Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι ανεξάρτητο της θέσης του σημείου Μ όταν ο συντελεστής του διανύσματος ΜΑ γίνει μηδέν. Έτσι έχουμε: x 4x+ = 0 x= 1, x= Για x = 1 είναι f ( Μ ) = ΑΒ ΑΓ=ΒΑ+ΓΑ Για είναι = 7ΑΒ + 7ΑΓ = 7 ΑΓ ΑΒ = 7ΒΓ Το διάνυσμα x = f Μ 6 η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να αποδείξουμε ότι ο φορέας ενός διανύσματος διέρχεται από σταθερό σημείο.. 1. Έστω τετράπλευρο ΑΒΓΔ και τυχαίο σημείο Μ. Θεωρούμε το μεταβλητό διάνυσμα ν = ΜΑ + ΜΒ ΜΓ ΜΔ. Να αποδειχτεί ότι ο φορέας του ν περνά από σταθερό σημείο. ν = ΜΑ ΜΓ + ΜΒ ΜΔ = ΜΚ + ΜΛ όπου Κ, Λ τα Είναι σταθερά σημεία που κατασκευάζονται από τις παρακάτω σχέσεις: ΚΑ ΚΓ = 0, δηλ. το Κ πάνω στην ΑΓ με ΚΑ=ΚΓ ΛΒ ΛΔ = 0, δηλ. το Λ πάνω στη ΒΔ με ΛΒ= ΛΔ. Έτσι από ν = ΜΚ + ΜΛ ν = ΜΝ, όπου Ν είναι το μέσο του ΚΛ άρα ο φορέας του ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Αντιμετώπιση: Αν Α, Β σταθερά σημεία και Μ μεταβλητό, τότε το τυχαίο διάνυσμα ν = αμα+ βμβ ισούται με ( α+ β) ΜΚ, όπου Κ το σταθερό σημείο του ΑΒ, το οποίο κατασκευάζεται εύκολα από την ακα + βκβ = 0. Πράγματι από ακα + βκβ = 0 α( ΚΜ + ΜΑ ) + β( ΚΜ + ΜΒ ) = 0 ακμ+ αμα+ βκμ+ βμβ= 0 αμα + βμβ = α + β ΜΚ Είναι α + β 0 γιατί αλλιώς το διάνυσμα ν = αμα+ βμβ ισούται με αβα, το οποίο δεν είναι μεταβλητό. 9
7 η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να προσδιορίσουμε ένα σημείο.. 1. Δίνεται τ ρίγ ωνο ΑΒΓ. Να προσδιοριστεί σημείο Μ τέτοιο ώστε να ισχύει: ΑΜ + ΒΜ = ΓΜ. Αντιμετώπιση: Από ΑΜ+ ΒΜ=ΜΓ ΒΜ=ΜΑ ΜΓ ΒΜ =ΓΑ Άρα το Μ βρίσκεται σε ευθεία παράλληλη στην ΑΓ που φέρουμε από το σταθερό σημείο Β και απέχει από το Β απόσταση ίση με το 1 της ΑΓ.. Δίνεται τετράπλευρ ο ΑΒΓΔ. Να προσδιοριστ εί το σημείο Μ τέτοιο ώστε να ισχύει ΜΑ + ΜΒ + ΜΓ + ΜΔ = 0., Από ( ΜΑ+ ΜΒ ) + ( ΜΓ + ΜΔ ) = 0 ΜΚ + ΜΛ = 0 ΜΚ = ΜΛ άρα το Μ είναι το σταθερό μέσο του σταθερού ευθύγραμμου τμήματος που συνδέει τα μέσα των ΑΒ και ΓΔ.. Δίνονται σημεία Α, Β. Να βρεθεί σημείο Ρ για το οποίο ισχύει ΑΡ = λρβ, όπου λ 1 γνωστός πραγματικός. Για να προσδιορίσουμε την θέση ενός σημείου τότε: Αρκεί να εκφράσουμε ένα διάνυσμα που έχει αρχή ένα σταθερό σημείο και πέρας το ζητούμενο σημείο ως συνάρτηση σταθερών (γνωστών) διανυσμάτων. Για να κατάφέρουμε την παραπάνω διαδικασία αναλύουμε κάθε διάνυσμα χρησιμοποιώντας ως σημείο αναφοράς ένα σταθερό σημείο της άσκησης (ή κάνουμε χρήση της ιδιότητας της διαμέσου.) ΑΡ = λ ΑΒ ΑΡ και λύνοντας ως προς ΑΡ παίρνουμε: ΑΡ = λαβ λαρ ή ΑΡ+ λαρ= λαβ ή λ ( 1+ λ) ΑΡ= λαβ ή ΑΡ= ΑΒ 1+ λ Από την ισότητα αυτή προσδιορίζεται μονοσήμαντα το σημείο Ρ. 0
8 η Μορφή Ασκήσεων: Ασκήσεις στις έννοιες των συγγραμμικών και ομόρροπων-αντίρροπων διανυσμάτων. 1. Αν u = α+ β και ν=α β, να αποδείξετε ό τι το διάνυσμα w = u+ ν είναι συγγραμμικό (παράλληλο) με το α. Για να α ποδείξουμε ότι w// α, αρκεί να αποδείξουμε ότι w = λα για κάποιο λ. Έχουμε w = u+ ν = α + β + ( α β) = α + β + α β = 5α Ε πομένως w// α.. Αν ισχύε ι λβδ ΓΑ = λβγ ΔΒ, με Α Β ΓΔ. λ > 1, να αποδείξετε ότι Η δοθείσα σχέση διαδοχικά γράφεται: λβδ ΓΑ = λβγ ΔΒ λβδ λβγ = ΓΑ ΔΒ λ( ΒΔ ΒΓ ) =ΓΔ+ΔΑ ( ΔΑ+ΑΒ) λγδ=γδ ΑΒ λγδ ΓΔ = ΑΒ ( λ 1) ΓΔ = ΑΒ ΑΒ = ( 1 λ) ΓΔ κ αι είναι 1 λ < 0. Επομένως ΑΒ ΓΔ.. Δίνεται ένα τρί γωνο Α ΒΓ. Αν Δ και Ε δύο σημεία τέτοια, ώστε ΑΔ = καβ + λαγ και ΑΕ = λαβ + καγ με κ, λ, να αποδείξετε ότι ΔΕ ΒΓ. Αντιμετώπιση: Όταν θέλουμε να δείξουμε ότι δύο διανύσματα α, β είναι παράλληλα (συγραμμικά) τότε: Αρ κεί να δείξουμε ότι α = λ β, λ Όταν θέλουμε να δείξουμε ότι δύο διανύσματα α, β είναι ομόροπα ή αντίρροπα τότε: αν α = λβ, με λ 0, τότε α β, αν α = λβ, με λ 0, τότε α β. Θ α επιδιώξουμε να αποδείξουμε ότι ΔΕ = ρβγ, ρ. 1
ΔΕ = ΑΕ ΑΔ = λαβ + καγ καβ λαγ = = λ( ΑΒ ΑΓ ) + κ( ΑΓ ΑΒ ) = λγβ + κβγ = κβγ λβγ = = ( κ λ) ΒΓ, οπ ότε ΔΕ= ( κ λ) ΒΓ π ου σημαίνει ότι ΔΕ = ρβγ. Συνεπώς ΔΕ ΒΓ. 4. Αν τα διανύσματα α, β, γ δεν είναι παράλληλα ανά δύο να αποδειχτούν οι συνεπαγωγές: α ) {( β γ) // α και ( β α) // γ} ( α+ 4 γ) // β β) {( α β) // γ και ( α 6 γ) // β} α=β+ 6γ α) Λόγω παραλληλίας υπάρχουν αριθμοί λ και k ώστε να ισχύουν: β γ = λα β = γ + λα β = 4γ + λα β α = kγ β = α + kγ β = α + kγ Συνεπώς είναι και 4γ+ λα= α+ kγ ( 4 k) γ+ ( λ ) α= 0 (1) {4 k = 0 και λ = 0} { k = 4 και λ = /} Για k = 4 η β = α + kγ γίνεται α + 4γ = β δηλαδή το διάνυσμα α + 4γ είναι παράλληλο του β β) Λόγω παραλληλίας υπάρχουν αριθμοί λ και k ώστε να ισχύουν: α β = λγ α = λγ + β Συνεπώς είναι και α 6γ = kβ α = kβ + 6 γ β + λγ = kβ + 6γ 1 k β + λ 6 γ = 0 (1) Λόγω μή παραλληλίας των β και γ από την (1) προκύπτει: {1 k = 0 και λ 6= 0} { k = 1 και λ = } Για k = 1 η α = k β + 6γ γίνεται α = β + 6γ Πρόταση που χρησιμοποιούμε για το λύσιμο ασκήσεων. Έστω α και β δύο μη συγγραμμικά δια- νύσματα. Αν κα + λβ = 0, να αποδείξετε ότι κ=λ= 0 Αν κ 0, τότε λύνοντας ως προς α λ παίρνουμε α = β, κ οπότε α // β, άτοπο. Παρόμοια προκύπτει ότι λ = 0. 5. Να αποδειχτεί η συνεπαγ ωγή: { α // β, ν= kα+ β, u=α k β} ν// u
Απ αγωγή σε άτοπο: Έστω ότι είναι ν // u. Θα υπάρχει αριθμός λ ώστε να ισχύει η ισότητα ν = λu kα + β = λ α kβ k λ α + + λk β = 0 (1) Λόγω μή παραλληλίας τω ν α και β, από την (1) προκύπτει { k λ = 0 και + λk = 0} { k = λ και λ k = } Με αντικατάσταση το υ k = λ έχουμε λ = άτοπο γιατί κάθε τετράγωνο πραγματικού αριθμού είναι μη αρνητικός αριθμός. Συνεπώς το διάνυσμα ν δεν είναι παράλληλο του u. 6. Έστω Μ το μέσο της πλευράς ΓΔ παραλληλογράμμου ΑΒΓΔ και Ν το κοινό σημείο των ΑΜ και ΒΔ. Να αποδείξετε ότι 1 ΑΝ = ΑΜ και ΝΔ = ΒΔ. Θεωρούμε τα δύο μη συγγραμικά διανύσματα α = ΑΒ και β = ΑΔ. ν θέσουμε ΑΝ = Α λ ΑΜ και ΝΔ = μβδ, τότε αναζητούμε τους λ, μ. Από τη σχέση ΑΝ + ΝΔ = ΑΔ παίρνουμε: λαμ + μβδ = ΑΔ λ ΑΔ + ΔΜ + μ ΒΑ + ΑΔ = ΑΔ 1 λ β + α + μ α + β = β α // λ λ β μ = 0 μ α + ( λ + μ 1) β = 0 λ+ μ 1= 0 λ = μ λ = λ = μ 1 λ+ μ 1= 0 μ = 1 μ = 1 Ε πομένως ΑΝ = ΑΜ και ΝΔ = ΒΔ. η 9 Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να αποδείξουμε ότι κάποια σημεία είναι συνευθειακά.
1. Αν για τα σημεία Μ, Α, Β και Γ ισχύει ότι ΜΑ + ΜΒ 4ΜΓ = 0, να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά. Θα επιδιώξουμε ξεκινώντας από τη δεδομένη σχέση να καταλήξουμε σε μια σχέ ση της μορφής ΑΒ= λβγ με λ. Είναι ΜΑ + ΜΒ 4ΜΓ = 0 ή ( ΜΒ + ΒΑ ) + ΜΒ 4( ΜΒ + ΒΓ) = 0 ή ΜΒ+ ΒΑ + ΜΒ 4ΜΒ 4ΒΓ = 0 ή ΒΑ= 4ΒΓ ή 4 ΒΑ = ΒΓ που σημαίνει ότι τα σημεία Α, Β και Γ είναι συνευθειακά.. Αν για τα σημεία Α, Β, Ρ, Σ και Τ του επιπέδου ισχύει ΑΡ ΑΤ = ΒΣ + ΒΑ ΒΡ να αποδείξετε ότι τα σημεία Ρ, Σ και Τ είναι συνευθειακά. Για να είναι τα Ρ, Σ και Τ συνευθειακά, θα πρέπει να ισχύει ΡΣ = λτρ ή ΡΤ = κ ΡΣ, κλ,. Από τα διανύσματα της δοσμένης σχέσης θα προσπαθήσουμε να εμφανίσουμε τα διανύσματα ΡΣ και ΤΡ. Έχουμε: ΑΡ ΑΤ = ΒΣ + ΒΑ ΒΡ ή ΑΡ ΑΤ = ΒΑ + ΑΣ + ΒΑ ( ΒΑ + ΑΡ) ή ΑΡ ΑΤ = ΒΑ + ΑΣ + ΒΑ ΒΑ ΑΡ ή ΑΡ ΑΤ = ΑΣ ΑΡ ή ΑΡ ΑΣ = ΑΤ ΑΡ ΣΡ = ΑΤ ΑΡ ή ΣΡ= ΡΤ ή που σημαίνει ότι πράγματι τα σημ εία Ρ, Σ και Τ είναι συνευθειακά.. Δίνονται τα διανύσματα α, β με α β και τα σημεία Α, Β, Γ, Ο. Αν ΟΑ = α + β, ΟΒ = 5α+β και ΟΓ = 11α β να αποδειχθεί ότι τα σημεία Α, Β, Γ είναι συνευθειακά και ΒΓ = ΑΒ. Αντιμετώπιση: Για να δείξουμε ότι τρία σημεία Α, Β, Γ είναι συνευθειακά: α τρόπος Αρκεί να αποδείξουμε ότι α = λ β όπου α, β είναι διανύσματα κατασκευα- σμένα μόνο από τα σημεία Α, Β, Γ ( ΑΒ, ΑΓ ). Για να αποδείξουμε την παραπάνω σχέση αναλύουμε κάθε διάνυσμα χρησι- μοποιώντας ως σημείο αναφοράς ένα σταθερό σημείο της άσκησης 4
Τα ζητούμενα μας οδηγούν στην απόδειξη της σχέσης ΒΓ = ΑΒ. Είναι όμως: ΒΓ = ΟΓ ΟΒ = ( 11α β) ( 5α + β) = 6α 4β = ( α β) (1) ΑΒ = ΟΒ ΟΑ = ( 5α + β) ( α + β) = α β () Ο ι (1), () δίνουν ΒΓ = ΑΒ. Άρα ΒΓ ΑΒ, δηλαδή τα Α, Β, Γ είναι συνευθειακά και ΒΓ = ΑΒ. 4. Δίνονται οι αριθμ οί κ, λ, μ με κ + λ + μ 0 και κ + λ + μ = 0. Αν κοα + λοβ + μογ = 0, να αποδειχθεί ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Η σχέση κ + λ + μ 0 εξασφαλίζει ότι ένας τουλάχιστον από τους κ, λ, μ είναι διάφορος του μηδενός. Έστω ότι κ 0. Είναι κ + λ + μ = 0 μ = κ λ. Έτσι κοα + λοβ + μογ = 0 κοα + λοβ ( κ + λ) ΟΓ = 0 κ( ΟΑ ΟΓ ) + λ( ΟΒ ΟΓ ) = 0 κγα+ λγβ= 0 κ 0 λ κγα= λβγ ΓΑ= ΒΓ κ Η τελευταία σχέση δίνει ότι τα Α, Β, Γ είναι σημεία συνευθειακά. Εντελώς ανάλογα εργαζόμαστε αν λ 0 ή μ 0. Αντιμετώπιση: Για να δείξουμε ότι τρία σημεία Α, Β, Γ είναι συνευθειακά: β τρόπος Αν δίνονται στην άσκηση κάποιες σχέις που ισχύουν τότε σε για να αποδείξουμ ε ότι α = λ β πρέπει να εκφράσουμε τα α, β με την βοήθεια των δοσμένων σχέσεων. 5. Δίνε ται τρίγωνο ΑΒΓ και τα σημ εία Δ, Ε, Ζ τέτοια ώστε να 4 ισχύει ΑΔ = Α Β, Α Ζ = ΑΓ και ΓΕ =ΒΓ. Να ε κφ ράσετε τα 5 διανύσματα ΔΕ και ΔΖ συναρτήσει των ΑΒ και ΑΓ. Κατόπιν να αποδείξετε ότι τα σημεία Δ, Ε, Ζ είναι συνευθειακά. 1 1 1 ΔΕ=ΔΒ+ ΒΕ= ΑΒ+ ΒΓ= ΑΒ+ ΒΑ+ΑΓ = 5ΑΒ+ ΑΓ 4. Επίσης ΔΖ=ΔΑ+ΑΖ= ΑΒ+ ΑΓ= ( 5ΑΒ+ 6ΑΓ). 5 15 5 Άρα ισχύει ότι ΔΕ = ΔΖ, δηλ. Δ, Ε, Ζ συνευθειακά. ( 6 ) 5
6. Δίνεται τρίγω νο ΑΒΓ και οι διάμεσοί του ΒΜ και ΓΝ. Αν ΜΔ = ΒΜ και ΝΕ = ΓΝ, να αποδείξετε ότι τα σημεία Α, Δ και Ε είναι συνευθειακά. Θα αποδείξουμε ότι ΑΕ = λαδ, λ. Είναι 1 1 ΓΑ+ΓΒ ΑΕ = ΑΝ + ΝΕ = ΑΒ + ΓΝ = ΑΒ + = ΑΒ+ΓΑ+ΓΒ ΓΒ+ΓΒ = = =ΓΒ (1) και 1 ΑΔ = ΑΜ + ΜΔ = ΑΓ + ΒΜ = 1 ΒΑ + ΒΓ ΑΓ + ΒΑ + ΒΓ = ΑΓ+ = =ΒΓ () Από τις σχέσ εις (1) και () προκύπτει τελικά ότι ΑΕ= ΑΔ δηλαδή ότι ΑΕ = λ ΑΔ με λ = 1. Άρα τα σημεία Α, Δ και Ε είναι συνευθειακά. 7. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και τα σημεία Ε και Ζ τέτοια, ώστε ΑΕ = ΑΔ και ΑΖ = ΑΒ. Να αποδείξετε ότι τα σημεία Ε, Γ και Ζ είναι συνευθειακά. Θα αποδείξ ουμε ότι υπάρχει λ τέτοιο, ώστε ΕΖ = λεγ ή ΕΑ + ΑΖ = λ ( ΕΑ + ΑΒ + ΒΓ) ή ΑΔ + ΑΒ = λεα + λαβ + λβγ ή ΑΔ+ ΑΒ= λ ΑΔ+ λ ΑΒ+ λ ΑΔ ή λ λ + ΑΔ= λ ΑΒ ή λ ΑΔ= ( λ ) ΑΒ Όμως, για να ισχύει η ισότητα αυτή, θα πρέπει λ = 0 και λ = 0) ( λ = και λ = ) λ = 6
Επομένως είναι ΕΖ = ΕΓ και κατά συνέπεια τα σημεία Ε, Γ και Ζ είναι συνευθειακά.. 10 η Μορφή Ασκήσεων: Ασκήσεις στην τριγωνική ανισότητα και στο μέτρο διανύσματος 1. Να αποδείξετε ότι: i) α+β+γ α + β + γ ii) α β α β i) Έχουμε: α + β + γ = α + β + γ α + β + γ α + β + γ α = α β + β, άρα α = α β + β α β + β ii) Ισχύει ότι ή α β α β. i) Είναι γνωστό από τη θε ωρία ότι ισχύει α +β α + β. Να αποδείξετε ότι επίσης ισχύει α β α + β. ii) Να αποδείξετε ότι α +β α+β+α β. Παρατηρήσεις: Αν ένα από τα διανύσματα α και β είναι μηδενικό ισχύει α β = α± β = α+ β Προσοχή: α = β α = β το αντίστροφο δεν ισχύει α = 0 α = 0 i) Αν εφαρμόσουμε τη σχέση και β α β α + β. α + β α + β για τα διανύσματα α α + β α + β, οπότε αντί των α και β, παίρνουμε λα = λ α, λα = λ α ii) Αν εφαρμόσουμε τη σχέση α + β α + β για τα διανύσματα α + β 7
και α β αντί των α και β, παίρνουμε α + β + α β α+ β + α β, δηλαδή α α+ β + α β (1) Αν εφαρμόσουμε τη σχέσ η α β α + β για τα διανύσματα α + β και α β αντί των α και β, παίρνουμε α + β α β α+ β + α β, δηλαδή β α+ β + α β () Προσθέτουμε κατά μέλη τις σχέσεις (1), () και παίρνουμε: α + β α+ β + α β, οπότε α + β α + β + α β. Για τα διανύσματα α, βγ, να αποδειχτεί η ανισότητα: αβ γ+β γ α ( α+β)( α+β+γ) Είναι β γ β + γ α β γ α β + α γ γ α γ + α β γ α β γ + α β Με πρόσθεση κατά μέλη έχουμε: α β γ + β γ α α β + α γ + β γ = α β + γ α + β α β + α + β + γ ( α + β ) ( α β ) γ = + + ( α + β ) = α + β α + β + γ 4. Αν ισχύουν α+β+ 5γ 0. α=60, β= και γ= 10, να αποδείξετε ότι Παρατηρήσεις: α β = β α ή διαφορετικά ΑΒ = ΒΑ α β = ( α u) + ( u β) α u + β u Έστω ότι α + β + 5γ = 0, οπότε α = ( β + 5γ), άρα α = ( β + 5γ) = β + 5γ β + 5γ = β + 5γ = + 5 10= 56 άτοπο, αφού α = 60. 8