Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής



Σχετικά έγγραφα
Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Νηπιαγωγείο - Δημοτικό

Τέχνη & Μαθηματικά. Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης

ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ:

W. Kandinsky. Επιστημονικός και Εκπαιδευτικός Σχεδιασμός: Άρης Μαυρομμάτης Αποστόλης Παπανικολάου

Επιστήμη, Τέχνη & Μαθηματικά, Πρόγραμμα Λυκείου

ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ ΑΘΗΝΑ Τηλέφωνο: Fax:

8/θ Π.Π.Σ.Π.Π. Τάξεις:Ε1-Ε2 Πολιτιστικό Πρόγραμμα "Τέχνη και Ψευδαίσθηση"

O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική

Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική των Μαθηματικών

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, Αθήνα Τηλ.: , Fax:

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Μουσική Παιδαγωγική Θεωρία και Πράξη

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Επίσκεψη στο Μουσείο Ηρακλειδών

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

Επίσκεψη στο Μουσείο Ηρακλειδών

Τα σχέδια μαθήματος 1 Εισαγωγή

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1


Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Μουσική και Μαθηματικά!!!

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού

Γεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου)

Τα Μαθηματικά μέσα από την Τέχνη

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα.

1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση

Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου

από ευχάριστες δραστηριότητες, όπως εκείνες της προανάγνωσης,, ενώ παράλληλα συνειδητοποιούν το φωνημικό χαρακτήρα της γλώσσας και διακρίνουν τα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΕΥΚΛΕΙΔΗΣ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ

Γεωμετρία. I. Εισαγωγή

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

Διάρκεια: 2Χ80 Προτεινόμενη τάξη: Δ -Στ Εισηγήτρια: Χάρις Πολυκάρπου


Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, Αθήνα Τηλ.: , Fax:

Φύση και Μαθηματικά. Η χρυσή τομή φ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ


Ενότητα στις Εικαστικές Τέχνες

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

τα βιβλία των επιτυχιών

Υπεύθυνη καθηγήτρια: Χαρίτου Τριανταφυλιά ΠΕ03

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Γεωμετρία, Αριθμοί και Μέτρηση

Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική των Μαθηματικών.

Α ΕΙΔΙΚΕΥΣΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΓΛΩΣΣΑΣ (ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ)

Ενότητα στις Εικαστικές Τέχνες

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ

Πρόταση Διδασκαλίας. Ενότητα: Γ Γυμνασίου. Θέμα: Δραστηριότητες Παραγωγής Λόγου Διάρκεια: Μία διδακτική περίοδος. Α: Στόχοι. Οι μαθητές/ τριες:

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»

ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely;

Αφαίρεση και Γενίκευση στα Μαθηματικά

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΜΟΥΣΕΙΟ ΛΑΪΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΠΑΡΑΔΟΣΗΣ «ΑΓΓΕΛΙΚΗ ΧΑΤΖΗΜΙΧΑΛΗ» Αγγελικής Χατζημιχάλη 6, Πλάκα, τηλ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης (2η εκδοχή, Ιανουάριος 2016)

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

«Διδακτική προσέγγιση με τη χρήση των ΤΠΕ στο μάθημα της Ιστορίας Β Λυκείου» Άρια Μαυρογιάννη -Φιλόλογος Μ.Α. 2ο ΓΕΛ Ηρακλείου

ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ Μάθημα περιορισμένης επιλογής 6

Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Το μουσείο ζωντανεύει με ταξίδι σχολικό! Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ ποδράσηη

Ο Μ Α Δ Α Ε Ι Κ Α Σ Τ Ι Κ Η Σ Α Γ Ω Γ Η Σ Μ Α Ρ Τ Ι Ο Σ 2014

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Transcript:

Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας 9:00-11:00 & 11:00-13:00 Διάρκεια Προγράμματος 2 ώρες Κόστος συμμετοχής 2.50 ανά μαθητή συνοδοί & εκπαιδευτικοί δωρεάν Μια πορεία αναζήτησης της σχέσης Τέχνης και Μαθηματικών, μέσα από την αλληλεπίδραση με έργα Τέχνης και διαδραστικά εκθέματα. Αναζητούνται τα σημεία όπου συναντώνται και αλληλοεπηρεάζονται οι δυο αυτοί τομείς της ανθρώπινης σκέψης και έκφρασης, με έμφαση στη γεωμετρική περίοδο της Ελληνικής τέχνης, στη σχέση Μαθηματικών και Μουσικής (Πυθαγόρεια κλίμακα), στην κλασική τέχνη (Παρθενών Αναλογίες Χρυσή Τομή), στη γραμμική προοπτική (Αναγέννηση), στη Γεωμετρία της μοντέρνας τέχνης (Κυβισμός, Κονστρουκτιβισμός, Bauhauss) και τέλος στη σύγχρονη λεγόμενη «μαθηματική τέχνη» των μορφοκλασματικών (fractals). Με αφορμή κατάλληλα επιλεγμένα έργα των M. C. Escher και V. Vasarely αλλά και άλλων καλλιτεχνών, οι μαθητές εισάγονται αβίαστα στη φύση και κυρίως στη φιλοσοφία σημαντικών μαθηματικών εννοιών.

Πρόγραμμα Λυκείου Περιγραφή Το πρόγραμ μα «Τέχνη και Μαθηματικά» για το λύκειο, αποτελείτ αι από τρία διδακτικά μέρη, δύο ε κ των οποίων είναι κοινά για τ ους μαθητές όλων των τάξε ων (Μέρη Α & Β ) και από ένα ειδικό μέρος (Μέρ ος Γ ), τ ο οποί ο είναι κατάλληλα προσαρ μοσ μένο στις γνωστικές δυνατότητες κάθε τάξης. Στο τέλος, οι μαθητ ές καλούνται να συμπληρώσουν ένα έντυπο αξιολόγησης. Μέρος Α : Γενικό Εισαγωγικό διάρκεια: 15 λεπτά Παράλληλη περιήγηση με προβολή κατάλληλου οπτικοακουστικού υλικού, στην ιστορία αφενός της Τέχνης και αφετέρου των Μαθηματικών, επικεντρωμένη σε τρεις βασικές περιόδους: (Π1) Αρχαία Ελληνική και κλασική Τέχνη: σύνδεση με τα αρχαία Ελληνικά Μαθηματικά. (Π2) Αραβικός πολιτισμός και Αναγέννηση: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. (Π3) Μοντέρνα Τέχνη: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. Μέρος Β : Επίσκεψη των δύο εκθεσιακών χώρων του μουσείου διάρκεια: 30 λεπτά Περιήγηση στην τρέχουσα έκθεση του Μουσείου Ηρακλειδών με έργα των M. C. Escher και V. Vasarely. Μέρος Γ : Παρουσίαση ειδικού θέματος στις αίθουσες διαλόγου και αλληλεπίδρασης διάρκεια: 60 λεπτά Ο διάλογος με αφορμή επιλεγμένα έργα τέχνης, πολυμεσικό υλικό και αλληλεπιδραστικά εκθέματα, επικεντρώνεται σε μία συγκεκριμένη για κάθε τάξη θεματική ενότητα. Ακολουθεί αναλυτική περιγραφή των προτεινόμενων θεματικών ενοτήτων του ειδικού μέρους για κάθε τάξη, από τις οποίες μπορούν να επιλέξουν οι εκπαιδευτικοί. Μέρος Δ : Ανατροφοδότηση - Αξιολόγηση διάρκεια: 15 λεπτά Συμπλήρωση εντύπου αξιολόγησης με ανώνυμη και ελεύθερη καταγραφή παρατηρήσεων και εντυπώσεων για το πρόγραμμα. Σκοπός του εκπαιδευτικού προγράμματος «Τέχνη και Μαθηματικά» είναι να αποτελέσει συμπλήρωμα της διδασκόμενης ύλης των Μαθηματικών, στην κατεύθυνση της κοινά επιθυμητής από όλους τους ερευνητές της Διδακτικής, «διαθεμα τικότητας», διασυνδέοντας τα Μαθηματικά με την Ιστορία της Επιστήμης και της Τέχνης, τη Φιλοσοφία και τα κλασικά γράμματα. 2

Λύκειο Ειδικό Μέρος Όσον αφορά στο ειδικό μέρος (Μέρος Γ ) του προγράμματος του λυκείου, οι εκπαιδευτικοί μπορούν να επιλέξουν μία από τις παρακάτω δέκα θεματικές ενότητες: I. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής II. III. IV. Μουσική και μαθηματικά Οι διαστάσεις του χώρου & η προοπτική Μη-Ευκλείδειες γεωμετρίες V. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα VI. VII. VIII. IX. Ο θαυμαστός κόσμος των fractals Κανονικά πολύγωνα και πολύεδρα- Πλακοστρώσεις Τα Μαθηματικά στην Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή Το άπειρο & το όριο στην τέχνη & τα μαθηματικά X. Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια Ακολουθεί αναλυτική περιγραφή των παραπάνω θεματικών ενοτήτων. 3

Ι. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής Στόχος της ενότητας αυτής είναι η δημιουργία αμφισβήτησης στην εμπιστοσύνη προς τις αισθήσεις και συνειδητοποίησης της ανάγκης να χρησιμοποιηθεί η λογική - μαθηματική σκέψη για την εξαγωγή ασφαλών συμπερασμάτων, μέσω της παρατήρησης εικαστικών έργων που εμπεριέχουν οφθαλμαπάτες και αμφισημίες οι οποίες οδηγούν σε αβεβαιότητες και αντιφάσεις. Στόχος επίσης είναι μια περιήγηση των μαθητών στα διάφορα παράδοξα, που κατά καιρούς απασχόλησαν μαθηματικούς, φιλοσόφους και καλλιτέχνες, καθώς και η συνεισφορά τους στην εξέλιξη της ανθρώπινης σκέψης. Πώς οι καλλιτέχνες της op art πειραματίζονται με την ανθρώπινη πλάνη; Ποιος είναι ο ρόλος της λογικής - μαθηματικής σκέψης στην αντιμετώπιση των παραδόξων; Πιο συγκεκριμένα, μέσα από διάλογο, ομαδικά παιχνίδια, εικαστικά έργα και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Προσδιορίζουν το ρόλο της ψευδαίσθησης και της αμφισημίας στα έργα του V. Vasarely (αμφισημία της ισομετρικής προβολής, φαινόμενο του κύβου του Necker), στην προσπάθεια παρακίνησης των θεατών να αποκτήσουν ενεργή συμμετοχή απέναντι στα έργα της op art. o Αναζητούν το ρόλο της απόδειξης ως μοναδικό μέσο εύρεσης της αλήθειας, μακριά από κάθε ψευδαίσθηση και οφθαλμαπάτη. o Εμπλέκονται σε «παιχνίδια διαστάσεων» μέσα από αδύνατα σχήματα των μαθηματικών, μερικά από τα οποία απεικονίζονται στην τέχνη του M.C. Escher. o Παρακινούνται να αντιμετωπίσουν το παράδοξο του δρομέα, εμπλέκονται στους προβληματισμούς του Ζήνωνα καθώς και σε άλλα λογικά και συνολοθεωρητικά παράδοξα. o Εισάγονται στην έννοια της αυτοαναφοράς μέσα από γλωσσικά παιχνίδια και τους πίνακες του M.C. Escher. o Καλούνται να προσδιορίσουν το ρόλο της γλώσσας στη δημιουργία παραδόξων. o Κατασκευάζουν την κορδέλα του Möbius και συζητούν τους προβληματισμούς που ανακύπτουν από αυτήν. Ποιος είναι ο ρόλος της μαθηματικής σκέψης στην αντιμετώπιση των λογικών και συνολοθεωρητικών παραδόξων; Ποιοι είναι οι νόμοι που διέπουν την ανθρώπινη αντίληψη; Α Λυκείου 4

IΙ. Μουσική και Μαθηματικά Πώς οι μαθηματικές αναλογίες εμπλέκονται στην αντίληψη του ρυθμού; Ποιες είναι οι μαθηματικές σχέσεις που διέπουν την Πυθαγόρεια αρμονία; Α, Β & Γ Λυκείου Στόχος της ενότητας αυτής είναι οι μαθητές να αναπτύξουν μαθηματικές και παράλληλα μουσικές δεξιότητες μέσα από μουσικά παιχνίδια, πειραματισμό με μουσικά όργανα και ακρόαση κομματιών της κλασικής αλλά και της σύγχρονης μουσικής δημιουργίας (jazz, ethnic, blues, rock). Οι μαθητές παρακινούνται να πειραματιστούν με τον ήχο, τη μουσική και τα συναισθήματα που αυτή δημιουργεί, καθώς αλλάζουν οι συνθήκες παραγωγής του, να απελευθερώσουν τη δημιουργική τους ικανότητα και να ανακαλύψουν ότι η τέχνη της μουσικής αποτελεί ένα μέσο έκφρασης και μια γλώσσα επικοινωνίας μεταξύ των ανθρώπων διαφορετικών πολιτισμών και εθνικοτήτων. Μέσα από βιωματικές δραστηριότητες, δημιουργικά παιχνίδια, μουσικά παραδείγματα και κατάλληλα επιλεγμένο οπτικοακουστικό υλικό: o Εμπλέκονται σε βιωματικές δραστηριότητες μέσα από τις οποίες αναγνωρίζουν τα βασικά χαρακτηριστικά του ήχου: ένταση, οξύτητα, χροιά και διάρκεια. o Ανακαλύπτουν τη συμμετρία και την κανονικότητα που δημιουργεί μουσικούς ήχους, σε αντίθεση με την ασυμμετρία του θορύβου. o Κατανοούν την ημιτονοειδή μορφή των απλών μουσικών ήχων με τη βοήθεια αλληλεπιδραστικού εκθέματος. o Ανακαλύπτουν την έννοια του ρυθμού και την οργάνωση του χρόνου στη μουσική, ενώ παράλληλα αναζητούν μαθηματικές αναλογίες στα ρυθμικά μοτίβα που καλούνται να δημιουργήσουν ή να αναπαράγουν μέσα από ομαδικά παιχνίδια με κρουστά. o Πειραματίζονται με το μονόχορδο του Πυθαγόρα και μέσα από τη διαφωνία ή τη συμφωνία των μουσικών συνηχήσεων που δημιουργούν, οδηγούνται στην αναζήτηση των μαθηματικών σχέσεων που διέπουν την αρμονία. o Κατασκευάζουν τη μείζονα κλίμακα και εξασκούνται στην αναγνώριση των μουσικών διαστημάτων από τα οποία αποτελείται. o Μέσα από παιχνίδια ρόλων φτιάχνουν τα δικά τους μουσικά κομμάτια συνδέοντας ρυθμούς με μελωδίες και παρατηρούν τις ακουστικές εντυπώσεις των δημιουργιών τους. 5

III. Οι διαστάσεις του χώρου & η προοπτική Στόχος της ενότητας αυτής, είναι η ανάδειξη της σχέσης που υπάρχει ανάμεσα στον τρισδιάστατο κόσμο που μας περιβάλλει, και εκείνου που αποτυπώνεται στη δισδιάστατη επιφάνεια ενός ζωγραφικού πίνακα. Η ανάδειξη της σχέσης αυτής είναι σημαντική αφού, ίσως όσο καμιά άλλη, έφερε τόσο κοντά την καλλιτεχνική δημιουργία με την μαθηματική αυστηρότητα, οδηγώντας αφενός μεν την Τέχνη της ζωγραφικής στην Αναγέννηση και αφετέρου τα Μαθηματικά στην ανάδειξη νέων γεωμετριών, διαφορετικών της Ευκλείδειας γεωμετρίας. Ένα ταξίδι σε κόσμους διαφορετικών διαστάσεων για την αναζήτηση των μυστικών της προοπτικής που κρύβουν οι πίνακες της αναγέννησης... Α, Β & Γ Λυκείου Ειδικότερα, μέσα από την αφήγηση, παρατήρηση εικαστικών έργων, ομαδικές δραστηριότητες και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Ταξιδεύουν μαζί με τους ήρωες της «Επιπεδοχώρας», του γνωστού διηγήματος του E.Abbott, σε κόσμους διαφορετικών διαστάσεων βιώνοντας την καθημερινότητα και τους προβληματισμούς των υποθετικών κατοίκων τους. o Συλλαμβάνουν την έννοια της διάστασης καθώς, με αφετηρία τον τρισδιάστατο περιβάλλοντα χώρο, οδηγούνται στον κόσμο της Επιπεδοχώρας, της Γραμμοχώρας αλλά και στον τετραδιάστατο χωρο-χρόνο. o Εμπλέκονται σε βιωματικά παιχνίδια επίλυσης προβλημάτων με στόχο την κατανόηση των περιορισμών της κίνησης σε λιγότερες από τρεις διαστάσεις. o Αναζητούν την ύπαρξη κανόνων που οδηγούν στην απεικόνιση του τρισδιάστατου χώρου, πάνω στη δισδιάστατη επιφάνεια του ζωγραφικού καμβά. o Αναζητούν το πραγματικό μαθηματικό υπόβαθρο της γραμμικής προοπτικής στους πίνακες της Αναγέννησης. o Αναλύουν μαθηματικά τη γραμμική προοπτική με τη βοήθεια ειδικού αλληλεπιδραστικού εκθέματος (ανακατασκευής του «προοπτικογράφου» του Albrecht Dürer). o Αναζητούν τις φιλοσοφικές προεκτάσεις της προβολής με έναυσμα το σπήλαιο του Πλάτωνα. 6

Ποια είναι τελικά η γεωμετρία που διέπει το σύμπαν; Β & Γ Λυκείου ΙV. Μη-Ευκλείδειες γεωμετρίες Στόχος του προγράμματος αυτού είναι η εισαγωγή των μαθητών στην ποικιλία των διαφόρων γεωμετρικών θεωριών, θεωρώντας την Ευκλείδεια εκδοχή ως μια ειδική περίπτωση. Οι μαθητές με βιωματικό τρόπο εισάγονται στους κανόνες διαφορετικών, Μη- Ευκλείδειων, γεωμετρικών κόσμων με αφορμή το υπερβολικό μοντέλο του Poincaré στους πίνακες του M.C. Escher αλλά και το προβολικό μοντέλο που πηγάζει από την γραμμική προοπτική των ζωγράφων της Αναγέννησης. Ανακαλύπτουν την ουσία της αξιωματικής μεθόδου και την έννοια της απόδειξης εκεί που η αλήθεια αντιβαίνει στη διαίσθηση. Ποια είναι τελικά η γεωμετρία που διέπει το σύμπαν; Μέσα από ομαδικές - βιωματικές δραστηριότητες, εικαστικά έργα και κατάλληλα σχεδιασμένη προβολή οι μαθητές: o Αναζητούν την ελάχιστη διαδρομή που συνδέει δυο σημεία της υδρογείου, ώστε να προβληματιστούν με την έννοια της ευθείας στην ελλειπτική γεωμετρία και να κατανοήσουν τη γεωδαιτική γραμμή της σφαιρικής γεωμετρίας. o Κατανοούν την τοπικότητα της Ευκλείδειας Γεωμετρίας στη σφαιρική επιφάνεια και διαπιστώνουν ότι το άθροισμα των γωνιών ενός τριγώνου στην επιφάνεια μιας σφαίρας υπερβαίνει τις 180 μοίρες. o Εξοικειώνονται με το ρόλο του κανόνα και του διαβήτη στην Ευκλείδεια Γεωμετρική κατασκευή, μέσα από απλά παραδείγματα και παιχνίδια. o Χωρίζονται σε ομάδες Ευκλείδειων και Μη-Ευκλείδειων Γεωμετρών, και επιχειρούν καθοδηγούμενοι να αποδείξουν πόσο είναι το άθροισμα των γωνιών ενός τριγώνου. o Κατανοούν το διαφοροποιητικό ρόλο του 5 ου αιτήματος του Ευκλείδη. o Παρακινούνται να προσεγγίσουν την κάθε μαθηματική θεωρία ως ένα παιχνίδι με απλούς κανόνες, όπως το σκάκι. o Ταξιδεύουν στους νόμους του σύμπαντος του M.C. Escher καλούμενοι να πλακοστρώσουν το Ευκλείδειο και το Υπερβολικό επίπεδο με σχήματα και σχέδια. 7

V. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα Στόχος της ενότητας αυτής είναι η ανάδειξη της θεμελιώδους έννοιας της συμμετρίας και των άλλων επίπεδων μετασχηματισμών μέσω της πρόκλησης του ωραίου που προσφέρει η παρατήρηση επιλεγμένων εικαστικών έργων. Ο πλούτος των πινάκων του Μ.C. Escher, του V.Vasarely αλλά και άλλων καλλιτεχνών, με παρουσία αξονικής και κεντρικής συμμετρίας, εισάγει αβίαστα τους μαθητές σε αυτές τις έννοιες, μέσα σε ένα ευχάριστο καλλιτεχνικό περιβάλλον. Παράλληλα, δίνεται η ευκαιρία να γίνει επέκταση και στους υπόλοιπους επίπεδους μετασχηματισμούς που δεν εμπεριέχονται στην σχολική ύλη, καθώς και στα αποτελέσματα της σύνθεσης (διαδοχικής επενέργειας) αυτών των μετασχηματισμών. Πιο συγκεκριμένα, μέσα από εικαστικές προκλήσεις που δημιουργούνται από την παρατήρηση ειδικά επιλεγμένων εικαστικών έργων, το διάλογο, τα ομαδικά «παιχνίδια», και την αξιοποίηση της σύγχρονης τεχνολογίας οι μαθητές: o Αναγνωρίζουν διαισθητικά μέσα από ένα πλήθος ειδικά επιλεγμένων εικαστικών έργων, εκείνα που κατά την εκτίμησή τους, διαθέτουν συμμετρίες ή άλλους μετασχηματισμούς. o Διακρίνουν τα διαφορετικά είδη συμμετριών και μετασχηματισμών. o Κατανοούν τη μαθηματική έννοια της συμμετρίας και διατυπώνουν ορισμούς. o Αναγνωρίζουν συμμετρίες σε δοσμένα γεωμετρικά μοτίβα ζωγραφικών πινάκων. o Κατανοούν την έννοια του γεωμετρικού μοτίβου και συμπληρώνουν επεκτείνουν γεωμετρικά μοτίβα. o Επιχειρούν να αναγνωρίσουν το ρόλο της συμμετρίας τόσο στην τέχνη, όσο και στα μαθηματικά. o Κατασκευάζουν τα δικά τους γεωμετρικά μοτίβα. «Σύμμετρον όπερ εκατέρου των άκρων απέχει.» A & Β Λυκείου 8

VI. Ο θαυμαστός κόσμος των fractals Στόχος του προγράμματος είναι η εξερεύνηση του κόσμου των fractals μέσα από την αναζήτηση της δομής και της αισθητικής επιλεγμένων φυσικών αντικειμένων και των νόμων που διέπουν τη γεωμετρία της φύσης. Η απλότητα των γεωμετρικών σχημάτων αντιτάσσεται στην πολυπλοκότητα του φυσικού κόσμου και της μοντέρνας τέχνης καθώς ο άνθρωπος κάνει ένα ακόμη βήμα για την αποκρυπτογράφηση των μυστικών του σύμπαντος. Μέσα από το διάλογο, κατάλληλα σχεδιασμένη προβολή και ομαδικές δραστηριότητες οι μαθητές: o Aναζητούν την προέλευση της πανανθρώπινης και έμφυτης αντίληψης της αισθητικής μέσα από τα φυσικά και κοινωνικά πρότυπα. o Περιηγούνται με τη βοήθεια ειδικού λογισμικού και αντίστοιχα βίντεο σε γνωστά fractals όπως το Mandelbrot και το τρίγωνο του Sierpinski. o Εξοικειώνονται με την ιδέα της αυτοομοιότητας μέσα από ομαδικά παιχνίδια. o Κατασκευάζουν τα δικά τους fractal μέσα από επαναληπτικές αλγοριθμικές διαδικασίες, τις οποίες καλούνται να κωδικοποιήσουν με ένα απλό αλφάβητο. o Εισάγονται στην έννοια της κλασματικής διάστασης και μετρούν την κλασματική διάσταση του fractal του Sierpinski με απλές μεθόδους. o Μαθαίνουν να αναγνωρίζουν αυτοόμοια μοτίβα στη φύση και στα έργα του M. C. Escher και αναζητούν τη σύνδεση τεχνικής και αποτελέσματος στους πίνακες του J. Pollock. «Τα σύννεφα δεν είναι σφαίρες, τα βουνά δεν είναι κώνοι, οι ακτογραμμές δεν είναι κύκλοι και o φλοιός των δένδρων δεν είναι λείος, ούτε η αστραπή δεν ταξιδεύει σε ευθεία γραμμή.» The fractal geometry of nature Benoit Mandelbrot A, Β & Γ Λυκείου 9

VII. Κανονικά πολύγωνα & πολύεδρα - Πλακοστρώσεις Ο Πλάτων περιγράφει στο διάλογο «Τίμαιος» τον κόσμο σαν μια σύνθεση γεωμετρικών αρμονικών σωμάτων, των περίφημων πέντε Πλατωνικών Στερεών, που θα περάσουν και στην Αναγέννηση και θα προκαλέσουν την καλλιτεχνική έμπνευση πολλών από τα φωτισμένα πνεύματά της. Στόχος της ενότητας αυτής είναι η κατανόηση της έννοιας της κανονικής και ημικανονικής πλακόστρωσης του επιπέδου και της κανονικής κάλυψης του χώρου, η οποία μπορεί να πραγματοποιηθεί μόνο με τα περίφημα πλατωνικά στερεά. Αρκετοί καλλιτέχνες έχουν παράγει καλλιτεχνικά έργα υψηλής αισθητικής αξίας που στηρίζονται σε αυτές τις έννοιες με σημαντικότερο βέβαια τον M.C. Escher. πυρ γη αήρ σύμπαν ύδωρ Β & Γ Λυκείου Μέσα από διάλογο, παρατήρηση εικαστικών έργων, ομαδικές δραστηριότητες και ειδικά σχεδιασμένη προβολή, οι μαθητές: o Με αφορμή τις πλακοστρώσεις του M.C. Escher μελετούν τις ιδιότητες των κανονικών πολυγώνων και της κανονικής και ημικανονικής κάλυψης του επιπέδου και του χώρου. o Κατασκευάζουν επίπεδα αναπτύγματα για τα πλατωνικά στερεά και γενικεύοντας σε περισσότερες διαστάσεις ανακαλύπτουν το ανάπτυγμα του υπερκύβου του S. Dali. o Προβληματίζονται γιατί υπάρχουν μόνο πέντε κανονικά στερεά στο χώρο, όταν στο επίπεδο υπάρχουν άπειρα κανονικά πολύγωνα, ανακαλύπτοντας το θεώρημα πολυέδρων του L. Euler. o Με αφορμή τα αναπτύγματα εισάγονται στην ιαπωνική τέχνη των Origami. 10

VIII. Τα Μαθηματικά στη Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή. Οι κερήθρες των μελισσών, η δομή της κατασκευής ενός κοχυλιού, η σχέση ανάμεσα στο πλήθος των δεξιόστροφων και αριστερόστροφων σπειρών του ηλίανθου και του κουκουναριού, η συμμετρία μιας πεταλούδας και μιας μαργαρίτας, η μοριακή δομή ενός ορυκτού, η χαρακτηριστική ομορφιά των νιφάδων του χιονιού, το ιδιότυπο σχήμα μιας φτέρης, ο τρόπος με τον οποίο αναπτύσσονται τα κλαδιά ενός δένδρου, η χαρακτηριστική αναλογία στα μέρη του ανθρώπινου σώματος, είναι δημιουργήματα της Φύσης και έγιναν απ αυτήν με τρόπο σοφό και μελετημένο. Πίσω από όλη αυτή τη δημιουργία κρύβονται νόμοι που όπως έλεγε ο Γαλιλαίος είναι γραμμένοι στο μεγάλο βιβλίο της Φύσης και που τα γράμματα στις σελίδες του είναι σχήματα και αριθμοί. Στόχος αυτής της θεματικής ενότητας είναι ο προβληματισμός των μαθητών στα Μαθηματικά αυτά της Φύσης και της Τέχνης, στον ορισμό της μαθηματικής έννοιας του λόγου και της αναλογίας, καθώς και τις φιλοσοφικές προεκτάσεις της. Μέσα από την άποψη του M.C. Escher στον πίνακα «Verbum» για τη δημιουργία και εξέλιξη της ζωής που απεικονίζεται στον πίνακα αυτό, διερευνάται η διασύνδεση του μαθηματικού λόγου με τις υπόλοιπες σημασίες της λέξης λόγος (αίτιο, λογική, ομιλία). «Λόγον έχειν προς άλληλα μεγέθη Β & Γ Λυκείου λέγεται α δύναται πολλαπλασιαζόμενα αλλήλων υπερέχειν.» Α, Β & Γ Λυκείου Ειδικότερα οι μαθητές: o Εισάγονται στην έννοια της χρυσής τομής α) αλγεβρικά μέσω της παρατήρησης και καταμέτρησης των αριστερόστροφων και δεξιόστροφων ελίκων σε κουκουνάρια και ηλίανθους και το σχηματισμό της σχετικής ακολουθίας Fibonacci β) γεωμετρικά μέσω της παρατήρησης πινάκων και αρχιτεκτονημάτων με εμφανή την παρουσία της χρυσής τομής. o Κατασκευάζουν γεωμετρικά τη χρυσή τομή. o Κατανοούν γιατί είναι άρρητος αριθμός και ανακαλύπτουν το συνεχές περιοδικό κλάσμα με το οποίο παριστάνεται, όντας ο πιο απλός άρρητος αριθμός. o Γνωρίζουν και κατασκευάζουν το χρυσό τρίγωνο, το χρυσό ορθογώνιο, και το κανονικό πεντάγωνο. o Ανακαλύπτουν τη χρήση της χρυσής τομής σε μια σειρά έργων τέχνης, εικαστικών, γλυπτών και αρχιτεκτονημάτων. 11

«Επειδή άπειροι το πλήθος αι δυνάμεις εφαίνοντο, πειραθήναι συλλαβείν εις εν» A, Β & Γ Λυκείου ΙΧ. Το άπειρο & το όριο στην τέχνη & τα μαθηματικά Μερικές από τις κύριες συνιστώσες της κοινής αντίληψης για το άπειρο είναι η ιδέα του ατελεύτητου, του απεριόριστου και του ασύλληπτου, ενώ παραμένει ερωτηματικό το άπειρο του χρόνου και του χώρου. Στόχος της θεματικής αυτής ενότητας είναι η ανάδειξη της πορείας της ανθρώπινης σκέψης στην προσέγγιση της ιδέας του απείρου καθώς και του ορίου ως νοητικού εργαλείου τιθάσευσης του απείρου. Πώς οι καλλιτέχνες απεικονίζουν το άπειρο; Πώς το χειρίζονται οι μαθηματικοί; Με έναυσμα επιλεγμένα έργα τέχνης και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Καλούνται να καταγράψουν τις αρχικές προϋπάρχουσες αντιλήψεις τους για το άπειρο και το όριο, με λέξεις και εικόνες που αυτοί θεωρούν ότι προσιδιάζουν σε αυτές τις έννοιες, και συγκεντρώνουν μια σειρά από καταστάσεις και φαινόμενα του κόσμου που θεωρούν ότι είναι άπειρα. o Αναζητούν την ετυμολογία της λέξης άπειρο και όριο. o Αναζητούν τις ιδέες του απείρου, του ορίου και του απειροστού σε πίνακες του M.C. Escher. Σε μια ομάδα πινάκων του ο Escher σμικρύνει την ίδια μορφή μέχρι τα όρια των υλικών δυνατοτήτων της γραφίδας του. Άραγε σε νοητικό επίπεδο ποιο είναι το όριο της σμίκρυνσης μια ποσότητας; Πόσο μικρότερη μπορεί να γίνει μια μικρή ποσότητα; Τι είναι το απειροστό και ποια η σχέση με το παράδοξο του Ζήνωνα; o Παρακινούνται βιωματικά να χρησιμοποιήσουν την 1-1 αντιστοίχιση με το σύνολο των φυσικών αριθμών για την ταξινόμηση των διάφορων απειροσυνόλων. o Διαπιστώνουν τις παράδοξες ισοπληθικότητες του συνόλου των φυσικών αριθμών με υπερσύνολα και υποσύνολά του. o Εισάγονται στα διαγώνια επιχειρήματα του Cantor και γνωρίζουν την ισοδυναμία του συνόλου των ρητών με το σύνολο των φυσικών, καθώς και το αδύνατο της αντίστοιχης ισοδυναμίας με το σύνολο των πραγματικών αριθμών. o Μέσω του παραδόξου του «δρομέα» του Ζήνωνος, εισάγονται στην ιδέα του ορίου και του απειροστού, μυούμενοι ουσιαστικά στις έννοιες της σύγκλισης ακολουθίας και σειράς. 12

Χ. Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια Προβολές και σ Προβολές και Η ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΓΝΩΣΗ ΤΟΥ ΣΠΗΛΑΙΟΥ σκιές. Φωτεινές ΤΟΥ ΠΛΑΤΩΝΑ απεικονίσεις σε σκοτεινά σπήλαια Στην παρούσα ενότητα ο επισκέπτης παρατηρεί τις σκιές διαφόρων στερεών αντικειμένων που διαθέτουν απλή γεωμετρική μορφή, όπως σφαίρα, κύβος, πρίσμα κ. ά., γλυπτών τα οποία διαθέτουν σαφείς μορφές, αλλά και άλλων κατασκευών οι οποίες είναι άμορφες συνθέσεις υλικών (δημιουργίες του Larry Kagan). Οι σκιές αυτές αποτελούν εκπλήξεις σε σχέση με τα αντικείμενα που τις δημιουργούν. Αντιστρόφως, μέσα από υποδεικνυόμενες εικόνες σκιών και εικαστικών έργων, επιχειρεί να αναγνωρίσει τα στερεά αντικείμενα που τις δημιουργούν, να ταξινομήσει αυτά, αλλά και να ανακαλύψει ποια γεωμετρικά χαρακτηριστικά τους παραμένουν αναλλοίωτα και ποια μεταβάλλονται. Πως δημιουργείται η σκιά ενός αντικειμένου; Ποια η σχέση με την έννοια της προβολής στα Μαθηματικά και την αντιστροφή μιας συνάρτησης; Το ίδιο αντικείμενο μπορεί να δημιουργήσει διαφορετικές μορφές σκιών; Αν ναι, τότε που οφείλεται η διαφορετικότητα; Μπορούμε από τη σκιά ενός αντικειμένου να γνωρίσουμε το ίδιο το αντικείμενο; Θα μπορούσε να επικοινωνήσει ο τρισδιάστατος κόσμος των στερεών αντικειμένων με τον δισδιάστατο κόσμο των σκιών τους, χωρίς να υπάρχει απώλεια πληροφοριών; Με ποιο τρόπο λειτούργησε η σκιά στην ερμηνεία του φαινομένου των εκλείψεων; Με ποιο τρόπο γενικότερα λειτουργεί το φαινόμενο της προβολής-σκιάς στην Τέχνη, την Φιλοσοφία, τα Μαθηματικά και την Επιστήμη; κατάλληλη για Α, Β, Γ Λυκείου κατάλληλα προσαρμοσμένη για κάθε τάξη.

Συνοπτικός Πίνακας Ακολουθεί συνοπτικός πίνακας με τις θεματικές ενότητες για το λύκειο που προτάθηκαν παραπάνω και τις τάξεις στις οποίες αντιστοιχούν. Η ταξινόμηση που ακολουθεί δεν είναι υποχρεωτική καθώς, κατόπιν συνεννόησης με τους εκπαιδευτικούς, κάποια θεματική ενότητα μπορεί να παρουσιασθεί σε μαθητές διαφορετικών τάξεων από τις προτεινόμενες, ενώ μπορεί να επιλεγεί και ένας συνδυασμός τους. Θεματικές Ενότητες Λύκειο Α Β Γ I. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής II. Μουσική & μαθηματικά III. Οι διαστάσεις του χώρου & η προοπτική IV. Μη-Ευκλείδειες γεωμετρίες V. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα VI. Ο θαυμαστός κόσμος των fractals VII. Κανονικά πολύγωνα & πολύεδρα Πλακοστρώσεις VIII. Τα Μαθηματικά στην Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή IX. Το άπειρο & το όριο στην τέχνη & στα μαθηματικά X. Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια 14