HERMODYNAMICS PROPERIES OF SINGLE-COMPONEN SYSEMS Nomenclature. Intense propertes are ndependent of mass.. Extense propertes are proportonal to mass. State Functons (propertes Absolute Pressure, P (lbf/n or Pa Absolute emperature, ( R or K Volume, V (ft 3 or m 3 V m (ft 3 /lbm or m 3 /kg Internal Energy, U (Btu or kj u U m (usually n Btu/lbm or kj/kg Entalpy, H (Btu or KJ Entalpy, u + P H/m (usually n Btu/lbm or kj/kg Entropy, S (Btu/ R or kj/k s S/m [Btu/(lbm- R or kj/ Gbbs Free Energy, g s (usually n Btu/lbm or kj/kg Helmolz Free Energy, a u s (usually n Btu/lbm or kj/kg Heat Capacty at Constant Pressure, c p b l Heat Capacty at Constant Volume, c b u l Qualty x (apples to lqud-apor systems at saturaton s x m g /(m g + m f m g m f mass of apor, and mass of lqud. can be wrtten: x g + ( x f or f + x fg f g fg g f Smlar expressons exst for u,, and s: u xu g + ( x u f or u u f + xu fg x g + ( x f or f + x fg s xs g + ( x s f or s s f + xs fg P For an deal gas, P R or PV mr, and P / P / P pressure, m mass of gas, R gas constant, and absolute temperature. V olume R s but can be found from R R ^ mol. wt R te unersal gas constant,545 ft-lbf/(lbmol- R 8,34 J/(kmol K. For deal gases, c p c R Also, for deal gases: b P u l b l For cold ar standard, eat capactes are assumed to be constant at ter room temperature alues. In tat case, te followng are true: Δu c Δ; Δ c p Δ Δs c p ln ( / R ln (P /P ; and Δs c ln ( / + R ln ( /. For eat capactes tat are temperature dependent, te alue to be used n te aboe equatons for Δ s known as te mean eat capacty `c p j and s gen by c p # cd p - Also, for constant entropy processes: k k - P P k ; P d n d n P k -, d n were k cp c For real gases, seeral equatons of state are aalable; one suc equaton s te an der Waals equaton wt constants based on te crtcal pont: P a c + m ^ - b R a 7 Rc Rc were c m f p, b 64 Pc 8Pc were P c and c are te pressure and temperature at te crtcal pont, respectely, and HERMODYNAMICS 73
FIRS LAW OF HERMODYNAMICS e Frst Law of ermodynamcs s a statement of conseraton of energy n a termodynamc system. e net energy crossng te system boundary s equal to te cange n energy nsde te system. Heat Q s energy transferred due to temperature dfference and s consdered poste f t s nward or added to te system. Closed ermodynamc System No mass crosses system boundary Q W ΔU + ΔKE + ΔPE were ΔKE cange n knetc energy, and ΔPE cange n potental energy. Energy can cross te boundary only n te form of eat or work. Work can be boundary work, w b, or oter work forms (electrcal work, etc. Work W bw W l m s consdered poste f t s outward or work done by te system. Reersble boundary work s gen by w b P d. Specal Cases of Closed Systems Constant Pressure ( : w b PΔ (deal gas / constant Constant Volume: w b (deal gas /P constant Isentropc (deal gas: P k constant w (P P /( k R( /( k Constant emperature ( : (deal gas P constant w b Rln ( / Rln (P /P Polytropc (deal gas: P n constant w (P P /( n Open ermodynamc System Mass crosses te system boundary P done by mass enterng te system. w re dp + Δke + Δpe Frst Law apples weter or not processes are reersble. FIRS LAW (energy balance Rmo 8 + V / + gzb- Rmo e8e + Ve / + gzeb + Qo - Wo d_ mu / dt, were n net s s Wo net rate of net or saft work transfer, ms us Qo rate of eat transfer (neglectng knetc and potental energy of te system. Specal Cases of Open Systems Constant Volume: w re (P P Constant Pressure: w re Constant emperature: (deal gas P constant w re R ln ( / R ln (P /P Isentropc (deal gas: P k constant w re k (P P /( k kr ( /( k w re ^k - / k k k P R > - d n H - P Polytropc: P n constant w re n (P P /( n Steady-State Systems e system does not cange state wt tme. s assumpton s ald for steady operaton of turbnes, pumps, compressors, trottlng ales, nozzles, and eat excangers, ncludng bolers and condensers. Rm o ` + V / + gzj- Rmo e`e + Ve / + gzej + Qo n - Wo out and Rmo Rmo were e mo and e refer to nlet and ext states of system, g acceleraton of graty, Z eleaton, V elocty, and Wo rate of work. Specal Cases of Steady-Flow Energy Equaton Nozzles, Dffusers: eleaton cange, no eat transfer, and no work. Sngle mass stream. + V / + V / e e Ve - V _ - es entalpy at sentropc ext state. urbnes, Pumps, Compressors: Often consdered adabatc (no eat transfer. Velocty terms usually can be gnored. e + w es 74 HERMODYNAMICS
- - e es es e - - rottlng Vales and rottlng Processes: No work, no eat transfer, and sngle-mass stream. Velocty terms are often e Bolers, Condensers, Eaporators, One Sde n a Heat Excanger: mass stream, te followng apples: + q e Heat Excangers: mo and mo : mo _ - mo _ - e e See MECHANICAL ENGINEERING secton. Mxers, Separators, Rm o Rm o e e and Rmo Rmo e BASIC CYCLES Heat engnes take n eat Q H at a g temperature H, produce a net amount of work W, and reject eat Q L at a low temperature L η of a eat engne s gen by: η W/Q H (Q H Q L /Q H Carnot Cycle. Its η c ( H L / H H and L absolute temperatures (Keln or Rankne. e followng eat-engne cycles are plotted on P- and -s dagrams (see later n ts capter: Carnot, Otto, Rankne Refrgeraton cycles are te reerse of eat-engne cycles. Heat s moed from low to g temperature requrng work, W. Cycles can be used eter for refrgeraton or as eat pumps. COP Q H /W for eat pumps, and as COP Q L /W for refrgerators and ar condtoners. Upper lmt of COP s based on reersed Carnot Cycle: COP c H /( H L for eat pumps and COP c L /( H L for refrgeraton. ton refrgeraton, Btu/r 3,56 W IDEAL GAS MIXURES,,, n consttuents. Eac consttuent s an deal gas. Mole Fracton: x N /N; N Σ N ; Σ x were N number of moles of component. Mass Fracton: y m /m; m Σ m ; Σ y Molecular Wegt: M m/n Σ x M Gas Constant: R R/ M o conert mole fractons x to mass fractons y : xm y R_ xm o conert mass fractons to mole fractons: y M x R_ y M mr Partal Pressures: P RP; P V mr Partal Volumes: V! V; V P P, V, te pressure, olume, and temperature of te mxture. x P /P V /V Oter Propertes: u Σ (y u ; Σ (y ; s Σ (y s u and are ealuated at, and s s ealuated at and P. PSYCHROMERICS We deal ere wt a mxture of dry ar (subscrpt a and water apor (subscrpt : P P a + P (absolute umdty, umdty rato ω: ω m /m a m mass of water apor and m a mass of dry ar. ω.6p /P a.6p /(P P Relate Humdty (r φ: φ P /P g P g saturaton pressure at. Entalpy : a + ω Dew-Pont emperature dp : dp sat at P g P HERMODYNAMICS 75
Wet-bulb temperature wb s te temperature ndcated by a termometer coered by a wck saturated wt lqud water and n contact wt mong ar. Humd Volume: Volume of most ar/mass of dry ar. Psycrometrc Cart temperature plotted for a alue of atmosperc pressure. (See cart at end of secton. PHASE RELAIONS Clapeyron Equaton for Pase ranstons: b d dp l sat fg s fg fg fg, were fg entalpy cange for pase transtons, fg olume cange, s fg entropy cange, absolute temperature, and (dp/d sat slope of pase transton (e.g.,apor-lqud saturaton lne. Clausus-Clapeyron Equaton s equaton results f t s assumed tat ( te olume cange ( fg can be replaced wt te apor olume ( g, ( te latter can be replaced wt P R from te deal gas law, and (3 fg s ndependent of te temperature (. P fg - lne d n P : R Gbbs Pase Rule (non-reactng systems P + F C + P number of pases makng up a system F degrees of freedom, and C number of components n a system COMBUSION PROCESSES Frst, te combuston equaton sould be wrtten and balanced. For example, for te stocometrc combuston of metane n oxygen: CH 4 + O CO + H O Combuston n Ar For eac mole of oxygen, tere wll be 3.76 moles of ntrogen. For stocometrc combuston of metane n ar: CH 4 + O + (3.76 N CO + H O + 7.5 N Combuston n Excess Ar e excess oxygen appears as oxygen on te rgt sde of te combuston equaton. Incomplete Combuston Some carbon s burned to create carbon monoxde (CO. Ar-Fuel Rato (A/F: A/F mass of ar mass of fuel Stocometrc (teoretcal ar-fuel rato s te ar-fuel rato calculated from te stocometrc combuston equaton. _ A F actual Percent eoretcal Ar # _ A F stocometrc _ A F - _ A F Percent Excess Ar _ A F actual stocometrc # stocometrc SECOND LAW OF HERMODYNAMICS ermal Energy Reserors ΔS reseror Q/ reseror Q s measured wt respect to te reseror. Keln-Planck Statement of Second Law No eat engne can operate n a cycle wle transferrng eat wt a sngle eat reseror. COROLLARY to Keln-Planck: No eat engne can ae a same reserors. Clausus Statement of Second Law No refrgeraton or eat pump cycle can operate wtout a net work nput. COROLLARY: No refrgerator or eat pump can ae a ger COP tan a Carnot Cycle refrgerator or eat pump. VAPOR-LIQUID MIXURES Henry s Law at Constant emperature At equlbrum, te partal pressure of a gas s proportonal to ts concentraton n a lqud. Henry s Law s ald for low concentratons;.e., x. P Py x Henry s Law constant, P partal pressure of a gas n contact wt a lqud, x mol fracton of te gas n te lqud, y mol fracton of te gas n te apor, and P total pressure. Raoult s Law for Vapor-Lqud Equlbrum Vald for concentratons near ;.e., x. P x P * P partal pressure of component, x mol fracton of component n te lqud, and P * apor pressure of pure component at te temperature of te mxture. 76 HERMODYNAMICS
ENROPY ds _ dqre s - s # _ dq Inequalty of Clausus # _ dq # re # re _ dq # s - s Isotermal, Reersble Process Δs s s Q/ Isentropc Process Δs ; ds A reersble adabatc process s sentropc. Adabatc Process δq ; Δs Increase of Entropy Prncple Dstotal Dssystem + Dssurroundngs $ Dso Rmo s - Rmo s - R_ Qo / total out out n n external external $ EXERGY Exergy s te porton of total energy aalable to do work. Closed-System Exergy (Aalablty (no cemcal reactons φ (u u o o (s s o + p o ( o were te subscrpt o desgnates enronmental condtons w reersble φ φ Open-System Exergy (Aalablty ψ ( o o (s s o + V / + gz w reersble ψ ψ Gbbs Free Energy, ΔG Energy released or absorbed n a reacton occurrng reersbly at constant pressure and temperature. Helmoltz Free Energy, ΔA Energy released or absorbed n a reacton occurrng reersbly at constant olume and temperature. emperature-entropy (-s Dagram Q re ds AREA HEA s Entropy Cange for Solds and Lquds ds c (d/ s s c (d/ c mean ln ( /, were c equals te eat capacty of te sold or lqud. Irreersblty I w re w actual HERMODYNAMICS 77
COMMON HERMODYNAMIC CYCLES Carnot Cycle Reersed Carnot Otto Cycle (Gasolne Engne η r k q r / Rankne Cycle Refrgeraton (Reersed Rankne Cycle w q q w c q q p p 3 p p 3 η ( ( 3 4 3 COP ref 4 COP HP 3 78 HERMODYNAMICS
emp. o C. 5 5 5 35 4 45 5 55 6 65 7 75 8 85 9 95 5 5 5 35 4 45 5 55 6 65 7 75 8 85 9 95 5 5 5 35 4 45 5 55 6 65 7 75 8 85 9 95 5 35 3 34 35 36 37 374.4 Press. kpa p sat.63.87.76.75.339 3.69 4.46 5.68 7.384 9.593.349 5.758 9.94 5.3 3.9 38.58 47.39 57.83 7.4 84.55 MPa. 35. 8.43 7.69 6.98 53.3.7.3.363.454.4758.543.678.75.797.89..7.544.3978.5538.7.96.4.38.548.795 3.6 3.344 3.648 3.973 4.39 4.688 5.8 5.499 5.94 6.4 6.99 7.436 7.993 8.58 9. 9.856.547.74.845 4.586 6.53 8.65.3.9 Specfc Volume m 3 /kg lqud f...... 3. 4. 6. 8... 5. 7.. 3. 6. 9. 33. 36. 4. 44. 48. 5. 56. 6. 65. 7. 75. 8. 85. 9. 96.. 8. 4.. 7. 34. 4. 49. 57. 64. 73. 8. 9. 99. 9. 9. 9. 4. 5. 63. 76. 89.. 37. 33. 348. 366. 384. 44. 45. 447. 47. 499. 56. 638. 74. 893. 3.3 55 apor g 6.4 47. 6.38 77.93 57.79 43.36 3.89 5. 9.5 5.6.3 9.568 7.67 6.97 5.4 4.3 3.47.88.36.98.679.494..366.899.776.6685.58.589.4463.398.3468.7.77.48.68.94 5.74 9.56 54.4 5.7 36.5.4 4.94 79.86 9.78 49.7 58.65 37.59 76.54 7.5 3.45 98.4.38 77.35 64.3 79. 7.7 77.5 57.3 54. 67.9 948.8 35.6 867.5 488. 996. 797.8 83.6 945.4 95.3 55 SEAM ABLES Saturated Water - emperature able Internal Energy Entalpy kj/kg kj/kg Eap. lqud apor lqud Eap. u f u fg u g f..97 4. 6.99 83.95 4.88 5.78 46.67 67.56 88.44 9.3. 5. 7. 9.95 33.9 334.86 355.84 376.85 397.88 48.94 44. 46.4 48. 53.5 54.74 546. 567.35 588.74 6.8 63.68 653.4 674.87 696.56 78.33 74.7 76.9 784. 86.9 88.37 85.65 873.4 895.53 98.4 94.87 963.73 986.74 9.89 33. 56.7 8.39 4.8 8.39 5.74 77.36.5 7.46 53. 78.9 5. 33. 359.3 387. 45.5 444.6 55.3 57.3 64.9 75. 844. 9.6 375.3 36.3 347. 333. 39. 4.9 9.8 76.7 6.6 48.4 34. 9.9 5.5 9. 76.6 6. 47.4 3.6 7.7.7 87.6 7.3 57. 4.4 5.8 9.9 993.9 977.7 96.3 944.7 97.9 9.8 893.5 876. 858. 84. 8.6 8.9 783.8 764.4 744.7 74.5 73.9 68.9 66.5 639.6 67. 594. 57.8 546.7 5. 596.7 47.6 443.9 46.3 387.9 358.7 38.4 97. 64.7 3. 95.9 59.4. 8.9 993.7 894.3 776.6 66.3 384.5 375.3 38.3 389. 396. 4.9 49.8 46.6 43.4 4. 436.8 443.5 45. 456.6 463. 569.6 475.9 48. 488.4 494.5 5.6 56.5 5.4 58. 53.7 59.3 534.6 539.9 545. 55. 554.9 559.5 564. 568.4 57.5 576.5 58. 583.7 587. 59. 59.8 595.3 597.5 599.5 6. 6.4 63.3 63.9 64. 64. 63.4 6.4 6.9 599. 596.6 593.7 59. 586. 58.4 576. 569.9 563. 555. 546.4 536.6 55.5 498.9 464.6 48.4 35.5 8.5 9.6..98 4. 6.99 83.96 4.89 5.79 46.68 67.57 88.45 9.33.3 5.3 7.6 9.98 33.93 334.9 355.9 376.9 397.96 49.4 44.5 46. 48.48 53.7 54.99 546.3 567.69 589.3 6.63 63. 653.84 675.55 697.34 79. 74.7 763. 785.37 87.6 89.98 85.45 875.4 897.76 9.6 943.6 966.78 99. 3.6 37.3 6.3 85.36 9.73 34.37 59.8 84.5.7 35.99 6.3 89.7 36.3 344. 37.4 4.3 43. 46.5 55.3 594. 67.6 76.5 89.5 99.3 fg 5.3 489.6 477.7 465.9 454. 44.3 4.5 48.6 46.7 394.8 38.7 37.7 358.5 346. 333.8 3.4 8.8 96. 83. 7. 57. 43.7. 6.5.6 88.5 74. 59.6 44.7 9.6 4.3 98.6 8.6 66. 49.5 3.4 5. 997. 978.8 96. 94.7 9. 9.7 879.9 858.5 836.5 83.8 79.5 766.5 74.7 76. 689.8 66.5 634.4 65. 574.9 543.6 5. 477. 44.8 44.9 366.4 36. 83.5 38.6 4.6 7.9 893.4 7.3 44.6 apor g 5.4 5.6 59.8 58.9 538. 547. 556.3 565.3 574.3 583. 59. 6.9 69.6 68.3 66.8 635.3 643.7 65.9 66. 668. 676. 683.8 69.5 699. 76.3 73.5 7.5 77.3 733.9 74.3 746.5 75.4 758. 763.5 768.7 773.6 778. 78.4 786.4 79. 793. 796. 798.5 8.5 8. 83.3 84. 84. 83.8 83. 8.5 799.5 796.9 793.6 789.7 785. 779.6 773.3 766. 758. 749. 738.7 77.3 74.5 7. 665.9 6. 563.9 48. 33. 99.3 lqud s f..76.5.45.966.3674.4369.553.575.6387.738.7679.83.8935.9549.55.753.343.95.5.69.36.485.4734.576.583.6344.687.739.797.848.895.947.995.49.99.396.879.359.835.39.378.448.474.578.5639.699.6558.75.747.797.8383.8838.994.975 3.8 3.668 3. 3.594 3.6 3.534 3. 3.3493 3.398 3.448 3.557 3.6594 3.7777 3.947 4.6 4.498 Entropy kj/(kg K Eap. s fg 9.56 8.9496 8.7498 8.5569 8.376 8.95 8.64 7.8478 7.6845 7.56 7.375 7.34 7.784 6.9375 6.84 6.6669 6.5369 6.4 6.866 6.659 6.48 5.938 5.8 5.7 5.6 5.496 5.395 5.97 5.98 5.96 4.996 4.9 4.875 4.753 4.644 4.5347 4.446 4.3586 4.7 4.863 4.4 4.7 3.9337 3.857 3.7683 3.6863 3.647 3.533 3.44 3.36 3.8 3.99 3.8 3.368.955.87.793.77.67.5375.45.3633.737.8.88.899.6763.4335.379.6865 apor s g 9.56 9.57 8.98 8.784 8.667 8.558 8.4533 8.353 8.57 8.648 8.763 7.993 7.996 7.8 7.7553 7.684 7.6 7.5445 7.479 7.459 7.3549 7.958 7.387 7.833 7.96 7.775 7.69 6.9777 6.999 6.8833 6.8379 6.7935 6.75 6.778 6.6663 6.656 6.5857 6.5465 6.579 6.4698 6.433 6.395 6.3585 6.3 6.86 6.53 6.46 6.79 6.437 6.83 6.7 6.375 6.9 5.966 5.9 5.8938 5.857 5.899 5.78 5.7437 5.745 5.6643 5.6 5.584 5.536 5.447 5.3357 5. 5.56 4.797 4.498 HERMODYNAMICS 79
Supereated Water ables u s u emp. m 3 /kg kj/kg kj/kg kj/(kg K m 3 /kg kj/kg kj/kg o C p. MPa (45.8 o C p.5 MPa (8.33 o C s kj/(kg K 5 5 5 4 5 6 7 8 9 5 5 4 5 6 7 8 9 5 5 35 4 5 6 7 8 9 5 35 4 5 6 7 8 9 4.674 4.869 7.96 9.5.85 4.36 6.445 3.63 35.679 4.95 44.9 49.56 54.4 58.757 63.37 67.987 7.6.694.6958.9364.7.46.639 3.3 3.565 4.8 4.49 4.95 5.44 5.875 6.337 6.799 7.6.465.478.534.595.6548 437.9 443.9 55.5 587.9 66.3 736. 8. 968.9 33.3 3.5 3479.6 3663.8 3855. 453. 457.5 4467.9 4683.7 584.7 59.6 687.5 783. 879.5 977.3 76.5 379.6 3489. 375.4 398.7 459. 4396.4 464.6 489. 547.8 549.7 8.5 8.749 8.4479 8.688 8.938 9. 9.83 9.677 9.8978.68.48.68.8396.393.87.49.58 3.4 3.48 3.889 4.356 4.8 5.84 6.9 7.34 8.57 8.98 9.94.88.75.674 3.597 4.5 483.9 5.6 585.6 659.9 735. 8.3 968.5 33. 3. 3479.4 3663.6 3854.9 45.9 457.4 4467.8 4683.6 645.9 68.5 78. 877.7 976. 75.5 378.9 3488.7 375. 398.5 458.9 4396.3 464.5 489. 547.7 549.6 p. MPa (99.63 o C p. MPa (.3 o C 56. 56.7 58.8 658. 733.7 8.4 967.9 33.6 3.9 3479. 3663.5 3854.8 45.8 457.3 4467.7 4683.5 675.5 676. 776.4 875.3 974.3 74.3 378. 3488. 374.4 398. 458.6 4396. 464.3 489. 547.6 549.5 7.3594 7.364 7.634 7.8343 8.333 8.58 8.5435 8.834 9.976 9.3398 9.565 9.7767 9.9764.659.3463.583.8857.9596.83.988.36.5493.784.3.44.475.75.937 3.68 3.399 3.6 59.5 576.9 654.4 73. 88.6 966.7 3.8 3.4 3478.8 3663. 3854.5 45.5 457. 4467.5 4683. 76.7 768.8 87.5 97. 7.8 376.6 3487. 374. 397.6 458. 4395.8 464. 489.7 547.5 549.3 p.4 MPa (43.63 o C p.6 MPa (58.85 o C 553.6 564.5 646.8 76. 84.8 738.6 75.8 86.5 964. 66.8.737 884.6 37. 7.734.776.8893.55.5.37.359.4685.584.6996.85 964.4 39. 3. 3477.9 366.4 3853.9 45. 456.5 4467. 468.8 373.4 3484.9 37.4 396.5 457.3 4395. 4639.4 489. 546.8 548.8 7.8985 8.93 8.4558 8.6987 8.944 9.36 9.336 9.556 9.76 9.878.44.68.93.34.3544.3843.4433.58.56.68.676.734.799.8497.976 6.8959 6.999 7.76 7.3789 7.566.357.35.3938.4344.474.537.59.6697.747.845.97.9788.559.3. 567.4 638.9 7.9 8. 88. 96. 37.6 399. 3477. 366.8 3853.4 45.5 456. 4466.5 468.3 756.8 85. 957. 6.6 365.7 37.3 348.8 37.9 395.3 456.5 4394.4 4638.8 4889.6 546.3 548.3 p.8 MPa (7.43 o C p. MPa (79.9 o C 576.8 6.6 75.5 797. 878. 959.7 36. 397.9 3476. 366. 385.8 45. 455.6 4466. 468.8 769. 839.3 95. 56.5 36.7 367. 348.6 3699.4 394. 455.6 4393.7 4638. 4889. 545.9 547.9 6.668 6.858 7.384 7.38 7.489 7.576 7.8673 8.333 8.377 8.633 8.853 9.53 9.5 9.3855 9.5575.94 44.6.37.579.85.66.354.4.4478.4943.547.587.6335.6798.76 583.6 6.9 79.9 793. 875. 957.3 34.4 396.8 3475.3 366.4 385. 45.5 455. 4465.6 468.3 778. 87.9 94.6 5. 357.7 363.9 3478.5 3697.9 393. 454.7 439.9 4637.6 4888.6 545.4 547.4 7.5939 7.6947 7.94 8.58 8.3556 8.5373 8.864 9.546 9.478 9.6599 9.885.967.964.4859.666.838 7.7 7.795 7.566 7.786 7.896 8.8 8.533 8.777 9.94 9.449 9.4566 9.6563 9.8458.6.98 6.76 6.9665 7.86 7.374 7.5464 7.779 8. 8.674 8.57 8.7367 8.9486 9.485 9.338 9.585 9.696 6.5865 6.694 6.947 7.9 7. 7.465 7.76 8.9 8.73 8.4996 8.78 8.99 9.7 9.8 9.4543 8 HERMODYNAMICS
P- DIAGRAM FOR REFRIGERAN HFC-34a HERMODYNAMICS 8
ASHRAE PSYCHROMERIC CHAR NO. 9 8 7 6 5..8.94.6.4 WE BULB EMPERAURE - C..9..8.9.6.4...8.6.4. 4 ENHALPY - KJ PER KILOGRAM OF DRY AIR 9 8 7 4 6 5 ENHALPY - KJ PER KILOGRAM OF DRY AIR SAURAION EMPERAURE - C 5 5 5 35 4 45 5 DRY BULB EMPERAURE - C HUMIDIY RAIO - KILOGRAMS MOISURE PER KILOGRAM DRY AIR.88 5 9% 5 8% 5 7% 6% 5% 5 5.86 VOLUME - CUBIC MEER PER KG DRY AIR ASHRAE PSYCHROMERIC CHAR NO. NORMAL EMPERAURE BAROMERIC PRESSURE:.35 kpa Copyrgt 99 R R AMERICAN SOCIEY OF HEAING, REFRIGERAING AND AIR-CONDIIONING ENGINEERS, INC. SEA LEVEL...8.5-5..7...6 -. 4. - SENSIBLE HEA Qs OAL HEA Qt -.5-4.. -..4 5. -..3. -.5 4.. -... 3..5 ENHALPY HUMIDIY RAIO W.84 4% 5 %.8 %.8 % RELAIVE HUMIDIY.78 8 HERMODYNAMICS
HERMAL AND PHYSICAL PROPERY ABLES GASES Substance Mol wt c p c kj/(kg K Btu/(lbm- R kj/(kg K Btu/(lbm- R k R kj/(kg K Gases Ar Argon Butane Carbon doxde Carbon monoxde 9 4 58 44 8..5.7.846.4.4.5.45.3.49.78.3.57.657.744.7.756.38.58.78.4.67.9.9.4.87.8.4.889.968 Etane Helum Hydrogen Metane Neon 4 6.77 5.9 4.3.5.3.47.5 3.43.53.46.49 3...74.68.36.753.44.43.48.8.67.4..67.765.769 4.4.58.49 Ntrogen Octane apor Oxygen Propane Steam 8 4 3 44 8.4.7.98.68.87.48.49.9.47.445.743.64.658.49.4.77.39.57.36.335.4.4.4..33.968.79.598.885.465 SELECED LIQUIDS AND SOLIDS Substance c p Densty kj/(kg K Btu/(lbm- R kg/m 3 lbm/ft 3 Lquds Ammona Mercury Water 4.8.39 4.8.46.33. 6 3,56 997 38 847 6.4 Solds Alumnum Copper Ice ( C; 3 F Iron Lead.9.386..45.8.5.9.5.7.,7 8,9 97 7,84, 7 555 57. 49 75 HERMODYNAMICS 83