαρύνεται συνολικά με τόκους 5% πάνω στην τιμή πώλησης. Όταν ο πελάτης τον πληρώσει σε 4 ισόποσες μηνιαίες δόσεις τότε επιβαρύνεται συνολικά με τόκους 4% πάνω στην τιμή πώλησης. Να βρείτε σε καθεμία από τις δύο περιπτώσεις πόση θα είναι η μηνιαία δόση. Μονάδες 5 Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ. Από την κορυφή Α φέρουμε ευθύγραμμο τμήμα ΑΔ παράλληλο προς τη βάση ΒΓ και ίσο με την πλευρά ΑΒ. Η ευθεία ΒΔ τέμνει την πλευρά ΑΓ στο σημείο Ε. (α) Να αποδείξετε ότι η ευθεία ΒΔ διχοτομεί τη γωνία ΑΒΓ ˆ. (β) Αν το τρίγωνο ΑΔΕ είναι ισοσκελές, να βρείτε πόσων μοιρών είναι η γωνία ΒΑΓ ˆ = ω. Μονάδες 5 Πρόβλημα 4 Από τους μαθητές ενός Γυμνασίου το 60% παίζει ποδόσφαιρο, το 45% παίζει μπάσκετ, ενώ το 5% παίζει και ποδόσφαιρο και μπάσκετ. Αν υπάρχουν 4 μαθητές που δεν παίζουν κανένα από τα δύο αθλήματα, να βρείτε πόσους μαθητές έχει το Γυμνάσιο, πόσοι από αυτούς παίζουν ποδόσφαιρο και πόσοι από αυτούς παίζουν μπάσκετ. Μονάδες 5 Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

294 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Γυμνασίου Πρόβλημα (α) Να βρείτε την τιμή της παράστασης: x x 8x + 7 y, όταν x Α= + + =, y = y y y Μονάδες 89 (β) Να βρείτε το πλήθος των ψηφίων του αριθμού Β = 6 5, όταν αυτός γραφεί στη δεκαδική αναπαράστασή του. Μονάδες Πρόβλημα Από τους μαθητές ενός Γυμνασίου το 65% παίζει ποδόσφαιρο, το 45% παίζει μπάσκετ, ενώ το 0% παίζει και ποδόσφαιρο και μπάσκετ. Επιπλέον υπάρχουν μαθητές που δεν παίζουν κανένα άθλημα, ενώ υπάρχουν άλλοι 4 μαθητές που παίζουν μόνο βόλεϊ. Να βρείτε πόσους μαθητές έχει το Γυμνάσιο, πόσοι από αυτούς παίζουν ποδόσφαιρο και πόσοι από αυτούς παίζουν μπάσκετ. Μονάδες 5 Πρόβλημα Δίνεται ισόπλευρο τρίγωνο ΑΒΓ πλευράς α. Προεκτείνουμε το ύψος του ΑΔ προς το μέρος του A κατά τμήμα ΑΕ = ΑΔ. Φέρουμε τις ΕΒ, ΕΓ και εξωτερικά του τριγώνου ΕΒΓ κατασκευάζουμε ισόπλευρο τρίγωνο ΕΖΓ. Έστω Μ το μέσον του τμήματος ΑΕ. (i) Να αποδείξετε ότι: ΑΖ = ΕΓ. (ii) Να βρείτε το εμβαδό του τετραπλεύρου ΑΓΖΕ ως συνάρτηση του α. (iii) Να βρείτε το εμβαδό του τετραπλεύρου ΒΓΖΜ ως συνάρτηση του α. Πρόβλημα 4 Δίνονται τα πολυώνυμα P x ax bx c ax b ( ) = ( + + )( + ) και ( ) 4 abcde είναι θετικοί ακέραιοι. Αν ισχύει ότι ( ) abcde για τις οποίες τα πολυώνυμα P( x) και ( ) όπου οι συντελεστές,,,, τιμές των,,,, Q x = a x + x + dx+ e, Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ Q x είναι ίσα.. Μονάδες 5 P =, να βρείτε τις Μονάδες 5

295 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Α τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: ( x ) x + x x + + x +, x( x + 4)( x 5x+ 4) = Μονάδες 5 Πρόβλημα Να απλοποιήσετε τις κλασματικές παραστάσεις ( x + y )( x y )( x + y ) 4x + 6y + 6xy 5 Α ( xy, ) = και Β ( xy, ) =, 4 4 ( x y )( x + y + x y ) x+ 4y+ 5 αν y ± x και x+ 4y+ 5 0, και να λύσετε την εξίσωση ( x, y) ( x, y) Α =Β. Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ABΓ και σημεία Δ, E των πλευρών του AΓ, ΑΒ αντίστοιχα, ώστε AΔ =ΑΕ. Οι κύκλοι c (B, BE) και c (Γ, ΓΔ) τέμνουν την ευθεία ΒΓ στα σημεία Β, Β και Γ, Γ, αντίστοιχα. Το σημείο Β βρίσκεται εκτός του τμήματος ΒΓ προς το μέρος του Β και το σημείο Γ βρίσκεται εκτός του τμήματος ΒΓ προς το μέρος του Γ. Να αποδείξετε ότι: (α) Τα σημεία E, Β, Γ, Δ βρίσκονται επάνω σε κύκλο, έστω c. (β) Τα σημεία E, Β, Γ, Δ βρίσκονται επάνω σε κύκλο, έστω c 4. (γ) Το σημείο A και τα κέντρα των κύκλων c και c 4, βρίσκονται επάνω στην ίδια ευθεία. Μονάδες 5 Πρόβλημα 4 Δίνεται η εξίσωση ( ) = 0, ax a x x όπου x άγνωστος και a παράμετρος. Να λύσετε την εξίσωση για τις διάφορες τιμές της παραμέτρου a. Μονάδες 5 Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

296 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να αποδείξετε ότι για κάθε xy, ισχύει ότι: Να βρείτε τα ζεύγη (, ) x+ y + x+ + y+ 5. x y ακέραιων αριθμών, με x < 0, για τα οποία ισχύει ή ισότητα: x+ y + x+ + y+ = 5. Μονάδες 5 Πρόβλημα Αν για τους πραγματικούς αριθμούς x, y ισχύει ότι να αποδείξετε ότι: y. ( ) 4 ( )( ) x y y+ y y xy x+ y y, Μονάδες 5 Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ABΓ με AB < AΓ < BΓ. Εξωτερικά του τριγώνου θεωρούμε ισοσκελή τρίγωνα ABΔ (AB = AΔ ) και AΓΕ ( AΓ = AΕ ) με ΒΑΔ ˆ = ΓΑΕ ˆ = ˆ θ < 90. Οι ΒΕ και ΓΔ τέμνονται στο σημείο K. Οι περιγεγραμμένοι κύκλοι των τριγώνων AΔΓ και ABE τέμνονται στο σημείο Μ. Να αποδείξετε ότι ΒΑΚ ˆ = ΓΑΜ ˆ. Μονάδες 5 Πρόβλημα 4 Να προσδιορίσετε όλες τις τιμές του x για τις οποίες ο αριθμός x + + x είναι ακέραιος. Μονάδες 5 Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

297 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Λυκείου Πρόβλημα Στο σύνολο των ακεραίων, να λυθεί το σύστημα: xy = z +, y = x + x +. Πρόβλημα Να βρείτε τη συνάρτηση f :, για την οποία ισχύει: ( ) ( ) ( ) f x y = f x+ y f x y, για κάθε xy,. Μονάδες 5 Μονάδες 5 Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού x για τις οποίες ο αριθμός a x + a+ x, όπου a > πραγματική παράμετρος, παίρνει ακέραιες τιμές. Στη συνέχεια να αποδείξετε ότι είναι δυνατόν να ορίσουμε την τιμή της παραμέτρου a έτσι ώστε ο αριθμός a x + a+ x να είναι ακέραιος περισσότερες ή ίσες από K φορές, όπου K τυχόν θετικός ακέραιος. Μονάδες 5 Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ABC (AB< AC < BC) εγγεγραμμένο σε κύκλο cor (, ). Η προέκταση του ύψους του AD τέμνει τον περιγεγραμμένο κύκλο του cor (, ) στο σημείο E. Ο κύκλος c (, ) D DA τέμνει την πλευρά AC στο σημείο T, την ευθεία AB στο σημείο S, τον κύκλο cor (, ) στο σημείο H και την ευθεία OA στο σημείο Z. Να αποδείξετε ότι: (α) Το τετράπλευρο SBTC είναι εγγράψιμο σε κύκλο, έστω c. (β) Τα σημεία ODEZH,,,, και το κέντρο του κύκλου c, βρίσκονται επάνω στο ίδιο κύκλο. Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ Μονάδες 5

298 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B τάξη Γυμνασίου Πρόβλημα Να συγκρίνετε τους αριθμούς Α= : και Β= : Έχουμε Α= : = = 8 + = Β= : : : 4 + = + = + = + = Επειδή Α Β= = = = > 0, έπεται ότι Α>Β Πρόβλημα Ένας φορητός υπολογιστής έχει τιμή πώλησης 70 ευρώ σε μετρητά. Όταν ο πελάτης τον πληρώσει σε ισόποσες μηνιαίες δόσεις, τότε επιβαρύνεται συνολικά με τόκους 5% πάνω στην τιμή πώλησης. Όταν ο πελάτης τον πληρώσει σε 4 ισόποσες μηνιαίες δόσεις τότε επιβαρύνεται συνολικά με τόκους 4% πάνω στην τιμή πώλησης. Να βρείτε σε καθεμία από τις δύο περιπτώσεις πόση θα είναι η μηνιαία δόση.. Όταν ο πελάτης πληρώσει τον υπολογιστή σε ισόποσες μηνιαίες δόσεις, τότε επιβαρύνεται συνολικά με τόκους 5% πάνω στην τιμή πώλησης., δηλαδή επιβαρύνεται με 70 = ευρώ, οπότε θα πληρώσει συνολικά = 756 ευρώ. Επομένως η μηνιαία δόση θα είναι 756 : = 6 ευρώ. Όταν ο πελάτης πληρώσει τον υπολογιστή σε 4 ισόποσες μηνιαίες δόσεις, τότε επιβαρύνεται συνολικά με τόκους 4% πάνω στην τιμή πώλησης, δηλαδή επιβαρύνεται με 4 70 = 00,8 ευρώ, οπότε θα πληρώσει συνολικά ,8 = 80,8 ευρώ. Επομένως η 00 μηνιαία δόση θα είναι 80,8: 4 = 4, ευρώ.

299 Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ. Από την κορυφή Α φέρουμε ευθύγραμμο τμήμα ΑΔ παράλληλο προς τη βάση ΒΓ και ίσο με την πλευρά ΑΒ. Η ευθεία ΒΔ τέμνει την πλευρά ΑΓ στο σημείο Ε. (α) Να αποδείξετε ότι η ευθεία ΒΔ διχοτομεί τη γωνία ΑΒΓ ˆ. (β) Αν το τρίγωνο ΑΔΕ είναι ισοσκελές, να βρείτε πόσων μοιρών είναι η γωνία ΒΑΓ ˆ = ω. (α) Το τρίγωνο AB Δ είναι ισοσκελές ( AB = AΔ ), οπότε: Δ ˆ ˆ = Β. Οι A Δ και ΒΓ είναι παράλληλες, οπότε: Δ ˆ ˆ = Β, ως εντός εναλλάξ γωνίες. Δ ˆ =Β ˆ =Β ˆ = ˆx. Επομένως η ΒΔ διχοτομεί την γωνία ΑΒ ˆ Γ. Άρα Σχήμα (β) Από ο άθροισμα των γωνιών του τριγώνου A ΔΕ, έχουμε : o xˆ+ yˆ+ zˆ = 80 (). Από το άθροισμα των γωνιών του τριγώνου AB Δ, έχουμε: o xˆ+ yˆ+ ˆ ω = 80 (). Από την παραλληλία τέλος των A Δ και ΒΓ (με τέμνουσα την A Γ ), έχουμε: yˆ =ΑΓΒ=ΑΒΓ= ˆ ˆ xˆ (). Από τις σχέσεις () και () (σε συνδυασμό με τη σχέση ()), έχουμε: o xˆ + zˆ = 80 (A) και o 4xˆ + ˆ ω = 80 (B). Στη συνέχεια διακρίνουμε τις περιπτώσεις: Αν yˆ = zˆ, τότε yˆ = zˆ = xˆ και από τις σχέσεις (Α) και (Β) λαμβάνουμε: x ˆ = 6 o και ˆ ω = 6 o. Αν xˆ = zˆ, τότε από τη σχέση (Α) παίρνουμε: xˆ = zˆ = 45 o o, οπότε Β ˆ = 90, άτοπο. Αν xˆ = yˆ, τότε από τη σχέση () παίρνουμε: x ˆ = 0 o, άτοπο. Άρα, αν το τρίγωνο ΑΔΕ είναι ισοσκελές, τότε ΒΑΓ ˆ = ω = 6 0. Πρόβλημα 4 Από τους μαθητές ενός Γυμνασίου το 60% παίζει ποδόσφαιρο, το 45% παίζει μπάσκετ, ενώ το 5% παίζει και ποδόσφαιρο και μπάσκετ. Αν υπάρχουν 4 μαθητές που δεν παίζουν κανένα από τα δύο αθλήματα, να βρείτε πόσους μαθητές έχει το Γυμνάσιο, πόσοι από αυτούς παίζουν ποδόσφαιρο και πόσοι από αυτούς παίζουν μπάσκετ. Ο αριθμός των μαθητών που παίζουν ένα τουλάχιστον από τα δύο αθλήματα είναι σε ποσο = 90% των μαθητών του Γυμνασίου. Επομένως ο αριθμός των μαθητών που στό ( )

300 δεν ασχολούνται με κανένα από τα δύο αθλήματα είναι σε ποσοστό = 0% των μαθητών του Γυμνασίου. Σύμφωνα με την υπόθεση, αυτοί οι μαθητές είναι 4, οπότε το Γυμνάσιο 00 έχει συνολικά 4 = 40 μαθητές. Επομένως, οι μαθητές που παίζουν ποδόσφαιρο είναι 0 60 =, ενώ οι μαθητές που παίζουν μπάσκετ είναι Γ τάξη Γυμνασίου = Πρόβλημα (α) Να βρείτε την τιμή της παράστασης: x x 8x + 7 y, όταν x, y Α= + + = =. y y y 89 (β) Να βρείτε το πλήθος των ψηφίων του αριθμού Β = 6 5, όταν αυτός γραφεί στη δεκαδική αναπαράστασή του. (α) Για x =, y = έχουμε x y ( ) ( ) 6 = = =, 6 x y = = = και ( ) x + 7 y = = = =. y Άρα έχουμε x x 8x + 7y 4 Α= = + + = + = + = y y y (β) Ο αριθμός Β γράφεται στη μορφή ( ) ( ) ( ) Β= 6 5 = 5 = 5 = 5 = 5 = 0 = 8 0. Επομένως, ο αριθμός Β έχει πρώτο ψηφίο το 8 και ακολουθούν 89 μηδενικά, δηλαδή έχει συνολικά στη δεκαδική του αναπαράσταση 90 ψηφία. Πρόβλημα Από τους μαθητές ενός Γυμνασίου το 65% παίζει ποδόσφαιρο, το 45% παίζει μπάσκετ, ενώ το 0% παίζει και ποδόσφαιρο και μπάσκετ. Επιπλέον υπάρχουν μαθητές που δεν παίζουν κανένα άθλημα, ενώ υπάρχουν άλλοι 4 μαθητές που παίζουν μόνο βόλεϊ. Να βρείτε πόσους μαθητές έχει το Γυμνάσιο, πόσοι από αυτούς παίζουν ποδόσφαιρο και πόσοι από αυτούς παίζουν μπάσκετ. Ο αριθμός των μαθητών που παίζουν ένα τουλάχιστον από τα δύο αθλήματα (ποδόσφαιρο ή μπάσκετ) είναι σε ποσοστό ( ) 0 = 90% των μαθητών του Γυμνασίου. Επομένως ο α- ριθμός των μαθητών που δεν ασχολούνται με κανένα από τα δύο αυτά αθλήματα είναι σε ποσοστό = 0% των μαθητών του Γυμνασίου. Σύμφωνα με την υπόθεση, αυτοί οι μαθητές είναι 4 + = 6, οπότε το Γυμνάσιο έχει συνολικά 6 = 60 μαθητές. Επομένως, οι 00 0

301 4 μαθητές που παίζουν ποδόσφαιρο είναι 45 είναι 60 = = 4, ενώ οι μαθητές που παίζουν μπάσκετ 00 Πρόβλημα Δίνεται ισόπλευρο τρίγωνο ΑΒΓ πλευράς α. Προεκτείνουμε το ύψος του ΑΔ προς το μέρος του A κατά τμήμα ΑΕ = ΑΔ. Φέρουμε τις ΕΒ, ΕΓ και εξωτερικά του τριγώνου ΕΒΓ κατασκευάζουμε ισόπλευρο τρίγωνο ΕΖΓ. Έστω Μ το μέσον του τμήματος ΑΕ. (i) Να αποδείξετε ότι: ΑΖ = ΕΓ. (ii) Να βρείτε το εμβαδό του τετραπλεύρου ΑΓΖΕ ως συνάρτηση του α. (iii) Να βρείτε το εμβαδόν του τετραπλεύρου ΒΓΖΜ ως συνάρτηση του α. Σχήμα (i) Τα τρίγωνα ΕΒΓ και ΖΑΓ έχουν:. ΒΓ = ΑΓ (διότι το τρίγωνο ΑΒΓ είναι ισόπλευρο).. ΕΓ = ΖΓ (διότι το τρίγωνο ΑΕΓ είναι ισόπλευρο).. ΕΓΒ ˆ = ΖΓΑ ˆ = 60 o + xˆ, όπου ˆx = ΑΓΕ ˆ. Άρα τα τρίγωνα ΕΒΓ και ΖΑΓ είναι ίσα (έχουν δύο πλευρές και τις περιεχόμενες γωνίες ίσες), οπότε θα έχουν και ΑΖ=ΕΓ. (ii) Σημειώνουμε πρώτα ότι το τρίγωνο ΑΒΓ είναι ισόπλευρο πλευράς α, οπότε το ύψος α α του ΑΔ έχει μήκος. Άρα είναι ΑΕ = και ΕΔ = α Έχουμε ότι: ( ΑΓΖΕ ) = ( ΑΓΖ ) + ( ΖΑΕ ) = ( ΕΒΓ ) + ( ΖΑΕ ), αφού λόγω της ισότητας των τριγώνων ΕΒΓ και ΑΓΖ έπεται ότι έχουν και ίσα εμβαδά. Για το τρίγωνο ΕΒΓ θεωρούμε ως α βάση το τμήμα ΒΓ = α με αντίστοιχο ύψος ΕΔ = = α, οπότε έχει εμβαδό α ( ΕΒΓ ) = α α =.

302 Στο τρίγωνο ΖΑΕ θεωρούμε ως βάση το τμήμα α ΑΕ = ΑΔ = 5. Επειδή το τρίγωνο αυτό είναι ισοσκελές ( ΑΖ = ΕΓ = ΖΕ ) και το Μ είναι μέσο του τμήματος ΑΕ έπεται ότι το ΖΜ είναι ύψος του τριγώνου ΖΑΕ που αντιστοιχεί στη βάση ΑΕ. Από το Πυθαγόρειο θεώρημα στο τρίγωνο ΖΑΜ λαμβάνουμε ΖΜ = ΖΑ ΑΜ = ΕΓ ΑΜ = ΕΔ +ΔΓ ΑΜ ( α ) 7 = + α α α α α α. 4 = + = α 7α 7α Άρα έχουμε ( ΖΑΕ ) = =, οπότε 4 6 α 7α 5α ( ΑΓΖΕ ) = ( ΕΒΓ ) + ( ΖΑΕ ) = + =. 6 6 (iii) Το τετράπλευρο ΒΓΖΜ είναι τραπέζιο ( ΖΜ ΒΓ, αφού και οι δύο είναι κάθετες προς 7α την ευθεία ΔΕ. Βάσεις του τραπεζίου αυτού είναι οι ΒΓ = α, ΖΜ = και ύψος το τμήμα 4 α α α ΔΜ = ΔΑ + ΔΜ = + =, οπότε έχει εμβαδό 4 4 7α α α ( ΒΓΖΜ ) = ( ΒΓ + ΖΜ) ΔΜ = α + =. 4 4 Πρόβλημα 4 Δίνονται τα πολυώνυμα P x ax bx c ax b ( ) = ( + + )( + ) και ( ) 4 abcde είναι θετικοί ακέραιοι. Αν ισχύει ότι ( ) abcde για τις οποίες τα πολυώνυμα P( x) και ( ) όπου οι συντελεστές,,,, τιμές των,,,, Q x = a x + x + dx+ e, Q x είναι ίσα. P =, να βρείτε τις Από την ισότητα P () = έχουμε ότι P( ) = ( a+ b+ c)( a+ b) =, από την οποία, λόγω της υπόθεσης ότι οι abc,, είναι θετικοί ακέραιοι, οπότε a+ b+ c> a+ b, έπεται ότι a+ b+ c= 7 a+ b+ c= () ή. ( ) a+ b= a+ b= Επειδή οι ab, είναι θετικοί ακέραιοι η εξίσωση a+ b= του συστήματος () είναι αδύνατη, οπότε και το σύστημα () είναι αδύνατο. Από το σύστημα () λαμβάνουμε a+ b= και c = 4. P x γράφεται στη μορφή Το πολυώνυμο ( ) οπότε έχουμε ( ) ( )( ) ( ) P x = ax + bx + c ax + b = a x + abx + b + ac x + bc, ( ) ( ) {, 4,, } P x = Q x a = a ab = b + ac = d bc = e. Επειδή c = 4 και a+ b=, τελικά έχουμε τις εξισώσεις: a+ b=, ab=, c= 4, b + 4 a= d, 4 b= e, abcde,,,, θετικοί ακέραιοι, a=, b=, c= 4, d = 8 e= 8 ή a=, b=, c= 4, d = 9 e= 4.

303 6 x + 4> 0, για κάθε x, ενώ η εξίσωση Α τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: ( x ) x + x x + + x +, x( x + 4)( x 5x+ 4) = Έχουμε ( x ) x + x x + + x + ( x ) + ( x + x) x + + x 4 4. x x+ + x + x x + + x x x Επομένως η ανίσωση του συστήματος αληθεύει για x [, ]. Επιπλέον, έχουμε x x + 4 x 5x+ 4 = 0 x= 0 ή x + 4= 0 ή x 5x+ 4= 0. Η εξίσωση ( )( ) x + 4= 0 είναι αδύνατη στο, αφού x 5x+ 4= 0 έχει διακρίνουσα Δ= 9> 0 και ρίζες x= ή x= 4. Επομένως η εξίσωση του συστήματος έχει τις ρίζες x= 0 ή x= ή x= 4 Επειδή 4 [,], το σύστημα αληθεύει για x = 0 ή x =. Πρόβλημα Να απλοποιήσετε τις κλασματικές παραστάσεις ( x + y )( x y )( x + y ) 4x + 6y + 6xy 5 Α ( xy, ) = και Β ( xy, ) =, 4 4 ( x y )( x + y + x y ) x+ 4y+ 5 αν y ± x και x+ 4y+ 5 0, και να λύσετε την εξίσωση ( x, y) ( x, y) Α =Β. Λόγω των υποθέσεων y ± x και x+ 4y+ 5 0, δεν μηδενίζονται οι παρανομαστές των δύο παραστάσεων, οπότε αυτές ορίζονται. Με πράξεις στον παρανομαστή και στον αριθμητή Α x, y λαμβάνουμε: της παράστασης ( ) ( )( )( ) 4 4 ( x y )( x + y + x y ) ( )( ) 6 6 x + y x y x + y x + y x y Α ( x, y) = = = x + y. 6 6 x y Η απλοποίηση μπορεί επίσης να γίνει με χρήση της παραγοντοποίησης ( ) ( ) ( )( ) 6 6 x y = x y = x y 4 4 x + x y + y ή των παραγοντοποιήσεων x y = x y x + xy+ y, x + y = x+ y x xy+ y Έχουμε επίσης ( )( ) ( )( ) ( ) ( )( ) 4 4 x y x y x y x y x y xy x y xy + + = + =

304 7 ( x+ 4y+ 5)( x+ 4y 5) ( x y) 4x ( ) + 6y + 6xy 5, + 4 Β xy = = 5 x+ 4y+ 5 x+ 4y+ 5 Επομένως η εξίσωση ( x, y) ( x, y) = = x+ 4y 5. x+ 4y+ 5 Α =Β γίνεται: x + y = x+ 4y 5 x x+ y 4y+ 5= 0 x + y = 0 ( ) ( ) ( ) ( ) x = 0 και y = 0 (διαφορετικά θα είχαμε x + y > 0) x=, y =. Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ABΓ και σημεία Δ,E των πλευρών του AΓ, ΑΒ αντίστοιχα, ώστε AΔ =ΑΕ. Οι κύκλοι c (B, BE) και c (Γ, ΓΔ) τέμνουν την ευθεία ΒΓ στα σημεία Β, Β και Γ, Γ, αντίστοιχα. Το σημείο Β βρίσκεται εκτός του τμήματος ΒΓ προς το μέρος του Β και το σημείο Γ βρίσκεται εκτός του τμήματος ΒΓ προς το μέρος του Γ. Να αποδείξετε ότι: (α) Τα σημεία E, Β, Γ, Δ βρίσκονται επάνω σε κύκλο, έστω c. (β) Τα σημεία E, Β, Γ, Δ βρίσκονται επάνω σε κύκλο, έστω c 4. (γ) Το σημείο A και τα κέντρα των κύκλων c και c 4, βρίσκονται επάνω στην ίδια ευθεία.. Σχήμα (α) Το τρίγωνο ΒΕΒ είναι ισοσκελές (οι πλευρές ΒΕ και ΒΒ είναι ακτίνες του κύκλου c ), οπότε η μεσοκάθετη της πλευράς EΒ είναι διχοτόμος της γωνίας ˆΒ και κατά συνέπεια θα διέρχεται από το έκκεντρο I του τριγώνου ABΓ. Επιπλέον ισχύει: IE = IB ().

305 8 Το τρίγωνο ΓΔΓ είναι ισοσκελές (οι πλευρές ΓΔ και ΓΓείναι ακτίνες του κύκλου c ), οπότε η μεσοκάθετη της πλευράς ΔΓ είναι διχοτόμος της γωνίας ˆΓ και κατά συνέπεια θα διέρχεται από το έκκεντρο I του τριγώνου ABΓ. Επιπλέον ισχύει: IΔ = IΓ (). Το τρίγωνο AEΔ είναι ισοσκελές (διότι AΔ = AΕ ), άρα η μεσοκάθετη της πλευράς EΔ είναι διχοτόμος της γωνίας Αˆ και κατά συνέπεια θα διέρχεται από το έκκεντρο I του τριγώνου ABΓ. Επιπλέον ισχύει: IΔ = IE (). Επομένως, οι μεσοκάθετες των τμημάτων ΒΕ, EΔ, ΔΓ περνάνε από το έκκεντρο I του τριγώνου ABΓ, οπότε (σε συνδυασμό με τις ισότητες (), (), () ) συμπεραίνουμε ότι IΔ = IE = IB = IΓ := r, δηλαδή τα σημεία E, Β, Γ, Δ βρίσκονται επάνω σε κύκλο c με κέντρο το I και ακτίνα r. (β) Με ανάλογο τρόπο αποδεικνύουμε ότι τα σημεία E,Β,Γ,Δ βρίσκονται επάνω σε κύκλο c 4 με κέντρο το παράκεντρο I α του τριγώνου ABΓ και ακτίνα r α : = IαΔ = IE α = I α Γ = I α Β. (γ) Τα κέντρα των παραπάνω κύκλων ( c και c 4 ) βρίσκονται επάνω στη διχοτόμο της γωνίας ˆΑ, οπότε θα είναι συνευθειακά με τη κορυφή Α. Πρόβλημα 4 Δίνεται η εξίσωση ( ) = 0, ax a x x όπου x άγνωστος και a παράμετρος. Να λύσετε την εξίσωση για τις διάφορες τιμές της παραμέτρου a. Για να ορίζεται η x πρέπει να είναι x. Η εξίσωση γράφεται στην ισοδύναμη μορφή ax + a x+ = x, x. () ( ) Για a = 0 έχουμε την εξίσωση = x, x, (αδύνατη, αφού > 0). Για a 0, το πρώτο μέλος της () είναι τριώνυμο με διακρίνουσα Δ = 0, οπότε η εξίσωση γράφεται ισοδύναμα ως ax + = x, x. () Επειδή είναι ( ) ( ) ax + 0 και x 0, x, έπεται ότι η εξίσωση () έχει λύση, αν, και μόνον αν, ax + = 0 και x = 0, x x =, εφόσον a =. Επομένως, η δεδομένη εξίσωση έχει μόνο για a = τη λύση x =.

306 9 Β τάξη Λυκείου Πρόβλημα Να αποδείξετε ότι για κάθε xy, ισχύει ότι: Να βρείτε τα ζεύγη (, ) x+ y + x+ + y+ 5. x y ακέραιων αριθμών με x < 0 για τα οποία ισχύει ή ισότητα x+ y + x+ + y+ = 5. Για κάθε a ισχύει ότι: a a, (ηισότηταισχύειότανa 0) και a a,(η ισότητα ισχύει όταν a 0). Άρα έχουμε x+ y ( x+ y ), x+ x+ και y+ y+, από τις οποίες με πρόσθεση κατά μέλη προκύπτει: x+ y + x+ + y+ ( x+ y ) + x+ + y+ = 5. Η ισότητα ισχύει, αν, και μόνον αν, και οι τρεις σχέσεις αληθεύουν ως ισότητες, δηλαδή, αν, και μόνον αν, x+ y 0 και x + 0 και y + 0 x + y και x και y. Επειδή ζητάμε όλα τα ζεύγη των ακέραιων αριθμών ( x, y ) με x < 0, για τα οποία ισχύει η ισότητα, έχουμε x {, }, y {,,0,,,... }, οπότε για να ισχύει η συνθήκη x + y, πρέπει και αρκεί: xy,,,,,,0,,,,,,,,,,,,0,,,,. { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) Πρόβλημα Αν για τους πραγματικούς αριθμούς x, y ισχύει ότι να αποδείξετε ότι: y <. Έχουμε ότι ( + ) < 4 ( )( + ) x y y y y xy x y y, x ( y y+ ) < 4y( y )( xy x+ y y ) x ( y y ) 4y( y )( xy x y y ) 0 x ( y y ) y( y )( y ) x y( y )( y y ) x ( y y ) 4y( y y ) x 4y ( y y ) 0 ( y y )( x xy y ) ( y y )( x y) + + < < < < 0 ( )( ) ( ) y y+ < x y 0, αφού ισχύει 0, y y < 0 < y<. Από την τελευταία σχέση λαμβάνουμε y < y< < y < < < < y < y <.

307 0 Πρόβλημα Δίνεται οξυγώνιο σκαληνό τρίγωνο ABΓ με AB < AΓ < BΓ. Εξωτερικά του τριγώνου θεωρούμε ισοσκελή τρίγωνα ABΔ (AB = AΔ ) και AΓΕ ( AΓ = AΕ ) με ΒΑΔ ˆ = ΓΑΕ ˆ = ˆ θ < 90. Οι ΒΕ και ΓΔ τέμνονται στο σημείο K. Οι περιγεγραμμένοι κύκλοι των τριγώνων AΔΓ και ABE τέμνονται στο σημείο Μ. Να αποδείξετε ότι ΒΑΚ ˆ = ΓΑΜ ˆ. Σχήμα 4 Συγκρίνουμε τα τρίγωνα ΑΔΓ και ΑΒΕ :. ΑΔ = ΑΒ (διότι το τρίγωνο ΑΔΒ είναι ισοσκελές).. ΑΓ = Α E (διότι το τρίγωνο ΑΕΓ είναι ισοσκελές).. ΔΑΓ ˆ = ΒΑΕ ˆ = Α ˆ + ˆ θ Άρα τα τρίγωνα ΑΔΓ, ΑΒΕ είναι ίσα και κατά συνέπεια θα είναι ίσοι και οι περιγεγραμμένοι κύκλοι τους c και c. Η γωνία ΑΜΔ ˆ είναι εγγεγραμμένη στον κύκλο c και βαίνει στο τόξο ΑΔ. Η γωνία ΑΜΒ ˆ είναι εγγεγραμμένη στον κύκλο c και βαίνει στο τόξο ΑΒ. Επειδή όμως ΑΔ = ΑΒ (διότι το τρίγωνο ΑΔΒ είναι ισοσκελές) και οι κύκλοι c, c είναι ίσοι, συμπεραίνουμε ότι: ΑΜΔ ˆ = ΑΜΒ ˆ. Άρα τα σημεία ΔΒΜ,, είναι συνευθειακά. Από την ισότητα των τριγώνων ΑΔΓ και ΑΒΕ, συμπεραίνουμε ότι ˆΒ ˆ =Δ. Άρα το τετράπλευρο ΑΚΒΔ είναι εγγράψιμο, επομένως : () Α ˆ ˆ =Δ. Η γωνία ˆΔ είναι εγγεγραμμένη στον κύκλο c και βαίνει στο τόξο ΜΓ. Η γωνία ˆΑ είναι εγγεγραμμένη στον κύκλο c και βαίνει στο τόξο ΜΓ. Άρα έχουμε: Α ˆ ˆ =Δ. () Από τις σχέσεις () και (), έχουμε: Α ˆ ˆ =Α.

308 Πρόβλημα 4 Να προσδιορίσετε όλες τις τιμές του x για τις οποίες είναι ακέραιος ο αριθμός Α= x + + x. Ο αριθμός Α ορίζεται όταν x 0 και + x 0 x. Αν υποθέσουμε ότι Α= x + + x = n, τότε θα είναι Α = n > 0 και ισχύει: Επειδή Α= x + + x = n Α == 6 + 4x = n n 4x = () x, λόγω της () και της υπόθεσης ότι n, έπεται ότι: 0 4 n n 0 6 n 5 n 6,7 { } +. Για n = 6 η εξίσωση () γίνεται 4x = x = 5 x = 6 x=± 6. Για n = 7 η εξίσωση () γίνεται x = 69 4x = x = x=± Γ τάξη Λυκείου Πρόβλημα Στο σύνολο των ακεραίων, να λυθεί το σύστημα: xy = z +, y = x + x +. Επειδή είναι x, για κάθε τιμή του x, έπεται ότι y > x y x y + xy+ x > 0 y x> 0 y > x, + > 0 y y ( )( ) αφού y + xy+ y = x+ + > 0 (η περίπτωση x= y = 0 δεν επαληθεύει τις εξισώσεις 4 του συστήματος). Επειδή οι x, y είναι ακέραιοι, από τη σχέση y > x, έπεται ότι z ( ) y x y x y x x x () Από τη δεύτερη εξίσωση του συστήματος και την () λαμβάνουμε x + x + x + x + x+ x + x 0 x {,,,0}. () Για x =, λαμβάνουμε y = 8 y =. Για x =, λαμβάνουμε y = y = (απορρίπτεται, αφού xy = z + > 0). Για x =, λαμβάνουμε y = (αδύνατη στο ). Η τιμή x = 0, απορρίπτεται, αφού πρέπει xy = z + > 0. Άρα η μοναδική αποδεκτή περίπτωση είναι x =, y =, οπότε προκύπτει = 4 z =±, οπότε έχουμε τις λύσεις,,,, ( xyz ) = ( ) ή (,, ) (,, ) xyz =.

309 Πρόβλημα Να βρείτε τη συνάρτηση f :, για την οποία ισχύει: ( ) ( ) ( ) f x y = f x+ y f x y, για κάθε xy,.. Θα χρησιμοποιήσουμε τη δεδομένη σχέση για ειδικές τιμές των μεταβλητών. = = λαμβάνουμε f ( 0) = f ( 0) f ( 0) = 0 ή ( 0) = y = λαμβάνουμε f ( 4) 4= f ( 4) f ( 0), οπότε, αν ( ) f =, τότε f ( 4) = 4. Άρα έχουμε f ( 0) = 0 και ( ) Για x y 0 Για x ενώ, αν ( 0) 0 Για x y t f =. f 0 =, τότε 4= 0(άτοπο), f 4 = 4. = = έχουμε ( ) ( ) ( 0) 0 ( ) x 0, υπάρχει t τέτοιο ώστε t Για x = 0, 0 για κάθε 0 f t t = f t f = f t = t, t. Επειδή για κάθε = x, έπεται ότι f ( x) = x, για κάθε x 0. y >, λαμβάνουμε ( ) ( ) ( ) ( ) ( ) y >, δηλαδή f ( x) = x, για κάθε x < 0. f 0 y = f y f y yf y = y f y = y, Από την παραπάνω διαδικασία προκύπτει ότι f ( x) = x, x, η οποία εύκολα επαληθεύουμε ότι ικανοποιεί τη δεδομένη σχέση. Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού x για τις οποίες ο αριθμός a x + a+ x, όπου a > πραγματική παράμετρος, παίρνει ακέραιες τιμές. Στη συνέχεια να αποδείξετε ότι είναι δυνατόν να ορίσουμε την τιμή της παραμέτρου a έτσι ώστε ο αριθμός a x + a+ x να είναι ακέραιος περισσότερες ή ίσες από K φορές, όπου K τυχόν θετικός ακέραιος. και παίρνει τιμές θε- Η συνάρτηση f ( a, x) = a x + a+ x, a>, ορίζεται για x [ aa, ] τικές. Αν υποθέσουμε ότι f ( a, x) a x a x n, = + + = τότε θα έχουμε n f ( ax, ) = a x+ a+ x= n a+ a x = n a x = a () n Επειδή 0 a x a, έχουμε 0 a a a n 4a a n a. Πρώτα θα αποδείξουμε ότι για κάθε ακέραιο n του διαστήματος a, a η εξίσωση () έχει λύση ως προς x. Πράγματι, η εξίσωση () είναι ισοδύναμη με την εξίσωση n n [ ] [ ] a x = a, x a, a x = a a, x a, a n n n ( 4a n ) x = a, x [ aa, ] x =, x aa, 4 n 4a n x =±. [ ]

310 Οι τιμές του x που βρήκαμε ανήκουν στο διάστημα [ a, a] n της σχέσης x = a a a., οπότε είναι αποδεκτές, λόγω Έτσι, καταλήγουμε στο συμπέρασμα ότι ο αριθμός a x + a+ x μπορεί να πάρει οποιαδήποτε ακέραια τιμή n του διαστήματος a, a, για n 4a n x =±. Επομένως, μπορούμε να βρούμε όσες θέλουμε δυνατές ακέραιες τιμές για το n= a x + a+ x, εφόσον επιτύχουμε να κάνουμε το μήκος του διαστήματος a, a οσοδήποτε μεγάλο θέλουμε, δίνοντας κατάλληλη τιμή στην παράμετρο a. Για παράδειγμα, για να περιέχει το διάστημα a, a Κ ή περισσότερους ακέραιους, αρκεί να ισχύει ότι ( ) K a a K a K a. Πρόβλημα 4 Δίνεται οξυγώνιο σκαληνό τρίγωνο ABC (AB < AC < BC ) εγγεγραμμένο σε κύκλο cor (, ). Η προέκταση του ύψους του AD τέμνει τον περιγεγραμμένο κύκλο cor (, ) στο σημείο E. Ο κύκλος c (, ) D DA τέμνει την πλευρά AC στο σημείο T, την ευθεία AB στο σημείο S, τον κύκλο cor (, ) στο σημείο H και την ευθεία OA στο σημείο Z. Να αποδείξετε ότι: (α) Το τετράπλευρο SBTC είναι εγγράψιμο σε κύκλο, έστω c. (β) Τα σημεία ODEZH,,,, και το κέντρο του κύκλου c, βρίσκονται επάνω στο ίδιο κύκλο. Σχήμα 5 (α) Η γωνία A ŜT = Ŝ είναι εγγεγραμμένη στον κύκλο c και βαίνει στο τόξο AT. Η γωνία A Dˆ T είναι η αντίστοιχη επίκεντρη της γωνίας Ŝ, οπότε A Dˆ T = Ŝ. Η διχοτόμος της γωνίας A Dˆ T είναι κάθετος στην πλευρά AC, οπότε

311 4 o Dˆ = Dˆ = Ĉ = 90 DÂC. Άρα Ŝ = Ĉ και κατά συνέπεια το τετράπλευρο SBTC είναι εγγράψιμο. (β) Η γωνία E Dˆ H = Dˆ είναι εξωτερική του ισοσκελούς τριγώνου DAH ( DA = DH και Â = Ĥ ). Άρα έχουμε Dˆ ˆ = A. () Η γωνία E ÂH = Â είναι εγγεγραμμένη στο κύκλο c και η γωνία E ÔH = Ô είναι η αντίστοιχη επίκεντρη, οπότε: Oˆ ˆ = A. () Από τις ισότητες () και () συμπεραίνουμε ότι Ô = Dˆ, οπότε τα σημεία O,D,E, H είναι ομοκυκλικά (ανήκουν στον ίδιο κύκλο). Η γωνία HÔZ = ˆ Ο είναι εξωτερική του ισοσκελούς τριγώνου OAH ( OA = OH και Â = Ĥ ). Άρα έχουμε: Ο ˆ ˆ = A. () Η γωνία Z ÂH = Â είναι εγγεγραμμένη στο κύκλο c και η γωνία HDZ ˆ = Dˆ 4 είναι η αντίστοιχη επίκεντρη, οπότε: Dˆ ˆ 4 = A. (4) Από τις ισότητες () και (4) συμπεραίνουμε ότι Ô = Dˆ 4, οπότε τα σημεία O,D,Z, H είναι ομοκυκλικά (ανήκουν στον ίδιο κύκλο). Η μεσοκάθετη του τμήματος ST περνάει από το κέντρο D του κύκλου c. Η μεσοκάθετη του τμήματος BC περνάει από το κέντρο O του κύκλου c. Το σημείο τομής K των δύο μεσοκαθέτων, είναι το κέντρο του κύκλου c. Θα αποδείξουμε ότι το σημείο K ανήκει στο κύκλο που ορίζουν τα σημεία O,D,Z,E, H, δηλαδή ότι: D Kˆ O = DĤO. Πράγματι, η γωνία D Kˆ O ισούται με τη γωνία που σχηματίζουν οι ST και BC (διότι έχουν τις πλευρές κάθετες), δηλαδή είναι: o DKˆ O = 80 Ŝ Bˆ εξ = Bˆ Ĉ, ενώ ακόμη ισχύει ότι: ˆ ˆ ˆ ˆ ˆ ˆ ˆ o AOE o ˆ o ˆ o DHO = H ˆ ˆ ˆ + H = A+ A = EAO = 90 = 90 ACE = 90 ( C + 90 B) = B C..

312 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, το ΣΤΑΘΕΡΟ και ΚΙΝΗΤΟ ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις Φεβρουαρίου 04 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην η Βαλκανική Μαθηματική Ολυμπιάδα (Βουλγαρία, Μάιος 04)), στην 8 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (ΠΓΔΜ, Ιούνιος 04) και στην 55 η Διεθνή Μαθηματική Ολυμπιάδα (Νότια Αφρική, Ιούλιος 04). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γεώργιος Δημάκος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Επίκουρος Καθηγητής Οικονομικού Πανεπιστημίου Αθηνών

313 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 B τάξη Γυμνασίου Πρόβλημα Να βρείτε τους αριθμούς : 000 : και 4 : Πρόβλημα Αγρός έχει σχήμα τραπεζίου ΑΒΓΔ με ˆ ˆ 90, ύψος 800 μέτρα, μικρή βάση ΑΔ, μεγάλη βάση ΒΓ και διαφορά βάσεων 800 μέτρα. Δίνεται ακόμη ότι: Η περίμετρος του αγρού είναι μικρότερη από μέτρα. Το εμβαδό του αγρού είναι μεγαλύτερο από 796 στρέμματα. Η μικρή βάση ΑΔ έχει μήκος x μέτρα, όπου x ακέραιος πολλαπλάσιος του 0. Να βρείτε τα μήκη των βάσεων και το εμβαδόν του αγρού. (Δίνεται ότι στρέμμα είναι ίσο με 000 τετραγωνικά μέτρα) Πρόβλημα Δίνεται ισοσκελές τρίγωνο με και ˆ 0. Εξωτερικά του τριγώνου κατασκευάζουμε ορθογώνιο ισοσκελές τρίγωνο ΑΓΔ με ˆ 90. Η μεσοκάθετη της πλευράς ΑΓ τέμνει την ΑΓ στο μέσο της Κ, την ΑΒ στο σημείο Λ και την προέκταση της πλευράς ΒΓ στο σημείο Μ. Έστω το συμμετρικό του σημείου Λ ως προς την ευθεία ΑΓ. Να βρείτε: (α) Τα μέτρα των γωνιών ˆ και ˆ. (β) Το μήκος του ευθυγράμμου τμήματος ΛΝ, συναρτήσει του μήκους. Πρόβλημα 4 Σε ένα σχολείο το 55% των μαθητών είναι αγόρια. Το πλήθος των αγοριών που δεν μιλούν γαλλικά είναι ίσο με το πλήθος των κοριτσιών που μιλούν γαλλικά. Τα αγόρια που μιλούν γαλλικά, είναι τα 7 των μαθητών που μιλούν γαλλικά. Τα κορίτσια που δεν μιλούν γαλλικά είναι 60. Βρείτε πόσους μαθητές έχει το σχολείο. Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

314 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 Πρόβλημα Να βρείτε την τιμή των παραστάσεων: Γ τάξη Γυμνασίου :, και x y, όταν x, y. x x x y y y y Πρόβλημα Δίνονται τα πολυώνυμα (α) Να γράψετε τα πολυώνυμα δευτέρου βαθμού. (β) Να λύσετε την εξίσωση 6 4 P x και 4 P x 6x 6x x και Q x 4x 5x. P x 5 x Q x. Q x ως γινόμενα πολυωνύμων πρώτου ή το πολύ Πρόβλημα Δύο θετικοί ακέραιοι x, y με x y, έχουν άθροισμα 04. Η διαίρεση του μεγαλύτερου με τον μικρότερο δίνει πηλίκο και υπόλοιπο 97. Να βρείτε όλες τις δυνατές τιμές των x, y και. Πρόβλημα 4 Δίνεται ισοσκελές τρίγωνο με και ˆ 0. Εξωτερικά του τριγώνου κατασκευάζουμε ορθογώνιο ισοσκελές τρίγωνο ΑΓΔ με ˆ 90. Η μεσοκάθετη της πλευράς ΑΓ τέμνει την ΑΓ στο μέσο της Κ, την ΑΒ στο σημείο Λ και την προέκταση της πλευράς ΒΓ στο σημείο Μ. Αν είναι, να υπολογίσετε συναρτήσει του : (α) Το μήκος του ευθύγραμμου τμήματος ΚΛ. (β) Το μήκος του ευθύγραμμου τμήματος ΑΜ και το μήκος της πλευράς ΒΓ. Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

315 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 Α τάξη Λυκείου Πρόβλημα Θεωρούμε τους αριθμούς x Να συγκρίνετε τους αριθμούς x και y. 4 8 και y 4. Πρόβλημα Να προσδιορίσετε τους πραγματικούς αριθμούς x για τους οποίους συναληθεύουν οι ανισώσεις: x 0 και x x 5 0. Πρόβλημα Δίνεται ισοσκελές τρίγωνο ABΓ με. Ο κύκλος c (, ) (με κέντρο και ακτίνα ) τέμνει την πλευρά AΒ στο σημείο. Ο κύκλος c (, ) (με κέντρο και ακτίνα ) τέμνει την πλευρά AΓ στο σημείο και τον κύκλο c (, ) στο σημείο. Ο περιγεγραμμένος κύκλος c του τριγώνου τέμνει την ευθεία στο σημείο. (α) Να αποδείξετε ότι τα σημεία,, βρίσκονται πάνω στην ίδια ευθεία. (β) Να αποδείξετε ότι η ευθεία είναι μεσοκάθετη της πλευράς. Πρόβλημα 4 Θεωρούμε θετικούς πραγματικούς αριθμούς ab, που είναι τέτοιοι ώστε a 4b a b 5. Να βρεθεί η μέγιστη δυνατή τιμή του αθροίσματος a b και οι τιμές των ab, για τις οποίες αυτή λαμβάνεται. Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

316 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 Β τάξη Λυκείου Πρόβλημα Θεωρούμε στο επίπεδο τέσσερα διαφορετικά μεταξύ τους σημεία,, και, έτσι ώ- στε τα σημεία Ο, Α και Β να μην είναι συνευθειακά και έστω,,. Αν ισχύει η ισότητα, να αποδείξετε ότι το διάνυσμα είναι κάθετο στη διαγώνιο ΟΔ του παραλληλογράμμου. Πρόβλημα Να προσδιορίσετε όλες τις τιμές του πραγματικού αριθμού a για τις οποίες η εξίσωση x x 4ax ax 6a έχει όλες τις ρίζες της στους ακέραιους. Πρόβλημα Να προσδιορίσετε όλες τις τριάδες πραγματικών αριθμών x, yz, που είναι λύσεις του συστήματος x y z 6 a, x y, a y z, a όπου a θετικός πραγματικός αριθμός. Πρόβλημα 4 Θεωρούμε τρίγωνο ABC εγγεγραμμένο σε κύκλο O, R και έστω I το έκκεντρο του τριγώνου. Θεωρούμε το μέσον N του τόξου ΒC που δεν περιέχει το Α και το μέσον M του τόξου ΒC που περιέχει το Α. Η ευθεία MI τέμνει τον κύκλο O, R στο σημείο D και τον κύκλο N, NI για δεύτερη φορά στο σημείο E. Να αποδείξετε ότι: EBˆD IBC ˆ. Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

317 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 Γ τάξη Λυκείου Πρόβλημα Να προσδιορίσετε όλες τις τιμές του πραγματικού αριθμού a για τις οποίες η εξίσωση x 4x 5ax 6ax 4a έχει όλες τις ρίζες της στους ακέραιους. Πρόβλημα Στο ορθοκανονικό σύστημα αναφοράς Oxy του επιπέδου δίνεται το χωρίο D x, y : x y 8. (α) Να προσδιορίσετε τη μέγιστη δυνατή τιμή του αθροίσματος x y, x, y D, και τις τιμές των x, y για τις οποίες λαμβάνεται. (β) Βρείτε την ελάχιστη τιμή του k, για την οποία η ευθεία με εξίσωση x y k είναι εφαπτομένη του κύκλου C x y : 8, προσδιορίζοντας και το αντίστοιχο σημείο επαφής. όταν Πρόβλημα * * * Έστω f :, όπου είναι το σύνολο των φυσικών αριθμών χωρίς το 0, μία συνάρτηση που είναι - και έστω k ένας θετικός ακέραιος. Αν ο αριθμός f f... f k a,,..., k τέτοιο, ώστε είναι κύβος φυσικού αριθμού, τότε να αποδείξετε ότι υπάρχει f a k. Πρόβλημα 4 Δίνονται κύκλος c(o, R ), δύο άνισες (μη τεμνόμενες εντός του κύκλου) και μη παράλληλες μεταξύ τους χορδές, και τα μέσα τους,, αντίστοιχα. Ο περιγεγραμμένος κύκλος c του τριγώνου τέμνει το κύκλο c(o, R ) στα σημεία, (το σημείο ανήκει στο μικρό τόξο ). Η τέμνει τις χορδές και στα σημεία,, αντίστοιχα. Να αποδείξετε ότι: (i) Τα σημεία,, και ανήκουν στον ίδιο κύκλο. (ii) Ο περιγεγραμμένος κύκλος του τριγώνου εφάπτεται στον κύκλο c(o, R ). Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: ώρες μετά την παράδοση των θεμάτων ΚΑΛΗ ΕΠΙΤΥΧΙΑ

318 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 04 Πρόβλημα Να βρείτε τους αριθμούς ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B τάξη Γυμνασίου 0 : 000 : και 4 : Α= Β= Έχουμε 0 : 000 : : Α= = = : = : 9 + = + = (60 9) Β= 4 : : : + = + = + = = 9 + = = = Πρόβλημα Αγρός έχει σχήμα τραπεζίου ΑΒΓΔ με Α=Β= ˆ ˆ 90, ύψος ΑΒ = 800 μέτρα, μικρή βάση Α, μεγάλη βάση ΒΓ και διαφορά βάσεων ΒΓ Α = 800 μέτρα. Δίνεται ακόμη ότι: Η περίμετρος του αγρού είναι μικρότερη από μέτρα. Το εμβαδό του αγρού είναι μεγαλύτερο από 796 στρέμματα. Η μικρή βάση ΑΔ έχει μήκος x μέτρα, όπου x ακέραιος πολλαπλάσιος του 0. Να βρείτε τα μήκη των βάσεων και το εμβαδόν του αγρού. (Δίνεται ότι στρέμμα είναι ίσο με 000 τετραγωνικά μέτρα) Από τις υποθέσεις του προβλήματος είναι Α = x μέτρα, ΒΓ = x μέτρα, ΑΒ = 800 μέτρα. Αν φέρουμε τη Ε ΒΓ, τότε είναι ΑΒΕΔ ορθογώνιο με ΒΕ= x, Ε= 800, οπότε θα είναι ΕΓ = ΒΓ ΒΕ = ΒΓ Α = 800. Έτσι το τρίγωνο ΔΕΓ είναι ορθογώνιο ισοσκελές, οπότε από το Πυθαγόρειο θεώρημα λαμβάνουμε ότι Γ = 800 μέτρα.

319 Σχήμα Επομένως, η περίμετρος και το εμβαδό του αγρού θα είναι: Π ( x) = x x = x x Ε ( x) = 800 = ( x+ 400 ) 800 = 800 x Σύμφωνα με τις υποθέσεις του προβλήματος προκύπτουν οι ανισώσεις: x < x< 0 x< x > x> x> 595 Επομένως έχουμε 595 < x < 605 και αφού ο αριθμός x είναι ακέραιος πολλαπλάσιος του 0, έπεται ότι x = 600 μέτρα. Άρα τα μήκη των βάσεων είναι Α = 600 μέτρα, ΒΓ=400 μέτρα και το εμβαδό του αγρού είναι = = τετραγωνικά μέτρα, δηλαδή 800 στρέμματα. Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ και Α= ˆ 0. Εξωτερικά του τριγώνου κατασκευάζουμε ορθογώνιο ισοσκελές τρίγωνο ΑΓΔ με Α Γ ˆ = 90. Η μεσοκάθετη της πλευράς ΑΓ τέμνει την ΑΓ στο μέσο της Κ, την ΑΒ στο σημείο Λ και την προέκταση της πλευράς ΒΓ στο σημείο Μ. Έστω Ν το συμμετρικό του σημείου Λ ως προς την ευθεία ΑΓ. Να βρείτε: (α) Τα μέτρα των γωνιών ΚΜΒ ˆ και ΜΑΛ ˆ. (β) Το μήκος του ευθυγράμμου τμήματος ΛΝ συναρτήσει του μήκους α = Α. (α) Το τρίγωνο ΜΚΓ είναι ορθογώνιο στο Κ και έχει τη γωνία 80 ˆ ˆ Α 80 0 Γ= = = 75 Επομένως θα είναι και Β=Γ= ˆ ˆ 75, οπότε έχουμε ˆ ΚΜΒ = Μ = = 5. Επειδή κάθε σημείο της μεσοκάθετης ΜΔ του ευθυγράμμου τμήματος ΑΓ ισαπέχει από τα άκρα του Α και Γ το τρίγωνο ΜΑΓ είναι ισοσκελές και έχει ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ΜΑΓ = ΜΓΑ ΜΑΛ + Α = Γ ΜΑΛ = Γ Α = 75 0 = 45.

320 Σχήμα (β) Από το ορθογώνιο ισοσκελές τρίγωνο ΑΔΓ έχουμε ΑΓ = α + α = α ΑΓ = α, οπότε θα είναι: ΑΓ α ΑΚ = =. Επειδή τα σημεία Λ και Ν είναι συμμετρικά ως προς την ευθεία ΑΓ, έπεται ότι ΛΚ = ΚΝ. Όμως και τα ευθύγραμμα τμήματα ΑΛ και ΑΝ είναι συμμετρικά ως προς την ευθεία ΑΓ, ο- πότε ΑΛ = ΑΝ και ομοίως ΛΑΚ ˆ = ΝΑΚ ˆ = 0. Άρα είναι ΛΑΝ ˆ = 60, οπότε το τρίγωνο ΛΑΝ είναι ισόπλευρο και έχουμε ΛΝ = ΑΛ. Αν είναι ΑΛ = ΛΝ = x, τότε θα είναι ΛΝ x ΛΚ = =, οπότε από το ορθογώνιο τρίγωνο ΑΛΚ λαμβάνουμε: x α x α α α 6 ΑΛ ΛΚ = ΑΚ = x = x x. 4 = = = 4 4 Πρόβλημα 4 Σε ένα σχολείο το 55% των μαθητών είναι αγόρια. Το πλήθος των αγοριών που δεν μιλούν γαλλικά είναι ίσο με το πλήθος των κοριτσιών που μιλούν γαλλικά. Τα αγόρια που μιλούν γαλλικά, είναι τα των μαθητών που μιλούν γαλλικά. Τα κορίτσια που δεν μιλούν 7 γαλλικά είναι 60. Βρείτε πόσους μαθητές έχει το σχολείο. Αφού το πλήθος των αγοριών που δεν μιλούν γαλλικά είναι ίσο με το πλήθος των κοριτσιών που μιλούν γαλλικά, έπεται ότι το πλήθος των μαθητών που μιλούν γαλλικά ισούται με το 55% του συνόλου των μαθητών. Επομένως το ποσοστό των αγοριών που μιλούν γαλλικά επί του συνόλου των μαθητών του σχολείου είναι =, δηλαδή το 5% επί του συνόλου των μαθητών. Επομένως ( 55 5) = 0% είναι το ποσοστό επί του συνόλου των μαθη τών των αγοριών που δεν μιλούν γαλλικά, αλλά και των κοριτσιών που μιλούν γαλλικά. Επο = 5%, οπότε μένως το ποσοστό των κοριτσιών που δεν μιλούν γαλλικά είναι ( )

321 4 το 5% των κοριτσιών που δεν μιλούν γαλλικά αντιστοιχεί σε 60 μαθητές. Άρα το πλήθος 00 των μαθητών του σχολείου είναι 60 = Η παραπάνω διαδικασία μπορεί να περιγραφεί με το σχήμα που ακολουθεί, ως εξής: Συμβολικά έχουμε: 55x Α = σύνολο αγοριών σχολείου με Α= x Κ = σύνολο κοριτσιών σχολείου με Κ=. 00 ΑΟΓ = σύνολο αγοριών που δεν μιλούν γαλλικά. ΑΝΓ = σύνολο αγοριών που μιλούν γαλλικά. ΚΟΓ = σύνολο αγοριών που δεν μιλούν γαλλικά. ΚΝΓ = σύνολο αγοριών που μιλούν γαλλικά. Από την υπόθεση έχουμε ότι το πλήθος των στοιχείων των συνόλων ΑΟΓ και ΚΝΓ είναι το ίδιο, δηλαδή: ΑΟΓ = ΚΝΓ, οπότε έχουμε τα λογικά βήματα: 55x (αριθμός μαθητών που μιλούν γαλλικά) ΚΝΓ + ΑΝΓ = ΑΟΓ + ΑΝΓ = (αριθμός αγοριών), x 5x ΑΝΓ = =, x 0x ΑΟΓ = (55 5) = = ΚΝΓ, x 5x ΚΟΓ = ( 45 0) = = 60 x = ος τρόπος Έστω x το πλήθος των αγοριών και y το πλήθος των κοριτσιών. Έστω ακόμη α το πλήθος των αγοριών που γνωρίζουν γαλλικά και κ το πλήθος των κοριτσιών που γνωρίζουν γαλλικά. Από τα δεδομένα του προβλήματος προκύπτουν οι παρακάτω εξισώσεις. Εφόσον το 55% των μαθητών είναι αγόρια, θα ισχύει:

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ

Διαβάστε περισσότερα

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79

Διαβάστε περισσότερα

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006

www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006 Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 006 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens

Διαβάστε περισσότερα

Θέματα κι επίσημες λύσεις 2006 εως 2015 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

Θέματα κι επίσημες λύσεις 2006 εως 2015 Θαλή κι Ευκλείδη της Ε.Μ.Ε. Θέματα κι επίσημες λύσεις 006 εως 05 Θαλή κι Ευκλείδη της Ε.Μ.Ε. από τον parmenides5 έκδοση: 0-0-05 σχολικό έτος αρίθμηση / ημερομηνία (ονομασία) Διαγωνισμός Θαλής 006-007 67 ος / 09--006 Θαλής 006: θέματα

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008 Τηλ. 3616532-3617784 - Fax: 3641025 Tel. 3616532-3617784 - Fax: 3641025 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙΔΗΣ ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 e-mail : info@hms.gr www.hms.gr 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79 - Athens - HELLAS e-mail : info@hms.gr www.hms.gr ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ Tel. 10 361653-103617784 - Fax: 10 364105 B ΓΥΜΝΑΣΙΟΥ 1. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3 5 ) 49 10 4. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του

Διαβάστε περισσότερα

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης Τηλ 10 361653-103617784 - Fax: 10 364105 Tel 10 361653-103617784 - Fax: 10 364105 ΣΒΒΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 B τάξη υμνασίου Να υπολογίσετε την τιμή της αριθμητικής παράστασης ( 00 :8 1 100) 00 : ( 8 ) 76

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Για το Διοικητικό Συμβούλιο

Για το Διοικητικό Συμβούλιο ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,11 ΝΟΕΜΒΡΙΟΥ 017 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011 Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 65 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 2004 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 65 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 2004 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστηµίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,1 ΝΟΕΜΒΡΙΟΥ 016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΣΑΒΒΑΤΟ, 19 ΟΚΤΩΒΡΙΟΥ 013 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΣΑΒΒΑΤΟ,14 ΝΟΕΜΒΡΙΟΥ 2015 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές. 2.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012 Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 361653-3617784 - Fax: 364105, Ιστοσελίδα: Site: 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 19 ΝΟΕΜΒΡΙΟΥ 011 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 10 ΝΟΕΜΒΡΙΟΥ 2018 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 017 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 04 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 36653-367784 - Fax: 36405, Ιστοσελίδα: Tel. 36653-367784 - Fax: 36405 Site: ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 778 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 778 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018 7 ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Τηλ 6165-617784 - Fax: 64105 Tel 6165-617784 - Fax: 64105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016 ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2006

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2006 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούµε να διαβάσετε προσεκτικά τις οδηγίες στους µαθητές.. Οι επιτηρητές των αιθουσών

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

x , οπότε : Α = = 2.

x , οπότε : Α = = 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+

Διαβάστε περισσότερα

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 27 Φεβρουαρίου 2016 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Α={1,11,111,1111,..., 11...1 }

Α={1,11,111,1111,..., 11...1 } Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και

Διαβάστε περισσότερα

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

B τάξη Γυμνασίου : : και 4 :

B τάξη Γυμνασίου : : και 4 : Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9

Διαβάστε περισσότερα

f(x - 2) + f(x + 2) = 3 f(x).

f(x - 2) + f(x + 2) = 3 f(x). Θαλής Γ' Λυκείου 1995-1996 1. Να βρεθεί η μέγιστη τιμή της παράστασης: με x 1, y 1. Π x, y = xy x 1 y y 1 x 1 x 1 y. Έστω η συνάρτηση f: R R τέτοια ώστε για κάθε x R να ισχύει ότι: Να δείξετε ότι η f είναι

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α= Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 3 3 ( 0) ( 5) 3 ( 8) Α= + 3 3 ( ) +. ( 3) 4 Στο διπλανό σχήμα τα τρίγωνα ΑΒΓ και ΑΒΟ είναι ισοσκελή με βάση την πλευρά ΑΒ. Η προέκταση της

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3 Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι

Διαβάστε περισσότερα

Θέματα μεγάλων τάξεων

Θέματα μεγάλων τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 27 Φεβρουαρίου 2016 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0. Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι

Διαβάστε περισσότερα

Θαλής Β' Γυμνασίου

Θαλής Β' Γυμνασίου Θαλής Β' Γυμνασίου 1995-1996 1. Να χαράξετε κύκλο (Κ,3cm). Με κέντρο το σημείο Λ του κύκλου να χαράξετε δεύτερο κύκλο (Λ,3cm). Η διάκεντρος ΚΛ τέμνει τον Κ στο Α και τον Λ στο Β, αν προεκταθεί. Να κατασκευάσετε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N. Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και

Διαβάστε περισσότερα

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος; Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των

Διαβάστε περισσότερα