第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

Σχετικά έγγραφα
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Discriminantal arrangement

Higher spin gauge theories and their CFT duals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =

Space-Time Symmetries

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Congruence Classes of Invertible Matrices of Order 3 over F 2

EE512: Error Control Coding

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Wishart α-determinant, α-hafnian

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

70. Let Y be a metrizable topological space and let A Ď Y. Show that Cl Y A scl Y A.

Relativistic particle dynamics and deformed symmetry

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

On a four-dimensional hyperbolic manifold with finite volume

Homomorphism in Intuitionistic Fuzzy Automata

Lifts of holonomy representations and the volume of a link. complement. Hiroshi Goda. (Tokyo University of Agriculture and Technology)

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Non-Gaussianity from Lifshitz Scalar

Reminders: linear functions

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Intuitionistic Fuzzy Ideals of Near Rings

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Homework 8 Model Solution Section

Higher Derivative Gravity Theories

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

A General Note on δ-quasi Monotone and Increasing Sequence

A Hierarchy of Theta Bodies for Polynomial Systems

arxiv: v1 [math.sp] 29 Mar 2010

A Note on Intuitionistic Fuzzy. Equivalence Relation

The q-commutators of braided groups

Spherical Coordinates

On Inclusion Relation of Absolute Summability

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Cyclic or elementary abelian Covers of K 4

Single-value extension property for anti-diagonal operator matrices and their square

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

High order interpolation function for surface contact problem

Comultiplication Structures for a Wedge of Spheres

A thermodynamic characterization of some regularity structures near the subcriticality threshold

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Jordan Form of Complex Tridiagonal Matrices

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

(10/ /2007) 2012.

MEASUREMENT OF SURFACE TENSION IN BASE METAL SULFIDE MATTES BY AN IMPROVED SESSILE DROP METHOD

On a five dimensional Finsler space with vanishing v-connection vectors

ADVANCED STRUCTURAL MECHANICS

Mathematical model for HIV spreads control program with ART treatment

On the Galois Group of Linear Difference-Differential Equations

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

ΜΑΡΙΑ Χ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

On the conformal change of five-dimensional Finsler spaces

BIΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Ημερομηνία γεννήσεως: Ιδιότητα : ΚΑΘΗΓΗΤΗΣ από το 1984 'Ιδρυμα: ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Σχολή: ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Every set of first-order formulas is equivalent to an independent set

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Lecture 34 Bootstrap confidence intervals

arxiv: v1 [math-ph] 4 Jun 2016

Two generalisations of the binomial theorem

Min-max Theory, Willmore conjecture, and Energy of links

Durbin-Levinson recursive method

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΕΜΜΕΛΗΣ ΑΠΑΓΓΕΛΙΑ. Γεωργίου Ε. Χατζηχρόνογλου

Monica PURCARU 1. Communicated to: Finsler Extensions of Relativity Theory, August 29 - September 4, 2011, Braşov, Romania

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Local Approximation with Kernels

C.S. 430 Assignment 6, Sample Solutions

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

CONSULTING Engineering Calculation Sheet

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

Smarandache Curves According to Bishop Frame in Euclidean 3-Space

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

Calculating the propagation delay of coaxial cable

Example Sheet 3 Solutions

14 Lesson 2: The Omega Verb - Present Tense

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

Fractional Colorings and Zykov Products of graphs

Angular momentum in spherical coordinates

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Dispersive estimates for rotating fluids and stably stratified fluids

12. Radon-Nikodym Theorem

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα

IUTeich. [Pano] (2) IUTeich

Transcript:

Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons 3 1 1989 E. Witten Chern-Simons 3 ( ) ([14]) Witten 3 Chern-Simons M. Kontsevich [5], S. Axerod I. M. Singer [2] propagator 2 2 propagator Kontsevich Kontsevich [5] Chern-Simons 3 G. Kuperberg D. Thurston Kontsevich LMO [7] 3 ([6]) Kontsevich-Kuperberg- Thurston V. A. Vassiiev ([12]) Vassiiev ( ) 3 [10] shimizu@urims.yoto-u.ac.jp 121

LMO n Jacobi n A n ( ) Kontsevich-Kuperberg-Thurston LP-surgery 3 D. Moussard ([9]) 2 Kontsevich-Kuperberg-Thurston Kontsevich-Kuperberg-Thurston z KKT 3 A( ) n A( ) degree n A n ( ) z KKT n z KKT n n z KKT n 2.1 Jacobi A n ( ) zn KKT A n ( ) degree n Jacobi diagram 2n 3n 3 simpe oop ( ) Jacobi diagram 3n 1,, 3n 2n 1,, 2n edge oriented abeed Jacobi diagram degree n edge oriented abeed Jacobi diagram E n E n = { degree n connected edge oriented abeed Jacobi diagram} Jacobi diagram 3 oriented Jacobi diagram degree n Jacobi diagram R AS, IHX 2 reation A n ( ) A n ( ) ={degree n oriented Jacobi diagrams}r/as, IHX. Γ E n orientation A n ( ) [Γ] 2.2 3 3 3 S 3 Y 122

AS, IHX ( ) 3 Y N( ; Y ) Y Y N( ; S 3 ) S 3 = R 3 { } S 3 ϕ :(N( ; Y ), ) (N( ; S 3 ), ) ϕ N( ; Y ) N( ; S 3 ) N( ; Y ) \ R 3 2 (Y \ ) 2 \ Δ={(x 1,x 2 ) x 1 x 2 } C 2 (Y ) Futon-MacPherson Δ= {(x, x) x Y \ } B A B(A, B) B A bow-up B(A, B) =(A \ B) Sν B ν B A B Sν B Y 2 2 bow-up B(Y 2, 2 ) bow-down q 1 : B(Y 2, 2 ) Y 2 C 2 (Y ):=B(B(Y 2, 2 ),q 1 1 ( (Y \ )) q 1 1 ((Y \ ) ) q 1 1 (Δ \ 2 )) C 2 (Y ) 6 ([8] ) q : C 2 (Y ) Y 2 bow-down C 2 (Y ) C 2 (Y )=q 1 ( (Y \ )) q 1 ((Y \ ) ) q 1 ( 2 ) q 1 (Δ \ 2 ). ( (a) (b) (c) (d) ) 123

2.3 C 2 (Y ) propagator 2 Y Kontsevich, Kuperberg, Thurston framing Watanabe Morse C 2 (Y ) 2 C 2 (Y ) \ q 1 (Δ \ 2 ) 2 q 1 ( (Y \ )) q 1 ( (Y \ )) = ST Y (Y \ ) ST Y ϕ = ST S 3 = S 2 S 2 anti-symmetric voume form ω S 2 2 C 2 (Y ) \ q 1 (Δ \ 2 ) 2 ω Y q 1 (Δ \ 2 ) 2 z KKT bow-up q 1 (Δ \ 2 )=Sν Δ\ 2 ν Δ = TY SνΔ\ 2 = ST(Y \ ) ST(Y \ ) (ω Y ) 2 C 2 (Y ) 2 2 C 2 (Y ) ( ) 2 propagator propagator (Y \ ) 2n \Δ={(x 1,,x 2n ) x i x j if i j} edge oriented abeed Jacobi diagram Γ E n i {1,, 3n} P i (Γ) : (Y \ ) 2n \Δ C 2 (Y ) s(γ; i),t(γ; i) i Γ P i (Γ)(x 1,,x 3n )= (x s(γ;i),x t(γ;i) ) q 1 (Δ \ 2 ) 2 framing (Kontsevich, Kuperberg, Thurston ) τ : T (Y \ ) = (Y \ ) R 3 framing τ N( ;Y )\ = τ R 3 N( ;S 3 )\. τ R 3 : T R 3 = R 3 R 3 τ ST(Y \ ) = (Y \ ) S 2 p(τ) :ST(Y \ ) = (Y \ ) S 2 S 2 S 2 voume form ω S 2 2 p(τ) ω S 2 Ω 2 (q 1 (Δ \ 2 )) framing ω Y p(τ) ω S 2 2.1. ω 0 (τ) =ω Y p(τ) ω S 2 Ω 2 ( C 2 (Y )). 124

Y 3 H 2 (C 2 (Y ); R) H 2 ( C 2 (Y ); R) C 2 (Y ) 2 ω(τ) ω(τ) C2 (Y ) = ω 0 (τ) 2.2 (Kuperberg, Thurston [6]). (1) z KKT (Y ; τ) = ( ) 3n Γ E n (Y \ ) 2n \Δ i=1 P i(γ) ω(τ) [Γ] A n ( ) τ (2) Y τ δ n A n ( ) z KKT (Y )=z KKT (Y ; τ)+ 1 4 σ(τ)δ n A n ( ) τ Y σ(τ) τ N( ; Y ) Y framing signature defect *1 (1) A n ( ) AS,IHX ( ) 2 ST(Y \ ) 3 (norma bunde ) Thom 2 a 1,,a 3n S 2 1 γ 1,,γ 3n Y \ γ i N( ;Y )\ = a i. a i R 3 a i γ =(γ 1,,γ 3n ) { γi (x) c γi := γ i (x) ST xy x Y \ ( γ 1 i (0)) }cosure ST(Y \ ) STY Y c γi c γi γ i ( ) S 2 3 c γi c γi 2.3. c(γ i )=c γi c γi ST(Y \ ) *2 3 *1 signature defect [8], [1] τ 3 Y framing τ signature defect σ(τ) Z Y bound 4 X TX TX C Y τ X 1st Pontrjagin X p 1 (τ : X) σ(τ) =p 1 (τ : X) 3SignX Hirzebruch X *2 Y 1 125

c(γ i ) Thom 1 2 2 c(γ i) ω Y *3 1 ω γi 2.4. ω 0 (γ i )=ω Y ω γi Ω 2 ( C 2 (Y )). C 2 (Y ) 2 ω(γ i ) ω(γ i ) C2 (Y ) = ω 0 (γ i ) 2.5 ([11]). γ *4 (1) z(y ; γ) = ( ) 3n Γ E n (Y \ ) 2n \Δ i=1 P i(γ) ω(γ i ) [Γ] A n ( ) γ i (2) γ Ĩ( γ) A n( ) z(y )= z(y ; γ) Ĩ( γ) A n( ) γ Y 2.6. (1) Ĩ( γ) Watanabe [13] Y 3 anomay term Watanabe Y 3 (2) γ i framing τ : T (Y \ ) (Y \ ) R 3 framing τ (Y \ ) R 3 a i τ a i Y \ τ a =(τ a 1,,τ a 3n ) Ĩ( a) δ n σ( ) *3 ω Y S 2 voume form ω S 2 {a i, a i } S 2 *4 (1) z(y ; γ) ω 0 (γ i ) 126

framing 3 framed cobordism Ĩ(τ a) = 1σ(τ)δ 4 n Ĩ signature defect γ i τ a i c(γ i )=p(τ) 1 ({a i, a i }) Ĩ(τ a) = 1σ(τ)δ 4 n 2.7 ([11]). Y z n (Y )=z KKT (Y ) 3 3.1 Watanabe Morse ( ) 3 ([13]) Watanabe 3 A( ) 3 2 Morse 3 ([3]) Watanabe A 1 ( ) Fuaya Morse ([4]) Watanabe n Watanabe modify n zn FW zn FW 3 A n ( ) zn FW Jacobi (broen graph) Modui zn FW zn KKT z n 2 (propagator) Morse f i propagator ω(f i ) C 2 (Y ) f i a 1,,a 3n S 2 1 f i : Y \ R Morse-Smae Morse f i N( ;Y )\ = q ai. q ai : R 3 R q ai (x) = x, a i R 3 a i, R 3 f i Crit(f i )={p i 1,,p i i,q 1,,q i i } ind(p i j)=2, ind(qj)=1 f i i Q Morse-Smae : H 2 (Y \ ; Q) H 1 (Y \ ; Q) [p i ]= [q i ] Y 3, g : H 1 (Y \ ) H 2 (Y \ ) g([q i ]) = g [p i ] 127

{Φ t f i : Y \ = Y \ } t R gradient-ie gradf i 1 ϕ :(Y \ ) (Y \ ) (0, ) (Y \ ) (Y \ ),ϕ(x, y, t) =(y, Φ t f i (x)) M (f i )=ϕ 1 (Δ) A q i q i D p i j p i j Watanabe propagator Poincaré *5 4 M(f i ):= 1 2 (M (f i )+M ( f i )), g (A q i D p i + D p i A q i ). *6 gradf 1,, gradf 3n,a 1,,a 3n ) zn FW (Y ; f)= Γ E n ( 3n i=1 P i (Γ) 1 M(f i ) 3.1 (Watanabe [13]). gradf = (gradf 1,, gradf 3n ) gradf I(gradf) A n ( ) z FW n Y [Γ] (Y )=zn FW (Y ; f) I(gradf) A n ( ) 3.2 z n Watanabe [13] Kontsevich Chern-Simons z n *5 propagator Poincaré *6 gradf 1,, gradf 3n,a 1,,a 3n 128

3.2 ([11]). z FW n (Y )= z n (Y ). Outine of proof. M(f i ) (Y \ ) 2 4 M(f i ) \ Δ C 2 (Y ) (C 2 (Y ), C 2 (Y )) 4 M C (f i ) 4 ST(Y \ ) 1 2 c(gradf i)+, g (A q i D p i + D p i A q i ) 2 A q i D p i D p i A q i C 2 (Y )\q 1 (Δ\ 2 ) f i q 1 ( (Y \ )) = ST Y (Y \ ) M C (f i ) (ST Y (Y \ )) = 1({a 2 i, a i } (Y \ )) M C (f i ) Poincaré ω(gradf i ) z n (Y ;gradf)=z n FW (Y ; f) Ĩ Ĩ(gradf)=I(grad f) [1] M. Atiyah. On framings of 3-manifods. Topoogy, 29(1):1 7, 1990. [2] S. Axerod and I. M. Singer. Chern-Simons perturbation theory. In Proceedings of the XXth Internationa Conference on Differentia Geometric Methods in Theoretica Physics, Vo. 1, 2 (New Yor, 1991), pages 3 45. Word Sci. Pub., River Edge, NJ, 1992. [3] K. Fuaya. Morse homotopy and Chern-Simons perturbation theory. Comm. Math. Phys., 181(1):37 90, 1996. [4] M. Futai. On Kontsevich s configuration space integra and invariants of 3-manifods. Master thesis, Univ. of Toyo, 2006. [5] M. Kontsevich. Feynman diagrams and ow-dimensiona topoogy. In First European Congress of Mathematics, Vo. II (Paris, 1992), voume 120 of Progr. Math., pages 97 121. Birhäuser, Base, 1994. [6] G. Kuperberg and D. P. Thurston. Perturbative 3-manifod invariants by cut-and-paste topoogy. ArXiv Mathematics e-prints, December 1999. [7] T. T. Q. Le, J. Muraami, and T. Ohtsui. On a universa perturbative invariant of 3- manifods. Topoogy, 37(3):539 574, 1998. [8] C. Lescop. On the Kontsevich-Kuperberg-Thurston construction of a configuration-space invariant for rationa homoogy 3-spheres. ArXiv Mathematics e-prints, November 2004. [9] D. Moussard. Finite type invariants of rationa homoogy 3-spheres. Agebr. Geom. Topo., 12(4):2389 2428, 2012. [10] T. Ohtsui. Finite type invariants of integra homoogy 3-spheres. J. Knot Theory Ramifications, 5(1):101 115, 1996. 129

[11] T. Shimizu. An invariant of rationa homoogy 3-spheres via vector fieds. ArXiv e-prints, 2013. [12] V. A. Vassiiev. Cohomoogy of not spaces. In Theory of singuarities and its appications, voume 1 of Adv. Soviet Math., pages 23 69. Amer. Math. Soc., Providence, RI, 1990. [13] T. Watanabe. Higher order generaization of Fuaya s Morse homotopy invariant of 3- manifods I. Invariants of homoogy 3-spheres. ArXiv e-prints, February 2012. [14] E. Witten. Quantum fied theory and the Jones poynomia. In Braid group, not theory and statistica mechanics, voume 9 of Adv. Ser. Math. Phys., pages 239 329. Word Sci. Pub., Teanec, NJ, 1989. 130