ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι :
|
|
- Ναβουχοδονόσορ Βασιλικός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε ότι τα σημεία Α και Β ταυτίζονται. 4. Δίνονται τα διαφορετικά ανά δύο σημεία Β,Γ,Δ,Ε για τα οποία ισχύει η σχέση Να αποδείξετε ότι το Γ είναι μέσο του ΑΒ. 5. Έστω Α,Β,Γ,Δ σημεία μη συνευθειακά για τα οποία ισχύει ότι 5 Να αποδείξετε ότι το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. 6. Έστω παραλληλόγραμμο ΑΒΓΔ και Kτο κέντρο του. Αν Μ είναι το μέσο του ΚΓ, να αποδείξετε ότι 4 7. Αν ισχύει, να αποδείξετε ότι. 8. Δίνεται παραλληλόγραμμο ΑΒΓΔ και το σημείο Μ για το οποίο ισχύει. Να αποδείξετε ότι. 9. Έστω Α, Β δύο διαφορετικά σημεία. Να βρεθεί η τιμή του x για την οποία ισχύουν x. 0. Θεωρούμε τα διαφορετικά σημεία Α και Β, καθώς και σημείο Γ,για το οποίο ισχύει.να βρείτε την τιμή του λr.. Δίνεται τετράπλευρο ΑΒΓΔ.Να δείξετε ότι διάνυσμα u 6 είναι σταθερό (ανεξάρτητο του Μ).. Δίνονται τα σημεία Α,Β,Γ και Δ.Να αποδείξετε ότι για οποιοδήποτε σημείο Μ το διάνυσμα u 5 4 είναι σταθερό (ανεξάρτητο του Μ).. Δίνονται τα σημεία Α,Β και Γ.Να βρείτε τις τιμές του λ R για τις οποίες το διάνυσμα u 5 είναι σταθερό (ανεξάρτητο του Μ). 4. Έστω παραλληλόγραμμο ΑΒΓΔ. Να βρείτε σημείο Ρ τέτοιο, ώστε. 5. Έστω παραλληλόγραμμο ΑΒΓΔ. Να βρείτε σημείο Ρ της πλευράς ΒΓ τέτοιο, ώστε ΡΓ=ΡΒ.Να αποδείξετε ότι :.
2 6. Να βρεθεί σημείο Ρ για το οποίο ισχύει 0, όπου : i) ΑΒΓΔ παραλληλόγραμμο, ii) ΑΒΓΔ τυχαίο κυρτό τετράπλευρο. 7. Δίνεται τρίγωνο ΑΒΓ και σημείο Μ της πλευράς ΒΓ τέτοιο ώστε,μβ=μγ.να αποδείξετε ότι 8. Θεωρούμε σημεία Α,Β,Γ για τα οποία ισχύει 5. i)να αποδείξετε ότι 8 5 ii)αν,, είναι οι διανυσματικές ακτίνες των σημείων Α,Β,Γ αντίστοιχα ως προς σημείο Ο, να εκφράσετε το συναρτήσει των και. 9. Έστω Α,Β,Γ,Δ σημεία μη συνευθειακά ανά τρία για τα οποία ισχύει ότι 6 5 i)να αποδείξετε ότι το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. ii)nα βρείτε σημείο Μ, ώστε να ισχύει ότι : 0. Για τα διακεκριμένα σημεία Α, Β, Γ δίνεται. Να βρείτε, συναρτήσει του λ, την αριθμητική τιμή του x για την οποία: i) x ii) AB x iii) x iv) x v) x AB. Έστω τα σημεία Α, Β, Γ και Δ με Β Γ. Αν ισχύει,κr, να βρεθεί ο πραγματικός αριθμός x για τον οποίο ισχύει x. ΠΑΡΑΛΛΗΛΑ ΔΙΑΝΥΣΜΑΤΑ. Να αποδείξετε ότι τα διανύσματα 9 4a είναι συγγραμμικά.. Αν ισχύει, να αποδείξετε ότι τα διανύσματα είναι αντίρροπα 4. Αν ισχύει ότι:, να αποδείξετε ότι. 5. Δίνεται τετράπλευρο ΑΒΓΔ.Να αποδείξετε ότι: i)το διάνυσμα v 4 είναι ομόρροπο με το ii) το διάνυσμα w είναι αντίρροπο με το
3 6. Δίνονται τα διανύσματα u 4 και v. Να αποδείξετε ότι : i)το διάνυσμα u v είναι ομόρροπο με το ii) το διάνυσμα u v είναι αντίρροπο με το 7. Δίνεται παραλληλόγραμμο ΑΒΓΔ και σημείο Ρ της πλευράς ΒΓ τέτοιο, ώστε ΡΓ=ΡΒ. i)να γράψετε το διάνυσμα συναρτήσει των και ii)να αποδείξετε ότι το διάνυσμα u 8. Δίνεται τετράπλευρο ΑΒΓΔ και σημείο Ρ της πλευράς ΒΓ τέτοιο,ώστε. Αν επιπλέον ισχύει ότι να αποδείξετε ότι : i) ii)το τετράπλευρο ΑΒΓΔ είναι τραπέζιο με βάσεις τις ΑΒ και ΓΔ 9. Σ ένα τετράπλευρο ΑΒΓΔ έχουμε, 4 5.Να αποδείξετε ότι το ΑΒΓΔ είναι τραπέζιο. 0. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ, Ε του επιπέδου του τέτοια ώστε : 5AB 8 και AE AB 0. Να αποδειχθεί ότι : //.. Αν ισχύει ότι 5 και 5, να αποδείξετε ότι //. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Κ,Λ του επιπέδου του τέτοια ώστε : 4 και 4. i)nα εκφράσετε τα διανύσματα και συναρτήσει των και ii)να αποδείξετε ότι : //.. Στο διπλανό σχήμα είναι, και. Να αποδείξετε ότι: i)το τετράπλευρο ΑΒΓΔ είναι τραπέζιο ii)το διάνυσμα u είναι ομόρροπο με το. Δ A B Γ 4. Αν, είναι δύο γνωστά μη συγγραμμικά διανύσματα, να βρεθεί το διάνυσμα x για το οποίο ισχύει ( x) / /( ) ( x ) / / 5. Αν τα διανύσματα δεν είναι συγγραμμικά, να αποδείξετε ότι: i) 4 0 ii) και τα διανύσματα 4 δεν είναι συγγραμμικά.
4 6. Έστω, δύο μη συγγραμμικά διανύσματα. Να βρείτε τις τιμές του x R για τις οποίες τα διανύσματα x 4 x είναι συγγραμμικά ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ 7. Αν ισχύει ,να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά 8. Δίνονται σημεία Α,Β,Γ,Δ,Ε για τα οποία ισχύει ότι : Να αποδείξετε ότι τα σημεία Α, Β,Γ,Δ,Ε είναι συνευθειακά. 9. Θεωρούμε σημεία Ο,Α,Β,Γ για τα οποία ισχύει ότι : 4, και. Να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά. 40. Δίνονται τα διανύσματα, 5 4 και 7 0. Να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά. 4. Αν ισχύει (κ + ) + = (κ + 5), να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά. 4. Δίνονται τα διανύσματα OA a, OB 5a 4 και O a 7 0. Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. 4. Να αποδείξετε ότι αν: 4ΚΑ 5ΚB 9 είναι συνευθειακά., όπου α R τότε τα σημεία Α, Β, Γ, 44. Αν ισχύει, να αποδείξετε ότι τα σημεία Β, Γ και Δ είναι συνευθειακά. 45. Αν ισχύει = ( -λ) + λ, λr, να αποδείξετε ότι τα σημεία Α, Β και Γ είναι συνευθειακά. 46. Αν ισχύει, να αποδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά. 47. Έστω παραλληλόγραμμο ΑΒΓΔ με. Θεωρούμε το σημείο Ε για το οποίο ισχύει. Να αποδείξετε ότι τα σημεία Γ, Δ και Ε είναι συνευθειακά. 4
5 48. Δίνεται τρίγωνο ΑΒΓ και σημείο Δ τέτοιο ώστε: AΔ ( )ΑΒ,με λ R Να αποδείξετε ότι τα σημεία Β,Γ,Δ είναι συνευθειακά. 49. Δίνεται τρίγωνο ΑΒΓ και σημείο Μ της πλευράς ΒΓ τέτοιο ώστε:. i)να εκφράσετε το διάνυσμα ως συνάρτηση των και ii)έστω επίσης σημείο Δ για το οποίο ισχύει Να αποδείξετε ότι τα σημεία Α,Δ,Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ, Ε και Ζ τέτοια ώστε: ΑΒ, 5 και. i) Αν ΑΒ α και AΓ β να εκφράσετε τα ΔΕ και ΔΖ συναρτήσει των α και β. ii) Να αποδείξετε ότι τα σημεία Δ, Ε, Ζ είναι συνευθειακά. 5. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ, Ε και Ζ τέτοια ώστε: AΔ ΑΒ, ΓΕ ΒΓ και AΖ ΑΓ. 5 i) Αν ΑΒ α και AΓ β να εκφράσετε τα ΔΕ και ΔΖ συναρτήσει των α και β. ii) Να αποδείξετε ότι τα σημεία Δ, Ε, Ζ είναι συνευθειακά. 5. Δίνεται τρίγωνο ΑΒΓ,η διάμεσος του ΑΜ και σημείο Κ της ΑΜ τέτοιο ώστε:. i)να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και ii)έστω επίσης σημείο Λ τέτοιο ώστε 5. Να αποδείξετε ότι τα σημεία Β,Κ,Λ είναι συνευθειακά. 5. Δίνεται τρίγωνο ΑΒΓ και έστω Ε το μέσο της πλευράς ΑΓ. Θεωρούμε επίσης σημεία Δ και Ζ τέτοια ώστε και i)να αποδείξετε ότι ii)να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και iii)να αποδείξετε ότι τα σημεία Δ,E,Z είναι συνευθειακά. 54. Έστω,, τα διανύσματα θέσης των σημείων Α,Β,Γ αντίστοιχα ως προς ένα σημείο Ο. Θεωρούμε επίσης τα σημεία Κ,Λ,Μ για τα οποία ισχύουν, 5 και 8. i) Να γράψετε τα διανύσματα, και σαν συνάρτηση των,, ii) Να αποδείξετε ότι τα σημεία Κ,Λ,Μ είναι συνευθειακά 55. Δίνεται παραλληλόγραμμο ΑΒΓΔ και τα σημεία M και N τέτοια, ώστε και 4. Να αποδείξετε ότι τα σημεία M,N,Δ είναι συνευθειακά. 5
6 56. Δίνεται παραλληλόγραμμο ΑΒΓΔ και τα σημεία Ε και Ζ τέτοια, ώστε AE. Να αποδείξετε ότι τα σημεία Δ,Ε,Ζ είναι συνευθειακά. ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΜΕΣΟΥ 57. Έστω τρίγωνο ΑΒΓ με διαμέσους ΑΜ,ΒΝ και ΓΚ.Αν, και,να υπολογίσετε τα αθροίσματα : i) ii) BA και 58. Δίνεται παραλληλόγραμμο ΑΒΓΔ και έστω Κ το μέσο του ΑΒ και Λ το μέσο του ΔΚ. Να εκφράσετε τα διανύσματα συναρτήσει των. 59. Σε τρίγωνο ΑΒΓ έστω Δ, Ε και Ζ τα μέσα των πλευρών ΒΓ, ΑΓ και ΑΒ αντίστοιχα. Έστω επίσης και και Μ το μέσο του ΕΖ. i) Να εκφράσετε τα διανύσματα ως συνάρτηση των ii) Τι συμπεραίνετε για τα σημεία Α, Μ και Δ; 60. Σε τρίγωνο ΑΒΓ έστω Δ και Ε τα μέσα των ΑΒ και ΑΓ αντίστοιχα. Να αποδείξετε ότι: i), ii) το τμήμα που ενώνει τα μέσα δύο πλευρών του τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ισούται με το μισό της. 6. Αν Ο είναι το σημείο τομής των διαγωνίων ενός παραλληλογράμμου ΑΒΓΔ, να αποδείξετε ότι για κάθε σημείο Μ του επιπέδου ισχύει η ισότητα Αν ΑΒ είναι ένα ευθύγραμμο τμήμα και Ο ένα σημείο, να βρείτε, συναρτήσει των διανυσματικών ακτινών των Α και Β, τη διανυσματική ακτίνα του μέσου Μ του ΑΒ, καθώς και τη διανυσματική ακτίνα του μέσου Ν του MB. 6. Έστω Α, Β, Γ και Δ σημεία ενός επιπέδου και Μ, Ν τα μέσα των ΑΓ και ΒΔ αντίστοιχα.να αποδείξετε ότι : i) ii) 6
7 64. Έστω Α, Β, Γ και Δ σημεία ενός επιπέδου και Μ, Ν τα μέσα των ΑΓ και ΒΔ αντίστοιχα, i) Να γράψετε με τη μορφή ενός διανύσματος τα αθροίσματα και και να αποδείξετε ότι ii) Να βρείτε ποια συνθήκη πρέπει να ικανοποιούν τα ΑΒ και ΓΔ, ώστε: α) β) Έστω Α, Β, Γ, Δ σημεία ενός επιπέδου και Μ, Ν τα μέσα των ΑΒ και ΓΔ αντίστοιχα. i) Να εκφράσετε το ως συνάρτηση των ii) Αν Ρ το σημείο για το οποίο ισχύει η σχέση, να αποδείξετε ότι iii) Να αποδείξετε ότι το τετράπλευρο ΒΓΡΔ είναι παραλληλόγραμμο. 66. Δίνεται παραλληλόγραμμο ΑΒΓΔ και έστω Κ το κέντρο του και Μ το μέσο του ΚΓ. i)να αποδείξετε ότι 4 ii) Να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και 67. Σε τετράπλευρο ΑΒΓΔ έστω Κ και Λ τα μέσα των πλευρών ΑΒ και ΓΔ αντίστοιχα. Να αποδείξετε ότι i) ii) και iii) Σε τρίγωνο ΑΒΓ με διάμεσο AM, να αποδείξετε ότι. 69. Έστω ΑΔ η διάμεσος τριγώνου ΑΒΓ. Αν Ε, Ζ είναι τα μέσα των ΔΓ, ΑΒ αντίστοιχα και Θ το σημείο τομής των ΖΕ, ΑΔ, να αποδείξετε ότι και Δίνεται παραλληλόγραμμο ΑΒΓΔ και M,N τα μέσα των ΑΒ,ΓΔ αντίστοιχα. Να αποδείξετε ότι : i)το διάνυσμα v είναι παράλληλο στο 7. Δίνεται παραλληλόγραμμο ΑΒΓΔ και έστω M το μέσο της ΓΔ. i)να εκφράσετε το διάνυσμα συναρτήσει των και ii) Να αποδείξετε ότι το διάνυσμα u 4 είναι ομόρροπο του 7. Δίνεται παραλληλόγραμμο ΑΒΓΔ και Ε το μέσο του ΑΒ. Αν Ζ είναι το σημείο τομής των ΔΕ και ΑΓ, να δείξετε ότι:. 7
8 7. Δίνεται τρίγωνο ΑΒΓ,το μέσο Μ της πλευράς ΒΓ και Κ το μέσο του ΜΓ. i)nα γράψετε το διάνυσμα συναρτήσει των και ii)για οποιοδήποτε σημείο Ν να αποδείξετε ότι τα διανύσματα v NB 5N 8NA και u είναι παράλληλα. 74. Δίνεται τρίγωνο ΑΒΓ,το μέσο Μ της πλευράς ΒΓ και Ν το μέσο του ΑΜ. i)nα γράψετε το διάνυσμα συναρτήσει των και ii)για οποιοδήποτε σημείο Ν να αποδείξετε ότι τα διανύσματα v είναι παράλληλο στο. 75. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ,Ε της πλευράς ΒΓ,με ΒΔ=ΔΕ=ΕΓ.Θεωρούμε τα διανύσματα AB, A, x και E y α)nα εκφράσετε τα διανύσματα x και y συναρτήσει των και β)nα αποδείξετε ότι : i) το διάνυσμα x + y είναι ομόρροπο του,όπου Μ το μέσο της ΒΓ ii) το διάνυσμα x - y είναι αντίρροπο του. 76. Δίνεται τρίγωνο ΑΒΓ και σημεία Κ,Λ της πλευράς ΒΓ αντίστοιχα τέτοια : και.έστω επίσης Μ το μέσο του ΚΛ. i) Nα γράψετε το διάνυσμα συναρτήσει των και ii)αν για το σημείο Δ ισχύει ότι : 4 5,να αποδείξετε ότι τα σημεία Α,Μ,Δ είναι συνευθειακά 77. Έστω Δ, Ε τα μέσα των πλευρών ΑΓ και ΑΒ αντίστοιχα, τριγώνου ΑΒΓ. Θεωρούμε τα σημεία Ζ, Η τέτοια, ώστε. Να αποδείξετε ότι το Α είναι μέσο του ΖΗ. ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ 78. Δίνεται τραπέζιο ΑΒΓΔ,με ΑΒ//ΓΔ και Μ,Ν τα μέσα των ΑΔ,ΒΓ αντίστοιχα.να αποδείξετε ότι : i) ii) το ΜΝ είναι παράλληλο στις βάσεις του τραπεζίου 79. Δίνεται τρίγωνο ΑΒΓ και τα μέσα Μ και Ν των πλευρών ΑΒ και ΑΓ αντίστοιχα.θεωρούμε σημείο Λ, ώστε.επίσης και i) Να εκφράσετε τα διανύσματα MN, M και συναρτήσει των και ii)τι είδους τετράπλευρο είναι το ΑΜΓΛ; 80. Αν οι διαγώνιες ενός τετραπλεύρου διχοτομούνται,να αποδείξετε ότι το ΑΒΓΔ είναι παραλληλόγραμμο 8
9 8. Σε παραλληλόγραμμο ΑΒΓΔ θεωρούμε σημεία Ε και Ζ της διαγωνίου ΑΓ τέτοια,ώστε. 4 i)αν και,να εκφράσετε το διάνυσμα συναρτήσει των και ii)να αποδείξετε ότι το ΕΒΖΔ είναι παραλληλόγραμμο 8. Στον κύκλο κέντρου Ο του διπλανού σχήματος οι χορδές ΑΒ και ΓΔ είναι κάθετες και έστω Κ και Λ τα μέσα τους αντίστοιχα. i)να αποδείξετε ότι ii)αν Ε και Ζ τα μέσα των χορδών ΒΓ και ΑΔ αντίστοιχα,να αποδείξετε ότι το ΟΕΜΖ είναι A παραλληλόγραμμο. Ζ O K Γ Λ Μ Ε B Δ ΒΑΡΥΚΕΝΤΡΟ ΤΡΙΓΩΝΟΥ 8. Δίνεται τρίγωνο ΑΒΓ,η διάμεσος του ΑΜ και έστω G το κέντρο βάρους του.να γράψετε το διάνυσμα GM συναρτήσει των και 84. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Α,Β Γ των πλευρών ΒΓ,ΑΓ,ΑΒ αντίστοιχα τέτοια ώστε, και.να αποδείξετε ότι τα τρίγωνα ΑΒΓ και Α Β Γ έχουν το ίδιο κέντρο βάρους. 85. Θεωρούμε τα τρίγωνα ΑΒΓ και Α Β Γ για τα οποία ισχύει η σχέση 0.Να αποδείξετε ότι τα κέντρα βάρους των δύο τριγώνων συμπίπτουν 86. Δίνεται τετράπλευρο ΑΒΓΔ και έστω G το κέντρο βάρους του τριγώνου ΑΒΓ.Να αποδείξετε ότι για οποιοδήποτε σημείο Μ,το διάνυσμα u είναι ομόρροπο με το G ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 87. Αν τα σημεία Α και Β είναι διαφορετικά,να βρείτε τον xr για τον οποίο ισχύει, x x 88. Δίνονται σημεία Α,Β,Γ,Δ, με Β Γ,για τα οποία ισχύει i)να αποδείξετε ότι : ii) Να λύσετε την εξίσωση : x x (x ) 9
10 89. Έστω και δύο γνωστά διανύσματα.θεωρούμε επίσης διάνυσμα x για το οποίο ισχύει : ( x ) ( x ) 4 α) Να βρείτε το διάνυσμα x β) Αν επιπλέον ισχύει ότι : 4, 4 και 8 να αποδείξετε ότι : i) x ii) x 90. Θεωρούμε γνωστό διάνυσμα 0.Να λύσετε την εξίσωση x x x 4 9. Να βρείτε το διάνυσμα x, αν είναι γνωστό ότι ( x a) ( x 6 ) 5 9. Να λυθεί το σύστημα x y 7a x y 9. Να βρείτε για ποιες τιμές του λ R ισχύει ( ) 5, ó a 0. ΓΡΑΜΜΙΚΟΣ ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ 94. Δίνεται τρίγωνο ΑΒΓ και σημείο Ρ τέτοιο, ώστε. i) Να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και ii) Να βρείτε τα κ,λ R για τα οποία ισχύει : Δίνεται τρίγωνο ΑΒΓ και έστω Μ το μέσο του ΒΓ. Να βρείτε τα κ,λ R για τα οποία ισχύει : Δίνονται τα διανύσματα v ( ) και u ( ) ( 5),όπου και μη συγγραμμικά διανύσματα.να βρείτε για ποια τιμή του λ R τα διανύσματα v και u είναι παράλληλα. 97. Θεωρούμε τα μη συνευθειακά σημεία Ο,Α,Β και τα διανύσματα v OA OB και u OA OB. Να αποδείξετε ότι για κάθε λ R τα διανύσματα v και u δεν είναι συγγραμμικά. 98. Θεωρούμε τρίγωνο ΑΒΓ,το μέσο Δ της πλευράς ΑΒ και σημείο Ζ της πλευράς ΑΓ τέτοιο,ώστε AZ A.Έστω ότι η ευθεία ΔΖ τέμνει την πλευρά ΒΓ στο Ε.Να βρείτε λ R,για 5 τον οποίο είναι 0
11 99. Δίνεται τρίγωνο ΟΑΒ και έστω και.θεωρούμε τα σημεία Γ και Δ τέτοια ώστε : 6 και 4.Αν Ε είναι το σημείο τομής των ευθειών ΑΒ και ΓΔ,να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και 00. Στο διπλανό σχήμα είναι και Ε το μέσο της ΟΒ. Έστω ότι ισχύουν οι σχέσεις : και O α)να εκφράσετε τα, και σαν συνάρτηση των και β)αν και,να βρείτε ; i)τους αριθμούς λ και μ ii) τον λόγο A Δ M Ε B 0. Στο διπλανό σχήμα τα σημεία Α και Β έχουν διανύσματα θέσης,ως προς Ο,τα 6 και 6 αντίστοιχα,το Μ είναι μέσο του ΟΑ Α, ισχύει και Ε είναι το μέσο της ΟΔ. i)να εκφράσετε το σαν συνάρτηση των και ii)να αποδείξετε ότι το τετράπλευρο ΜΑΒΕ είναι τραπέζιο iii)αν η ΑΕ τέμνει την ΟΒ στο Γ και είναι :,να υπολογίσετε το κ Ο Μ Ε Γ Δ Β 0. Στο παραλληλόγραμμο ΑΒΓΔ του σχήματος, να γράψετε τα διανύσματα,,,,, συναρτήσει των. 0. Στο διπλανό ορθογώνιο ΑΒΓΔ το Μ είναι το μέσο της ΔΓ και επίσης. Να γράψετε το ως γραμμικό συνδυασμό των p q. 04. Έστω ΑΒ ευθύγραμμο τμήμα και Γ ένα σημείο του τέτοιο, ώστε. Αν 4 και, να εκφράσετε ως συνάρτηση των, το διάνυσμα θέσης του Γ ως προς το Ο. 05. Αν 4, να γράψετε το ως γραμμικό συνδυασμό των.
12 06. Αν ισχύει, να βρεθεί το διάνυσμα συναρτήσει του Έστω ευθύγραμμο τμήμα ΑΒ και Δ ένα σημείο της ευθείας ΑΒ τέτοιο, ώστε.. Να βρείτε συναρτήσει των διανυσμάτων και, τα διανύσματα: i) i) ii ) 08. Σε ευθεία ε θεωρούμε τα σημεία Α, Β, Κ και σε ευθεία ε τα σημεία Γ, Δ, Λ έτσι, ώστε να είναι και,με μ.να γράψετε το διάνυσμα ΚΛ ως γραμμικό συνδυασμό των ΑΓ και ΒΔ. 09. Έστω παραλληλόγραμμο ΑΒΓΔ και ευθεία ε που διέρχεται από το Γ και τέμνει τις ευθείες ΑΔ και ΑΒ στα σημεία Κ και Λ αντίστοιχα. Αν είναι x και y, να αποδείξετε ότι x + y =. 0. Έστω Ε το μέσο της διαμέσου ΒΔ τριγώνου ΑΒΓ και Η το σημείο για το οποίο. Να αποδείξετε ότι. Δίνεται τρίγωνο ΑΒΓ και έστω Μ το μέσο της διαμέσου ΒΔ και Ν το σημείο που ορίζεται από την ισότητα. Να αποδείξετε ότι τα σημεία Α,M, Ν είναι συνευθειακά.. Δίνεται παραλληλόγραμμο ΑΒΓΔ και τα σημεία Κ και Λ για τα οποία και 4 Να αποδείξετε ότι τα σημεία Κ, Λ, Β είναι συνευθειακά.. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ, Ε, Ζ για τα οποία 5,, 6 i) Να γράψετε καθένα από τα διανύσματα, ως γραμμικό συνδυασμό των δύο μη συγγραμμικών διανυσμάτων,. ii) Να εξετάσετε αν τα σημεία Δ, Ζ, Ε είναι συνευθειακά.
13 4. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ, Ε και Ζ για τα οποία ισχύουν,,, i) Να γράψετε καθένα από τα διανύσματα ως γραμμικό συνδυασμό των και ii) Να εξετάσετε αν τα σημεία Δ, Ε και Ζ είναι συνευθειακά. 5. Θεωρούμε τρίγωνο ΑΒΓ και προεκτείνουμε τις διάμεσους ΒΔ και ΓΕ κατά τμήματα ΔΚ = ΒΔ και ΕΛ = ΓΕ. Να αποδείξετε ότι το Α είναι το μέσο του ΚΑ. 6. Σε τρίγωνο ΑΒΓ έστω Δ και Ε τα μέσα των ΑΒ και ΑΓ αντίστοιχα. Προεκτείνουμε το ΔΕ κατά τμήμα ΕΖ = ΔΕ. Αν και, να εκφράσετε ως συνάρτηση των τα διανύσματα: i) ii) iii ) Ποιο συμπέρασμα προκύπτει για το τετράπλευρο ΑΔΓΖ; 7. Στο επόμενο σχήμα ισχύει 4,. Επίσης είναι ΟΓ = ΓΖ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ 8. Δίνεται τρίγωνο ΑΒΓ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει: i) ( ), R ii) ( ) / /
14 iii) ( ) / / iv) 0, R 9. Δίνονται τα σημεία Α, Β, Γ και Δ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει MA MB. 0. Δίνονται τα σημεία Α, Β και Γ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει MA MB.. Έστω τετράπλευρο ΑΒΓΔ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία, R.. Έστω τα σημεία Α, Β, Γ και Δ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει MA MB. Δίνεται τρίγωνο ΑΒΓ.. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει M MB 4. Δίνεται τρίγωνο ΑΒΓ.. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει MA 5 5. Δίνεται τρίγωνο ΑΒΓ και έστω Μ το μέσο της ΒΓ.. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει M 6. Δίνεται τρίγωνο ΑΒΓ και η διάμεσος του ΑΔ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει MA 6 7. Έστω και δύο μη μηδενικά διανύσματα. Να βρείτε τον γεωμετρικό τόπο των σημείων Μ του επιπέδου για τα οποία ισχύει,με λr 8. Δίνεται τρίγωνο ΑΒΓ. Να βρείτε τον γεωμετρικό τόπο των σημείων Μ του επιπέδου για τα οποία ισχύει ( x ), x R 9. Δίνεται τρίγωνο ΑΒΓ. Να βρείτε τον γεωμετρικό τόπο των σημείων Μ του επιπέδου για τα οποία ισχύει ( ), R 0. Θεωρούμε τρίγωνο ΑΒΓ. i ) Να αποδείξετε ότι υπάρχει μοναδικό σημείο Ρ για το οποίο ισχύει 4 0 4
15 ii) Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει ότι : 4, R. Σε τρίγωνο ΑΒΓ να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία υπάρχει x R, ώστε x ( x ). Έστω τρίγωνο ΑΒΓ και α, β > 0 με α + β =. Να βρείτε τον γεωμετρικό τόπο των σημείων Μ για τα οποία ισχύει.. Δίνονται τα σημεία Α, Β και Γ. Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ για τα οποία ισχύει, R. 4. Δίνεται τρίγωνο ΑΒΓ και σημείο Κ της ευθείας ΒΓ. Να αποδείξετε ότι υπάρχει λr τέτοιο, ώστε AK ( ). 5. Δίνεται τραπέζιο ΑΒΓΔ με ΑΒ//ΓΔ. Να αποδείξετε ότι για κάθε σημείο Ο υπάρχει λr, ώστε ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 6. Δίνεται τρίγωνο ΑΒΓ, Μ το μέσο της ΒΓ και σημείο Δ τέτοιο,ώστε.αν Ν είναι το μέσο του ΑΔ, τότε : i)να γράψετε το συναρτήσει των και ii)να αποδείξετε ότι για οποιοδήποτε σημείο Ο,το διάνυσμα v είναι ομόρροπο στο 7. Δίνεται τρίγωνο ΑΒΓ και σημείο Δ της ΒΓ τέτοιο,ώστε. α) Να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και β) Έστω επίσης σημείο Ε για το οποί ισχύει : ( ) 6,λ - i)να γράψετε το διάνυσμα σαν γραμμικό συνδυασμό των και ii)να βρείτε για ποια τιμή του λ τα σημεία Α,Δ,Ε είναι συνευθειακά. 8. Έστω και δύο γνωστά μη συγγραμμικά διανύσματα x και y για τα οποία ισχύουν : x y 4 x y α)να εκφράσετε καθένα από τα x και y σαν γραμμικό συνδυασμό των και β) Να αποδείξετε ότι: i)το διάνυσμα u x y είναι ομόρροπο ii) το διάνυσμα v y x είναι αντίρροπο του γ)να βρείτε τα λ,μ R για τα οποία ισχύει : x y ( ) ( 6) 5
16 9. Θεωρούμε δύο σημεία Α, Β και έστω, οι διανυσματικές τους ακτίνες ως προς ένα σημείο Ο. Έστω επίσης Μ το μέσο του ΟΑ,σημείο Κ του τμήματος ΟΒ,με ΚΟ=ΚΒ,και σημείο Λ του τμήματος ΑΚ με ΛΑ=4ΛΚ i)να γράψετε συναρτήσει των και τις διανυσματικές ακτίνες (ως προς Ο) των σημείων Μ,Κ,Λ ii)να αποδείξετε ότι τα σημεία Β,Λ,Μ είναι συνευθειακά iii)να βρείτε τους λόγους : και 40. Θεωρούμε ορθογώνιο ΑΒΓΔ. α)να βρείτε τον πραγματικό αριθμό λ για τον οποίο ισχύει : 0 β)σε κάθε σημείο Μ του επιπέδου αντιστοιχούμε τα διανύσματα : v και u i)να βρείτε το πέρας του v ii)να αποδείξετε ότι το u είναι σταθερό γ) Να βρείτε τον γεωμετρικό τόπο των σημείων Μ για τα οποία τα διανύσματα u και v : i)είναι συγγραμμικά ii) έχουν ίσα μέτρα 6
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ. 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα 2. Να γράψετε ως ένα διάνυσμα τα παρακάτω αθροίσματα :
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΠΡΑΞΕΙΣ ΔΙΑΝΥΣΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΠΡΑΞΕΙΣ ΔΙΑΝΥΣΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1. Στο παραλληλόγραμμο ΑΒΓΔ είναι: ΑΒ = α, = β. α) Το διάνυσμα ΑΓ ισούται με Α. α - β Β. β - α Γ. α + β β) Το διάνυσμα
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει
1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.
1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.
Μαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :
Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για τα Μαθηματικά Θετικού Προσανατολισμού της Β Λυκείου, που είναι ένα από τα σημαντικότερα μαθήματα, καθώς περιέχει χρήσιμες γνώσεις για
Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων
Αρσάκεια Τοσίτσεια Σχολεία Μαθηματικά Κατεύθυνσης Β Λυκείου Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων ) α β α β α//β ) α β α β α β ) α β α β α β 4)
AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται
ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12
Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.
= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ
ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα
Φυλλάδιο Ασκήσεων 1 Διανύσματα
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΝΑΤΟΙΜΟΥ Β ΥΚΕΙΟΥ 07-8 Φυλλάδιο Διανύσματα ο ΓΕ Αγίων Αναργύρων Μαθηματικά Προσανατολισμού Φυλλάδιο Ασκήσεων Διανύσματα Β υκείου ύνθεση Άσκηση Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σημεία Α, Β, Γ είναι
Επαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις 1 Έστω Α, Β, Κ, Λ και Μ τυχαία σημεία του χώρου Α ισχύει η σχέση ΑΚ + ΜΑ = ΚΒ 2ΑΒ + ΒΛ, να αποδείξετε ότι: α) τα σημεία Κ, Λ και Μ είναι συνευθειακά, β) ΚΛ ΚΜ, γ) ΚΛ = ΚΜ 2 Έστω
ΔΙΑΝΥΣΜΑΤΑ. Ένα διάνυσμα του οποίου τα άκρα συμπίπτουν λέγεται μηδενικό διάνυσμα και συμβολίζεται με 0.
ΔΙΑΝΥΣΜΑΤΑ ΟΡΙΣΜΟΣ: Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα,δηλαδή ένα τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα. Το πρώτο άκρο λέγεται αρχή ή σημείο εφαρμογής και το δεύτερο λέγεται
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..
ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε
= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)
ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο
α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α
3 Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= ΟΑ Αν Δ και Ε είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα, να βρείτε τα διανύσματα ΓΑ, ΑΒ και ΕΔ συναρτήσει των α και γ και να αποδείξετε ότι ΓΑ = ΕΔ ΛΥΣΗ Έχουμε:
ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ Διανύσματα-Ευθεία-Κύκλος Αναλυτική Θεωρία 500 Ασκήσεις Επιμέλεια : ΝΙΚΟΣ Κ. ΡΑΠΤΗΣ ΝΙΚΟΣ Κ. ΡΑΠΤΗΣ Σελίδα 2 1. Η Έννοια του Διανύσματος Ορισμός Διανύσματος Το διάνυσμα ορίζεται ως
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Επιμέλεια Αυγερινός Βασίλης ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ο ΔΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΕ ΑΠΑΝΤΗΣΕΙΣ, ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ ΣΕΛΙΔΕΣ 3-36 ΜΕΡΟΣ ο ΕΥΘΕΙΕΣ ΕΡΩΤΗΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το
ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος
ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
ΔΙΑΝΥΣΜΑΤΑ ΔΙΑΝΥΣΜΑΤΑ. .0 AB 0 A B (Α ταυτίζεται με Β).
ΔΙΑΝΥΣΜΑΤΑ ΟΡΙΣΜΟΣ: Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα,δηλαδή ένα τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα. Το πρώτο άκρο λέγεται αρχή ή σημείο εφαρμογής και το δεύτερο λέγεται
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β
(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)
ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Διανύσματα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / 9 / 0 1 6 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για τα διανύσματα
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:
Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556
Διανύσματα ΚΑΤΗΓΟΡΙΑ 6. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Ασκήσεις προς λύση Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα.
Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα ΚΑΤΗΓΟΡΙΑ 6 Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα. Αντίρροπα διανύσµατα. Συνθήκη παραλληλίας διανυσµάτων (όλες της οι µορφές). Συνευθειακά
ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
Πολλαπλασιασμός αριθμού με διάνυσμα
Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη
1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ
4 13 ΠΛΛΠΛΣΙΣΣ ΡΙΘΥ ΙΝΥΣ ρισμός Πολλαπλασιασμού ριθμού με ιάνυσμα Έστω λ ένας πραγματικός αριθμός με λ 0 και α ένα μη μηδενικό διάνυσμα νομάζουμε γινόμενο του λ με το α και το συμολίζουμε με λ α ή λ α
1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ
34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή
Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015
Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο
ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.
ΔΙΑΝΥΣΜΑΤΑ 1. Να αποδειχθεί ότι τα μέσα των πλευρών τετραπλεύρου είναι κορυφές παραλληλογράμμου.. Δίνεται ένα παραλληλόγραμμο ΑΒΓΔ και ένα οποιοδήποτε σημείο Ρ του χώρου. Να αποδειχτεί ότι: P A P 0. 3.
ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)
ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το
ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Διανύσματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / 7 / 0 1 8 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα
ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης
Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια
Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
!! viii) Αν λ α = μα
Αν έχουμε το διάνυσμα α O και τον πραγματικό αριθμό * λ R τότε γινόμενο του λ με το διάνυσμα α! λέγεται το διάνυσμα λ α! το οποίο: i) είναι ομόρροπο του α! όταν λ>0 και είναι αντίρροπο του α! όταν λ
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β
O A M B ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ Ο ΘΕΜΑ ον : α α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β. Μονάδες 5 β. Αν α, ν
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
Επαναληπτικά συνδυαστικα θέµατα
Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ 1. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και ΒΕ, ΓΖ οι διχοτόμοι των γωνιών Β και Γ αντίστοιχα. Αν Μ είναι το μέσο της ΒΓ, να αποδείξετε ότι: α) Τα τμήματα
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΗΜΕΙΩΝ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 1. Δίνεται το σημείο Α(λ -9, λ -λ) με λr.να βρείτε για ποιες τιμές του λr το σημείο Α ανήκει : i)στον άξονα χ χ ii) στον άξονα y
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Να δίνει τον ορισμό του διανύσματος και των εννοιών που είναι κλειδιά όπως: κατεύθυνση φορά ή διεύθυνση, μηδενικό διάνυσμα,
ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΗ. 1 Να υπολογίσετε την περίμετρο και το εμβαδόν του παρακάτω τρίγωνο ΑΒΓ που έχει ΑΒ = 17cm, ΑΓ = 25cm και ΑΔ = 15cm. ΑΣΚΗΣΗ. 2 Στο ορθογώνιο τραπέζιο είναι ΑΒ= 9cm,
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.
ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα
ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του
Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
για να βρούμε το άθροισμά τους μπορούμε να δουλέψουμε με 2 τρόπους: λέγεται άθροισμα ή συνισταμένη των α,. Δηλαδή:
α.. Πρόσθεση διιανυσμάτων Αν έχουμε δύο διανύσματα α, β για να βρούμε το άθροισμά τους μπορούμε να δουλέψουμε με 2 τρόπους: 1 0ς τρόπος!! Με αρχή ένα σημείο παίρνουμε διάνυσμα Α = α!!!!!" και στη συνέχεια
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις
ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ
. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣ ΘΕΩΡΙΑ. Ορισµός Γινόµενο πραγµατικού αριθµού λ µε διάνυσµα α 0 λέγεται νέο διάνυσµα λα, που έχει µέτρο λα = λ α και είναι οµόρροπο του α όταν λ > 0 αντίρροπο του α όταν
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις
ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.
Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ
Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΛΟΓΙΕΣ. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ=5 και ΒΕ=5, να αποδείξετε ότι: α) ΑΓ