( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =
|
|
- Λαφιδὼθ Μαρκόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Floer Cohomologes of Non-torus Fbers of the Gelfand-Cetln System (X, ω) 2N. X N Φ=(ϕ,...,ϕ N ):X R N, Posson, Φ. Φ, Arnold-Louvlle Largange. Φ (u) = T N, ω Φ (u) =0.. Gelfand-Cetln, Gullemn-Sternberg [9] F = GL(n, C)/P. Gelfand-Cetln, Δ=Φ(F ) Gelfand-Cetln,, Δ Lagrange,., Lagrange Floer. Lagrange Floer, Lagrange Morse, Lagrange Hamltonan sotopy., Floer., Kähler X ( ). 97
2 ( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =Φ (u),. * 2 () L(u) u Int Δ PO(u, x) = H (L(u); R/2πZ) = Int Δ (R/2πZ) N v:(d 2, D 2 ) (X,L(u)) ( ) exp v ( ω hol x v( D 2 ) ) () D 2, W (y). hol x ( v( D 2 ) ), x H (L(u); R/2πZ) L(u) U() v( D 2 ) L(u). () PO, Lagrange L(u) b H (L(u); R/2πZ) (L(u),b), Floer. () X QH(X) Jacob Jac(PO) = C[y ±,...,y± N ]/( PO/ y ; =,...,N). (v), c (X) QH(X). * X Chern c (X) =c (TX), K X Rcc Kähler. *2,. ample. 98
3 [6] [7]., (), () X dm H (X; Q), Floer (L(u),b) dm H (X)., Gelfand-Cetln., Gvental [8], Batyrev, Cocan-Fontanne, Km, van Straten [] ( - - [0]). (), Floer Lagrange.,, dm H (F ). - -Xong [3] Retsch [] (C ) N,., Gelfand-Cetln., 3 Fl(3) C 4 2 Grassmann Gr(2, 4), Floer., Floer Lagrange dm H (F ). ( ). 2 Gelfand-Cetln u(n) n n Hermte, F = GL(n, C)/P λ =dag(λ,...,λ n ) O λ u(n). O λ λ,...,λ n Hermte. x O λ k =,...,n, x (k) x k k. x (k) Hermte, λ (k) (x) λ(k) 2 (x) λ(k) k (x) 99
4 . k =,...,n, n(n )/2 (λ (k) ) k n. λ λ 2 λ 3 λ n λ n λ (n ) λ (n ) 2 λ (n ) n λ (n 2) λ (n 2) n 2 (2) λ (). λ, F, (2) λ (k). λ (k) N =dm C F. Gelfand-Cetln λ (k). Φ=(λ (k) ),k : F R N 2. (Gullemn-Sternberg [9]). Φ F (Kostant-Krllov )., u Int Δ L(u) =Φ (u) Lagrange. Δ=Φ(F ) (2). Δ Gelfand-Cetln. 2.2 (Fl(3) ). λ,λ 2 > 0, Fl(3) λ =dag(λ, 0, λ 2 )., Gelfand-Cetln, 4 u 0 =(0, 0, 0) ( ). L 0 =Φ (u 0 ) L 0 = 0 0 z 0 0 z 2 u(3) z z 2 λ λ 2 z 2 + z 2 2 = λ λ 2 3 S 3 = SU(2) Lagrange. 00
5 λ () λ (2) λ (2) 2 Fl(3) Gelfand-Cetln. 2.3 (Gr(2, 4) ). λ>0, Gr(2, 4) λ =dag(λ, λ, λ, λ), Gelfand-Cetln Δ λ λ (3) 2 λ λ (2) λ (2) 2 λ () 4., λ () = λ (2) = λ (2) 2 = λ (2) 2 Δ. (t, t, t, t) L t =Φ (t, t, t, t) {( ) ti L t = 2 λ2 t 2 P λ2 t 2 P } u(4) ( t)i 2 P U(2) U(2) Lagrange. 3 Floer, -Oh- - [4] Floer. T, { } Λ 0 = a T λ a C, λ 0, lm λ = = 0
6 Novkov. Λ +,Λ. (X, ω) Lagrange L ( ), L, L H (L;Λ 0 ) A m k : H (L;Λ 0 ) k H (L;Λ 0 ), k =0,, 2,... ([4, Theorem A]). m : H (L) H (L), m 2 : H (L) H (L) H (L), m k (k 3). m m =0, m HF(L, L;Λ 0 )=Kerm / Im m L Floer. m m 0, Floer. b H (L;Λ + )( b H (L;Λ 0 )) A {m b k } k0. Floer m b m b (x) = k,l m k+l+ (b,...,b,x,b,...,b). }{{}}{{} k l. b Maurer-Cartan m k (b,...,b) 0 mod PD([L]) (3) k=0 m b m b =0., PD([L]) [L] Poncaré., m b HF((L, b), (L, b); Λ 0 )=Kerm b / Im m b (L, b) Floer. (3) weak boundng cochan, M weak (L). () PO, m k (b,...,b)=po(b) PD([L]) k=0 M weak (L). 02
7 , Cho-Oh [2, Secton 5], -Oh- - [5, Proposton 3.2, Theorem 3.4] Lagrange. Gelfand-Cetln Φ:F Δ Lagrange,.,. λ (k) θ (k) u =(u (k) ),k Int Δ L(u), b = (,k) I x (k) dθ (k) H (L(u); Λ 0 ) x =(x (k) ) (,k) I Λ N 0, H (L(u); Λ 0 ) Λ N 0. y (k) = e x(k) T u(k) Q j = T λ n j,, j =,...,r+,,. 3. ([0, Theorem 0.]). u Int Δ, H (L(u); Λ 0 ) M weak (L(u)). u Int Δ H (L(u); Λ 0 ) = Int Δ Λ N 0 PO(u, x) = (,k) I ( y (k+) y (k) ) + y(k) y (k+) +., λ (k+) = λ nj y (k+) = Q j Fl(3), PO = Q y + y Q 2 + Q 2 y 2 + y 2 Q 3 + y y 3 + y 3 y 2. dm H (Fl(3)) = 6., Floer (L(u),b) Grassmann Gr(2, 4), λ = λ 2 >λ 3 = λ 4, PO = Q y 2 + y 2 y + y y 3 + y 3 Q 3 + y 2 y 4 + y 4 y 3 03
8 , 4. Floer (L(u),b) 4., dmh (Gr(2, 4)) = 6, U(2)., Fl(3) Lagrange S 3 L 0. H (L 0 )=0, Floer m. 2.2, Fl(3) dag(λ, 0,λ 2 ) L 0 Fl(3) Novkov Λ 0 Floer HF(L 0,L 0 ;Λ 0 ) = Λ 0 /T mn{λ,λ 2 } Λ 0., Novkov Λ Floer : HF(L 0,L 0 ;Λ)=0. Fl(3), Λ Floer Lagrange Δ. Gr(2, 4) U(2) L t ( λ <t<λ) b H (L t ;Λ 0 /2π Z) = Λ 0 /2π Z, (L t,b) Floer HF((L t,b), (L t,b); Λ 0 ) = { H (L 0 ;Λ 0 ) t =0 b = ±π /2, (Λ 0 /T mn{λ t,λ+t} Λ 0 ) 2., Novkov Λ Floer. HF((L t,b), (L t,b); Λ) = { H (L 0 ;Λ) t =0 b = ±π /2, 0, Λ Floer (L, b), Gelfand-Cetln 6=dmH (Gr(2, 4)). 04
9 [] V. Batyrev, I. Cocan-Fontanne, B. Km, and D. van Straten, Mrror symmetry and torc degeneratons of partal flag manfolds, Acta Math. 84 (2000), no., 39. [2] C.-H. Cho and Y.-G. Oh, Floer cohomology and dsc nstantons of Lagrangan torus fbers n Fano torc manfolds, Asan J. Math. 0 (2006), [3] T, Eguch, K. Hor, and C-S. Xong, Gravtatonal quantum cohomology, Internat. J. Modern Phys. A 2 (997), no. 9, [4] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Intersecton Floer theory Anomaly and obstructons, Part I and Part II, AMS/IP Studes n Advanced Mathematcs, 46, [5] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory on compact torc manfolds I, Duke Math. J. 5 (200), no., [6] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory and mrror symmetry on compact torc manfolds, arxv: [7] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory on compact torc manfolds: survey, In Surveys n dfferental geometry. Vol. XVII, , Surv. Dffer. Geom., 7, Int. Press, Boston, MA (202). [8] A. Gvental, Statonary phase ntegrals, quantum Toda lattces, flag manfolds and the mrror conjecture, Topcs n sngularty theory, 03 5, Amer. Math. Soc. Transl. Ser. 2, 80, Amer. Math. Soc., Provdence, RI, 997. [9] V. Gullemn and S. Sternberg, The Gelfand-Cetln system and quantzaton of the complex flag manfolds, J. Funct. Annal. 52 (983), [0] T. Nshnou, Y. Nohara, and K. Ueda, Torc degeneratons of Gelfand-Cetln systems and potental functons, Adv. Math. 224, (200). [] K. Retsch, A mrror symmetrc constructon of qht (G/P ) (q), Adv. Math. 27 (2008), no. 6,
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-
Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons 3 1 1989 E. Witten Chern-Simons 3 ( ) ([14]) Witten 3 Chern-Simons M. Kontsevich [5], S. Axerod I. M. Singer [2]
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )
ADE (Ryo Fujita) 1 Introduction Lie g U(g) q 2 q q Hopf Drinfeld- U q (g) C S 1 g U(g) q U q (g) U(Lg) q U q (Lg) Lg := g C[t ±1 ] Lie U q (Lg) 2 R ADE Lie g U q (Lg) ADE Dynkin Dynkin Q Dynkin Q Hernandez-Leclerc
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10
À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )
30 11 http://www.ozawa.phys.waseda.ac.jp/index2.html Ω C OΩ M Ω f M Ω Polf C PC RC 1 Ω C K C K Ω 1 K U Ω U f OU f n OΩ f f n ; L K 0n 2 K U Ω U f OU f n OΩ f f n ; L K 0n 3 z Ω \ K f OΩ f; L K < fz 4 K
apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a
n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
Advanced Multidimensional NMR-I
Advanced Multidimensional NMR-I K.V.R. Chary chary@tifr.res.in Workshop on NMR and it s applications in Biological Systems TIFR November 24, 2009 1 RECAP 2 [I 1x, I 1y ] = ii 1z [I 1y, I 1z ] = ii 1x [I
K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010
MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions
ΘΕΩΡΗΜΑΤΑ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΥΞΗΤΙΚΟΤΗΤΑΣ-ΠΑΡΑΛΛΑΓΕΣ ΤΟΥ ΛΗΜΜΑΤΟΣ SCHWARZ ΓΙΑ ΟΛΟΜΟΡΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Γαλάτεια Κλεάνθους Υποστήριξη διδακτορικής διατριβής 25/02/2014 Monotonicity theorems for analytic functions
= g(x e, Y e ) = g e (X, Y ) = g(x, Y )(e), = d(l (gα) 1 L g ) α u, d(l (gα) 1 L g ) α v
Κεφάλαιο 9 Η γεωμετρία μιας ομάδας Le Σύνοψη Θα μελετήσουμε αριστερά αναλλοίωτες και αμφιαναλλοίωτες μετρικές Remann σε μια ομάδα Le. Θα παρουσιάσουμε τύπους για τη συνοχή Lev-Cvta, την καμπυλότητα τομής,
Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p
Jean Pierre Serre Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p. 1-42. 2 0 X X X X X Kähler 1 X X X Chow X n 12 1 H. Cartan [3] H. Cartan W-L. Chow
1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5
1 1994 9 6 1 What is CFT? 1 2 Wess-Zumino-Witten model 2 2.1 (R Representation theoretic formulation of WZW model.......... 2 2.2 (G Geometric formulation of WZW model.................. 4 2.3 (R=(G.....................................
page: 2 (2.1) n + 1 n {n} N 0, 1, 2
page: 1 1 1 ( ) ( ) ( ) ( 1 ) 1) 2 1 page: 2 2 [ 4 ] [11] ( [11] ) Chapter I 0 n ( n ) (2.1) n + 1 n {n} 0, 1, 2, 3, 4,..., { }, {, { }}, {, { }, {, { }}}, {, { }, {, { }}, {, { }, {, { }}}},... n n =
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Nonlinear problem with subcritical exponent in Sobolev space
Jebrl Journal of Inequaltes and Applcatons 06 06:305 DOI 0.86/s3660-06-5-3 R E S E A R C H Open Access Nonlnear problem wth subcrtcal exponent n Sobolev space Iqbal H Jebrl * * Correspondence: qbal50@hotmal.com
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region
Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3
n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =
Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε
An Essay on A Statistical Theory of Turbulence
53 特集 注目研究 in 年会 04 ɹ Պڀݚ Ӄཧ ژ দɹຊ ਓ Պ ཧ ɹ ɹ ɹ ɹوɹ೭ ɹ ࡔ Պڀݚ Ӄཧ ژ Kolmogorov Onsager Kármán-Howarth- Monin Euler An Essay on A Statistical Theory of Turbulence Takeshi MATSUMOTO, Faculty of Science, Kyoto
arxiv: v1 [math.dg] 31 Jan 2009
arxiv:0902.0086v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ
ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ Καθηγητής του Τμήματος Μαθηματικών του Αριστοτέλειου Πανεπιστημίου Θεσσαλονίκης ΣΥΝΤΟΜΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΘΕΣΣΑΛΟΝΙΚΗ ΙΑΝΟΥΑΡΙΟΣ 2014 Προσωπικά Στοιχεία Ονοματεπώνυμο: Αθανάσιος
! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#
! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since
Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις
Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Some generalization of Cauchy s and Wilson s functional equations on abelian groups
Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones
γάμος PRICELIST 2013 KENTΡΙΚΗ ΣΕΛΙΔΑ Δημιουργικό Διαστάσεις Κόστος Δημιουργικό Διαστάσεις Κόστος Run-of-site Δημιουργικό Διαστάσεις Κόστος
V. Finite Element Method. 5.1 Introduction to Finite Element Method
V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4
A Simple Proof for the Generalized Frankel Conjecture
arxiv:0707.0035v [math.dg] 30 Jun 2007 A Simple Proof for the Generalized Frankel Conjecture Hui-Ling Gu Department of Mathematics Sun Yat-Sen University Guangzhou, P.R.China Abstract In this short paper,
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
Αρχές Κβαντικής Χημείας και Φασματοσκοπίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (3): Ομάδες Σημείου Σιγάλας Μιχάλης Τμήμα Χημείας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Im-e-Øn-s I-hn tum. Fw.-F-kv. ta-t\m
1 Im-e-Øn-s I-hn tum. Im-e-Øn-s\m-Øv k-aq-l-sø am- n-a-dn- m I-hn-bp-sS Xq-en-I- v I-cp-Øp-s - v hn-iz-kn- I-hn-bm-Wv C-S-t»-cn tkm-hn-µ -\m-b. k-a-im-en-i km-aq-ly-{]-iv-\-ß-sf I-em-aq-ey-hpw I- em-ku-µ-cy-hpw
1 Fuchs. Fuchs. Gauss (1.1) (α) n := α(α + 1) (α + n 1) Bessel Riemann. [MUI], [WW] Gauss. (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du
Fuchs Kac-Moody root 1 Gauss 1. Fuchs (1.1) F (α, β, γ; x) = n=0 (α) n (β n ) x n (γ) n n!, (α) n := α(α + 1) (α + n 1) Bessel Riemann [MUI], [WW] Gauss (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du dx
Table 1: Bond lengths (in Å) of rare-gas dimers without counterpoise correction for BSSE. a Method He 2 Ne 2 Ar 2 Kr 2 HeNe HeAr HeKr NeAr NeKr ArKr MSE MUE Reference 2.97 b 3.09 b 3.76 b 4.01 b 3.03 c
An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces
An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces Song-Ying Li and Hing-Sun Luk Revised by June 16, 2006 To Sheng Gong, on his
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 7 Μαΐου 207 Αναγνώριση Παραμετρικών μοντέλών
Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
Minimal Surfaces PDE as a Monge Ampère Type Equation
Minimal Surfaces PDE as a Monge Ampère Type Equation Dmitri Tseluiko Abstract In the recent Bîlă s paper [1] it was determined the symmetry group of the minimal surfaces PDE (using classical methods).
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM
PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens
arxiv: v1 [math-ph] 4 Jun 2016
On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two Valentina N. Davletshina, Andrey E. Mironov arxiv:1606.0136v1 [math-ph] Jun 2016
Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University
Sho Matsumoto Graduate School of Mathematics, Nagoya University Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University. Kac f n (t) = n k=0 a kt k ({a k } n k=0 i.i.d. ) N n E[N n ] =
100x W=0.1 W=
1 2 abstract: 1 [1] 1970 Furstenberg [2] 1 [3] 1979 Anderson [4] 1 2 1 H = NX n=1 jn >V n < nj); fv n g HjΨ >= EΨ > (ffi n =), ffi n+1 + ffi n 1 + V n ffi n = Effi n,
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Parallel displacements of directions on the Grassmann-like manifold of centered planes
Parallel displacements of directions on the Grassmann-like manifold of centered planes Olga Belova Abstract. The Grassmann-like manifold Gr (m, n) of centered m-planes L m (it has the same dimension as
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Utkin Walcott & Zak ¼
uk j Shft-Senorle Speed Control of the Permnent Mgnet Synchronou Motor under Periodiclly Time-Vrying od ƒf NSC 87--E-009-07 86 8 87 7 knping @cc.nctu.edu.tw o uk j ¼v kƒ Utkin ¼ j uk j ¼ j j¼ uk j j ukj¼
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.
ThD2-4 Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ. ) Abstract For realization of the precise positioning control of
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11. Ελεγξιμότητα (μέρος 2ο) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow
4 D-5 Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow,, 3--, E-mail tsuboi@ab.eng.isas.ac.jp, 7-3-, E-mail ymats@mech.t.u-tokyo.ac.jp Nobuyuki Tsuboi, Institute of Space and Astronautical
ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )
39 1 Vol. 39 No. 1 2009 1 25 ADVANCES IN MECHANICS Jan. 25, 2009 *, 100081. 5 3. Noether, Lie,, Lagrange,,.,,, 1 1.1 1687 Newton (1642 1727), 3,., Newton. 1743 d Alembert (1717 1783), Newton, d Alembert.
IUTeich. [Pano] (2) IUTeich
2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich
OILGEAR TAIFENG. (mm) (mm) (mm) (kg)! 048,065& SAE B 2/4 Bolt 100& SAE C 2 Bolt
PVG!"#$ PVG!"#$%&'()*+!"#$%&'(!")&!"! "# 4!"#$%&!"#$%&'()* SE!"#$%!"!"#$ SE!!"#$%&'(!"#$%&'()*+!"#$!"!"#$%"&'()*+,-./!"#$!"!"#$%&'()*!"#$%& :!"#$%&!"#$%&!"#$%&!"#$%&!"!"#$%&!"#!"#$%&!"#!"#$%&!!"#$%&'()*!"#$!"#$%
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
arxiv: v2 [math.qa] 19 Jan 2018
Contemporary Mathematcs arxv:1709.08572v2 [math.qa] 19 Jan 2018 Kostant-Lusztg A-bases of Multparameter Quantum Groups Nahuan Jng, Kalash C. Msra, and Hroyuk Yamane Abstract. We study the Kostant-Lusztg
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
(10/ /2007) 2012.
Δρ. Κωνσταντίνα Παναγιωτίδου Βιογραφικό Σημείωμα Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 54124 Θεσσαλονική, Ελλάδα email: kapanagi@gen.auth.gr, konpanagiotidou@gmail.com Τηλέφωνο: 6948100730
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Curran et al.,**. Davies et al ,**, ,***,**/
* + *, * - *. * / + Curran et al.,**. Davies et al. +332 +332,**,,***,**/, +333 ++ Daisuke Hattori, Tanaka Kenzo, Kazuo Okamura Irino, Ikuo Ninomiya, Katsutoshi Sakurai : Rehabilitation of the Tropical
Differential forms and the de Rham cohomology - Part I
Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate