Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Ηλεκτρική δυναμική ενέργεια

Φυσική για Μηχανικούς

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 3: Ηλεκτρικό δυναμικό. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Φυσική για Μηχανικούς

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

Φυσική για Μηχανικούς

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή.

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Ηλεκτρικό δυναμικό. Κεφάλαιο Η3

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

dq dv = k e a 2 + x 2 Q l ln ( l + a 2 + l 2 ) 2 10 = (

E = P t = IAt = Iπr 2 t = J (1)

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Φυσική για Μηχανικούς

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

Υπενθύμιση (από τη Μηχανική) /Εισαγωγή:

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

1. Ένα σημειακό θετικό φορτίο Q

Κεφάλαιο 5: Στατικός Ηλεκτρισμός

Πρόβλημα 4.9.

Φυσική για Μηχανικούς

Πυκνότητα φορτίου. dq dv. Μικρή Περιοχή. φορτίου. Χωρική ρ Q V. Επιφανειακή σ. dq da Γραµµική λ Q A. σ = dq dl. Q l. Γ.

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Φυσική για Μηχανικούς

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Ηλεκτρικό φορτίο Ηλεκτρικό Πεδίο

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ασκήσεις 2 ου Κεφαλαίου, Νόμος του Gauss

ΔΙΑΓΩΝΙΣΜΑ ΣΤO HΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΑΙ ΣΤΟΥΣ ΠΥΚΝΩΤΕΣ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Φυσική για Μηχανικούς

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

B 2Tk. Παράδειγμα 1.2.1

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Q (όπου Q το φορτίο και V η τάση

Το βαρυτικό πεδίο της Γης.

Φυσική για Μηχανικούς

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου.

Ηλεκτροστατικέςδυνάµεις καιηλεκτρικόπεδίο. Κυριάκος Κουγιουµτζόπουλος 1

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης περιγράφεται σωστά από το νόμο Coulomb

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

Λυμένες ασκήσεις. Ηλεκτρική δυναμική ενέργεια

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία

W Bά. Υπενθύμιση από την Α τάξη. Το έργο του βάρους κατά την ανύψωση του κουτιού από τη θέση A στη θέση Γ είναι ίσο με W=-mgh

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

1. Στατικός Ηλεκτρισµός

d = 1m, και είναι αρχικά ακλόνητες, βρισκόμενες στο κενό. Να υπολογιστεί η ηλεκτρική δυναμική ενέργεια των δύο σφαιρών και να επιλέξετε το σωστό

7.1 Τα πρώτα πειράματα της χρονιάς.

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Transcript:

Φυσική για Μηχανικούς Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα αυτής της διαφοράς είναι μια ηλεκτρική εκφόρτιση που τη λέμε «κεραυνό», όπως στην εικόνα.

Φυσική για Μηχανικούς Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα αυτής της διαφοράς είναι μια ηλεκτρική εκφόρτιση που τη λέμε «κεραυνό», όπως στην εικόνα.

(επανάληψη ) σε σύστημα πεδίου-φορτίου: V = U e q Η διαφορά δυναμικού ορίζεται ως η μεταβολή στην ηλεκτρική δυναμική ενέργεια ενός συστήματος φορτίων ή φορτίων-πεδίου όταν ένα φορτίο q μετακινείται μεταξύ δυο σημείων (Α) και (Β), δια το φορτίο αυτό: ΔV = ΔU e q B B = 1 q q E d s = A A E d s Ομογενές πεδίο ΔV = V b V a = Ed με ΔV να μετράται κατά τη διεύθυνση των δυναμικών γραμμών

Διαφορά Δυναμικού Ας γενικεύσουμε τώρα για μετατόπιση μη παράλληλη στις δυναμικές γραμμές Έστω ότι η μετατόπιση s από το (Α) στο (Β) ΔΕΝ είναι παράλληλη στις δυναμικές γραμμές Τότε για τη μετατόπιση s ΔV 1 = A B E d s = E Άρα για το σύστημα πεδίο-φορτίο A B d s = E s = Es cos θ = Ed ΔU e = qe s = qed

Διαφορά Δυναμικού Άρα για το σύστημα πεδίο-φορτίο ΔU = qe s = qed Όμως είδαμε πριν ότι C C ΔV 2 = E d s = E d s = E s = Ed A A Συμπέρασμα: όλα τα σημεία που βρίσκονται σε επίπεδο κάθετο στο πεδίο έχουν ίδιο δυναμικό (ισοδυναμική επιφάνεια)

Διαφορά Δυναμικού (μικρό) Παράδειγμα: Ποιο το μέτρο του ηλεκτρικού πεδίου ανάμεσα στις πλάκες Α, Β, που απέχουν d=0.3 cm; Απάντηση: ΔV = Ed Ε = V B V A d = 4 10 3 V m

Παράδειγμα: Ένα πρωτόνιο αφήνεται από το σημείο (Α) σε ομογενές ηλ. πεδίο μέτρου 8 10 4 V m. Το πρωτόνιο υπόκειται σε μετατόπιση μέτρου d = 0.5 m στο σημείο (Β) στην κατεύθυνση του E. Βρείτε την ταχύτητα του πρωτονίου αμέσως μετά τη μετατόπισή του. Θεωρήστε ότι q = 1.6 10 19 C και m p = 1.67 10 27 kg.

Παράδειγμα - Λύση: Ένα πρωτόνιο αφήνεται από το σημείο (Α) σε ομογενές ηλ. πεδίο μέτρου 8 10 4 V m. Το πρωτόνιο υπόκειται σε μετατόπιση μέτρου d = 0.5 m στο σημείο (Β) στην κατεύθυνση του E. Βρείτε την ταχύτητα του πρωτονίου αμέσως μετά τη μετατόπισή του. Θεωρήστε ότι q = 1.6 10 19 C και m p = 1.67 10 27 kg.

Διαφορά Δυναμικού Θα μελετήσουμε διαφορές δυναμικού σε δυο περιπτώσεις 1. Δυναμικό από σημειακά φορτία 2. Δυναμικό από κατανομή φορτίου

από σημειακά φορτία Ας θεωρήσουμε τώρα ότι έχουμε ένα σημειακό φορτίο +q Ξέρουμε ότι υπάρχει ακτινικό ηλεκτρικό πεδίο γύρω του Ας βρούμε το δυναμικό σε απόσταση r απ το φορτίο (σημείο C), ξεκινώντας από το γενικό ορισμό της διαφοράς δυναμικού μεταξύ των σημείων Α, Β ΔV A B = = = A B A B A B E d s = q k e r ds cos θ r2 = k e q r 2 dr A B q k e r d s r2 A B q k e ds cos θ r2 C

από σημειακά φορτία Κάθε μετατόπιση d s από το (Α) στο (Β) προκαλεί μια μεταβολή d r στο μέτρο του r B B q dr ΔV A B = k e r 2 dr = k eq r 2 = k q r = r B e r r = r A Οπότε A ΔV A B = k e q 1 r B 1 r A = k eq r B A k eq r A = V B V A Βλέπετε ότι είναι ανεξάρτητο της διαδρομής Άρα το πεδίο είναι συντηρητικό Επίσης, εξαρτάται μόνο από τα r i Εμείς όμως θέλουμε το δυναμικό στο σημείο C!

από σημειακά φορτία Συνήθως θεωρούμε ότι V = 0 σε ένα σημείο μακριά όπου r μακρια = Το ηλεκτρικό δυναμικό V C λόγω σημειακού φορτίου σε απόσταση r C από το φορτίο είναι V C V μακρια = V C 0 = k e q r C Για πολλά φορτία, C C V = V i = k e i q i r i

από σημειακά φορτία Για ένα φορτίο q 2 που έρχεται στο πεδίο φορτίου q 1 σε απόσταση r 12 μέσω εξωτερικής δύναμης έργου W = q 2 ΔV Το φορτίο q 2 έρχεται από πολύ «μακριά»: V μακριa = 0 Επίσης, όταν το q 2 βρίσκεται «μακριά», η ηλεκτρική δυναμική ενέργεια του συστήματος των φορτίων θεωρείται μηδενική Το έργο W μετατρέπεται σε δυναμική ενέργεια U e του συστήματος των φορτίων Όμως W = ΔU e, άρα η ηλεκτρική δυναμική ενέργεια ενός ζεύγους φορτίων είναι ΔU e = W = q 2 ΔV = q 2 (V V μακρια ) U e 0 = q 2 k e q 1 r 12 0 U e = k e q 1 q 2 r 12

από σημειακά φορτία Για ένα φορτίο q 2 που έρχεται στο πεδίο φορτίου q 1 σε απόσταση r 12 μέσω εξωτερικής δύναμης U = k e q 1 q 2 r 12 Αν U > 0, το έργο της δύναμης είναι θετικό Τα φορτία απωθούνται, άρα πρέπει να παραχθεί έργο από την εξωτερική δύναμη για να τα φέρει σε απόσταση r 12 Αν U < 0, το έργο της δύναμης είναι αρνητικό Τα φορτία έλκονται, άρα πρέπει να παραχθεί αρνητικό έργο (χρειάζεται δύναμη αντίθετη στην μετατόπιση (έλξη) των φορτίων) για να τα φέρουμε σε απόσταση r 12 Για πολλά φορτία, U = k e q i q j r ij, i < j Αθροίζουμε όλες τις τιμές δυναμικής ενέργειας που οφείλονται σε ένα ζεύγος φορτίων

Παράδειγμα: Ένα φορτίο q 1 = 2 μc βρίσκεται στην αρχή των αξόνων, ενώ ένα φορτίο q 2 = 6 μc στη θέση 0, 3 m. A) Βρείτε το συνολικό ηλεκτρικό δυναμικό στο σημείο P με συντεταγμένες 4, 0 m. B) Βρείτε τη μεταβολή της δυναμικής ενέργειας του συστήματος των δυο φορτίων, συν ένα τρίτο φορτίο q 3 = 3 μc, όταν το τελευταίο έρχεται από το άπειρο στο σημείο P.

Παράδειγμα Λύση: Ένα φορτίο q 1 = 2 μc βρίσκεται στην αρχή των αξόνων, ενώ ένα φορτίο q 2 = 6 μc στη θέση 0, 3 m. A) Βρείτε το συνολικό ηλεκτρικό δυναμικό στο σημείο P με συντεταγμένες 4, 0 m.

Παράδειγμα Λύση: Ένα φορτίο q 1 = 2 μc βρίσκεται στην αρχή των αξόνων, ενώ ένα φορτίο q 2 = 6 μc στη θέση 0, 3 m. B) Βρείτε τη μεταβολή της δυναμικής ενέργειας του συστήματος των δυο φορτίων, συν ένα τρίτο φορτίο q 3 = 3 μc, όταν το τελευταίο έρχεται από το άπειρο στο σημείο P.

Ηλεκτρικό Πεδίο από Μπορούμε να βρούμε το ηλεκτρικό πεδίο E από το δυναμικό ΔV; Αν θεωρήσουμε μια μικρή διαφορά δυναμικού dv μεταξύ δυο σημείων απειροστά μικρής απόστασης d s, τότε dv = E d s Αν το ηλεκτρ. πεδίο έχει μόνο μια συνιστώσα (έστω x, αλλά ισχύει και για τις υπόλοιπες συνιστώσες), τότε και άρα E d s = E x dx E x = dv dx Τι σας θυμίζει??

Ηλεκτρικό Πεδίο από Αν όμως η κατανομή φορτίου που δημιουργεί ένα ηλεκτρικό πεδίο έχει σφαιρική συμμετρία, τότε η πυκνότητα φορτίου εξαρτάται από την ακτινική απόσταση r Τότε, όμοια με πριν E r = dv dr Παράδειγμα, ένα σημειακό φορτίο: E r = dv dr = d k e q dr r = k eq d dr 1 r = k e q r 2

Συνεχής κατανομή φορτίου Ας γενικεύσουμε τα αποτελέσματά μας σε μια συνεχή κατανομή φορτίου Υπάρχουν δυο τρόποι υπολογισμού δυναμικού σε συνεχή κατανομή φορτίου: 1. Αν η κατανομή φορτίου είναι γνωστή: θεωρούμε το δυναμικό dv σε σημείο P απόστασης r λόγω σημειακού φορτίου dq, το οποίο είναι dq dv = k e r και ολοκληρώνουμε, παίρνοντας dq V = dv = k e r Σημείο μηδενικού δυναμικού θεωρείται ένα σημείο απείρως μακριά από το φορτίο.

Συνεχής κατανομή φορτίου Ας γενικεύσουμε τα αποτελέσματά μας σε μια συνεχή κατανομή φορτίου Υπάρχουν δυο τρόποι υπολογισμού δυναμικού σε συνεχή κατανομή φορτίου: 2. Αν το ηλεκτρικό πεδίο είναι γνωστό από κάποια άλλη μέθοδο (π.χ. νόμος Gauss): αν η κατανομή φορτίου είναι επαρκώς συμμετρική, εκτιμούμε το E με το νόμο του Gauss, και αντικαθιστούμε στην ΔV = A B E ds για να βρούμε τη διαφορά δυναμικού ΔV. Τέλος, επιλέγουμε βολικό σημείο μηδενικού δυναμικού.

Παράδειγμα 1: Ένα ηλεκτρικό δίπολο αποτελείται από δυο φορτία ίσου μέτρου και αντίθετου προσήμου που απέχουν απόσταση 2a μεταξύ τους, όπως στο σχήμα. Το δίπολο βρίσκεται στον άξονα x και έχει κέντρο του την αρχή των αξόνων. Α) Βρείτε το ηλεκτρικό δυναμικό στο σημείο P. B) Βρείτε το ηλεκτρικό δυναμικό στο σημείο R. Γ) Βρείτε το ηλεκτρικό δυναμικό και το E x σε ένα σημείο του άξονα μακριά από το δίπολο.

Παράδειγμα 1 Λύση: Α) Βρείτε το ηλεκτρικό δυναμικό στο σημείο P.

Παράδειγμα 1 Λύση: B) Βρείτε το ηλεκτρικό δυναμικό στο σημείο R.

Παράδειγμα 1 Λύση: Γ) Βρείτε το ηλεκτρικό δυναμικό και το E x σε ένα σημείο του άξονα μακριά από το δίπολο.

Παράδειγμα 2: Α) Βρείτε μια έκφραση για το ηλεκτρικό δυναμικό στο σημείο P, όπως στο σχήμα. Β) Βρείτε μια έκφραση για το ηλεκτρικό πεδίο στο σημείο P, όπως στο σχήμα.

Παράδειγμα 2 Λύση: Α) Βρείτε μια έκφραση για το ηλεκτρικό δυναμικό στο σημείο P, όπως στο σχήμα.

Παράδειγμα 2 Λύση: Β) Βρείτε μια έκφραση για το ηλεκτρικό πεδίο στο σημείο P, όπως στο σχήμα.

Υπενθύμιση: Λύση με Πεδίο Παράδειγμα 2 Αναλυτική λύση με ηλ. Πεδίο (1/2): Υπολογίστε το ηλεκτρικό πεδίο στο σημείο P.

Υπενθύμιση: Λύση με Πεδίο Παράδειγμα 2 Αναλυτική λύση με ηλ. Πεδίο (2/2): Υπολογίστε το ηλεκτρικό πεδίο στο σημείο P.

Τέλος Διάλεξης