21 2Π3 2009 3 PROGRESS IN CHEMISTRY Vol. 21 No. 2Π3 Mar., 2009 3 3 3 ( 430072), 2 2,, ; 2 2,,, : X17115 ; X826 ; R335 : A : 10052281X(2009) 02Π320340210 Toxicological Research on Environmental Endocrine Disruptors Shi Xiongjie Liu Chunsheng Yu Ke Deng Jun Yu Liqin Zhou Bingsheng 3 3 ( Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China) organs. Abstract Most evidence in terms of endocrine dsiruptors ( EDs) mainly originates from studies on reproductive However, in veterbrates, the ability to attain reproductive and development success relays on the intact organization of a complex endocrine system. Disturbances in the regulation of the key hormones and receptors functioning along this system may cause detrimental effects on reproduction and development. Here we reviewed recent studies of EDs on endocrine system. EDs may act on key hormones and receptors along with the hypothalamic2pituitary2gonald ( HPG) axis and lead to reproductive failure. Thyroid disruption may be caused at different levels, for example, the synthesis, transport, binding and cellular uptake along with the hypothalamic2pituitary2thyroid ( HPT) axis. Knowledge of model of action EDs is largely via receptors2mediated pathway and alternatively may affect on steroid hormone synthesis. Aquatic hypoxia can influence fish reproduction and thus it is also an endocrine disruptor. Molecular techniques, such as toxico2 mics, transgenic fish will be employed as powerful tools for environmental EDs risk assessment, as well as in elucidating mechanisms of model action. Key words endocrine disruptors ; endocrine system ; risk assessment ; toxicology Contents 1 Hypothalamic2pituitary2gonadalΠthyroidΠadrenal axis 111 Hypothalamic2pituitary2gonadal axis (HPG axis) 112 Hypothalamic2pituitary2thyroid axis(hpt axis) 113 Hypothalamic2pituitary2adrenal axis (HPA axis) and in vitro model 2 The effects of aquatic hypoxia on endocrine system in : 2008 10 3 (No. 20897013) 3 3 e2mail :bszhou @ihb. ac. cn
2Π3 341 fish 3 The application of omics in endocrine disruptor research 4 The application of transgenic fish in endocrine disruptor research 5 Perspectives of endocrine disruptor research (endocrine disruptors, EDs),, ( POPs) ( ),,,,,,,,,, 2 [1 ],,,, 2 2 Π Π,,,,, [2 5 ] (,, ),,,,, [4 ],,,,,,,, 2 2 Π Π,,,,, (cross2talk),,, [1 10 ],,,, 1 2 2 Π Π 111 2 2 (HPG axis), 2 2 (HPG) ( 1) ( GnRH), GnRH (FSH) (LH),FSH LH, (FSHR) (LHR),
342 21 [11 14 ] FSH (CYP11A) (20 2HSD), LH 20 2HSD 17,20 2 (17, 20 2dihydroxy242pregnen232one) [15 ], (activin) (inhibin),,,, A ( HMGR) ; ( StAR) ; 2 ( 3 2HSD 20 2 HSD) ; (CYP11A) ; P450 ( P450c17, P450c19, P450c21) (CYP11B),, ( testosterone, T), (estradiol, E2) 112 ( 112ketotestosterone, [11 112KT) 14 ],T E2 [16 ], activin inhibin T E2 112KT [15 ],, ( ER) (VTG), 1 2 2 hypothalamus: ; pituitary : ; testes : ; ovary: ; liver : ; GnRH : ; FSH : ;LH : ; steroid : ; T: ; E2 : ; 17, 20 2DHP : 17, 20 2 ; vitellogenin : ;CYP11A : ;3 2 HSD : 2 ; CYP19A ; CYP17 : 17 2 ; Fig. 1 The HPG axis in fish, showing the regulatory and feedback pathway [15 ] ER, HPG, ER,,,,, CYP19A CYP19B,,,, [18 ], Zhang prochloraz ketoconazole (medaka) HPG, 6 [14 ] [17 ], Zhang ( 17 2, 2 2 (HPG),, Villeneuve fadrozole (fathead minnow) HPG,, ethinylestradiol, EE2), (17 2trenbolone, TRB) fadrozole HPG [12 ], PCR, HPG,,
2Π3 343 (zebrafish), (6 :2FTOH) HPG,, 2 2,,,, HPG PCR,, ( regulatory test) 112 2 2 (HPT axis) [19 ] HPG, HPT ( 2), HPT (TRH), ( TSH), TSH TSH, [19 ],TSH (corticotropin2releasing hormone, CRH), CRH TSH (ACTH) [20 ], HPT (thyroglobulin,tg) Tg, Π ( sodiumπiodide symporter,nis) [19 ], NIS, (transthyretin, TTR), (deiodinase), T4 (thyroxine) T3 (triiodothyronine),,, T3 T4 TSH CRH [19 ] HPT HPT PCR HPT 2 2 2 Π hypothalamus : ; pituitary : ; centre nerv : ;thyroid : ;adrenals : ;CRH : ; TSH : ;ACTH : ;T2 : ;T3 : ;T4 : ; rt3 : ;TTR : ;DI: ; RXR : ;TR : Fig. 2 HPT and HPA axis in fish, showing the regulatory and feedback pathway,,, ( PCBs) (PBDEs) HPT, [19 ] Brown PCB126,, T4 T4,, T3 T3 [21 ] LeRoy PCB (A1254)
344 21 PCB153, PCB 47 PCB77 T3 T4, T3 T4, [22 ],,, Kuiber (DE271), T3 T4, T3 T4, DE271 [23 ],Shi,PFOS, (hhex pax8), [24 ], DE271 HPT, DE271 HPT HPT DE271 113 2 2 ( HPA axis), 2 2 (HPA) [25 ] (CRH), CRH (ACTH), ;, [25 ], Li HPA,,, (cortisol), (ACTH), (CRF), [26 ], HPA,, HPA,,, DDT, PCBs [27 ], ( H295R),, 3 (H295R), PCR,, Cyp19,,,PCBs [28 37 ] H295R :,, ( ) 10, PCB2126 H295R (cortisol) (aldosterone), [38 ], Li,,,, (reproductive neuroendocrine toxicity)
2Π3 345 3 H295R [37 ] StAR : ;HMGR : A ;CYP11A : ;3 2HSD : 3 2 ;CYP21 : 212 ;CYP11B2 : ;CYP17 : 172 Π17, 202 ; CYP11B1 : 11 2 ; 17 2 HSD : 17 2 ; CYP19 : ; cholesterol : ;pregnenolone : ;progesterone : ; 112 deoxycorticosterone: 112 ; corticosterone : ;aldosterone : ;17 2OH2pregnenolone : 17 2 2 ; 17 2OH2progesterone : 17 2 2 ; 112 deoxycortisol : 112 ; cortisol : ;DHEA : ; androstenedione : ;testosterone : ; 17 2estradiol : 17 2 ; zona glomerulosa : ; zona fasciculate : ;zona reticularis : Fig. 3 Schematic representation of the steps involved in steroid hormone synthesis pathways in H295R cells [37 ],, DNA,,, [39 ] 2,,,,,,,, 20 % (estradiol and testosterone), 92 %, 4 % [40 ] Thomas ( atlantic croaker), (VTG) Florida, [41 ],Shang [42,43 ], F1, 7414 %, 6119 %,, 3 2HSD CYP11A CYP19A CYP19B, Π, ( ), P450,, (hypoxia2inducible factor21, HIF21), HIF21,,,
346 21, 3, (2omics), (gene chip),,,,, (expression signature),,, ( biomarkers), Moens cdna, 14, 14 : A 112, [44 ] Wang MCF27, IGFBP4 HSPA8 B4GALT1 XBP1 KRT8 GTPBP4 HNRPAB SLC2A1 CALM1,ID2 ZNF217 3, [45 ] Naciff 3 ( A), 366 397 381 2, 3, [46 ] Benninghoff Williams DNA ( E2) ( TAM) ( E2 + TAM) (DES) (DHEA) (cortisol),e2 49, E2 DES DHEA 18, 18 DHEA TAM E2 ; TAM VTG1 [47 ],, IEF ( )ΠSDS2PAGE (2DE) [48 ],, (MALDI2TOF2MS) (SELDI2TOF2MS)
2Π3 347,,,, Walker SELDI2TOF2MS (sheepshead minnow) ( E2) (MXC) A (BPA) (TPP) ( ES) (CP), SELDI,E2 42, 30 E2, E2 13 1 13kDa, 13 3, MXC BPA TPP E2, ES CP [49 ] 3 02515 (variegatus zona radiata) [50 ] (metabonomics) Π,, [51 ],, Samuelsson 1 H NMR [52 ] 4 [53 55 ],, [56 ] VTG, GFP, GFP, F1 [57 ],, GFP,,, [58,59 ], Zeng mvtg1 : gfp, ( GFP) 21 (VTG21) ( E2),,,GFP EE2, (DES), (estriol, E3) A [60 ] Kurauchi [61 ] 5 ChgH2GFP ChgH2GFP choriogeninh(chgh) ( GFP) GFP 0137 367pM ( E2) 0137 367nM 5, 7, 452 ( ) 01367 11835nM,,18315pM ( E2) GFP, GFP [62 ] Ueno chg2l115 kbπgfp emgbπrfp 1 2, (RFP), chg2l115 kbπgfp2emgbπrfp E2 GFP [63 ], (RFP) ( GFP),,
348 21 ; 5,,,,,,,,, ( ),, ;,,,,,,, [ 1 ] (Wu J Y), (Wang W), ( Hu J Y). (Journal of Environment and Health), 2005, 22 : 494 497 [ 2 ] (Zhang LX). : (Foreign Medical Sciences : Sect. Clin. Biochem. Lab. Med. ), 2005, 26 : 349 351 [ 3 ] (Wang YJ), (Hu M H). : (Foreign Medical Sciences : Section Hygiene), 2006, 33 : 342 347 [ 4 ] (Liu F), ( Pu L L). (Journal of Reproductive Medicine), 2006, 15 : 425 428 [ 5 ] (Xie M N), ( Zhang C Q), ( Zeng W D). ( Chinese Journal of Veterinary), 2004, 24 : 101 103 [ 6 ] (Wei L), (Zhang H C), (Zhang A Q). (Asian Journal of Ecotoxicology), 2007, 2 : 25 31 [ 7 ] (L X), (Li H D), (Du H X). (Journal of Huazhong Agricultural University), 2006, 25 : 94 100 [ 8 ] (Xie N D), (Wang H B), ( Xu X B). (Chinese Science Bulletin), 2005, 22 : 2441 2449 [ 9 ] (Zhang Y). : ( Foregine Medical Sciences : Section of Medgeography), 2005, 26 : 32 36 [10 ] ( Kong Y Y). : ( Foregine Medical Sciences : Section Hygiene), 2007, 34 : 333 338 [11 ] Achermann J C, Jameson J L. Mol. Endocrinol., 1999, 13 : 812 818 [12 ] Zhang X, Hecker M, Park J W, et al. Aquat. Toxicol., 2008, 88 : 173 182 [13 ] Zhang X, Hecker M, Park J W, et al. Environ. Toxicol. Chem., 2008, 27 : 2504 2511 [14 ] Zhang X, Hecker M, Jones P D, et al. Environ. Sci. Technol., 2008, 42 : 6762 6769 [15 ] Nagahama Y. Steroid, 1997, 62 : 190 196 [16 ] Ankley G T, Miller D H, Jensen K M, et al. Aquat. Toxicol., 2008, 88 : 69 74 [17 ] Cheshenko K, Pakdel F, Segner H, et al. Gen. Comp. Endocrinol., 2008, 155 : 31 62 [18 ] Villeneuve D L, Larkin P, Knoebl I, et al. Environ. Sci. Technol., 2007, 41 : 321 330 [19 ] Zoeller T R, Tan S W, Tyl R W. Cri. Rev. Toxicol., 2007, 37 : 11 53 [20 ] Pepels L M, Meek J, Bonga S E W, et al. J. Comp. Neurol., 2002, 453 : 247 268 [21 ] Browna S B, Evans R E, Vandenbyllardt L, et al. Aquat. Toxicol., 2004, 67 : 75 85 [22 ] LeRoy K D, Thomas P, Khan I A. Comp. Biochem. Physiol., 2006, 144C: 263 271 [23 ] Kuiper R V, Vethaak A D, Cant n R F, et al. Chemosphere, 2008, 73 : 195 202 [24 ] Shi X, Du Y, Lam P K S, et al. Toxicol. Appl. Pharmacol., 2008, 230 : 23 32
2Π3 349 [25 ] Tsigos C, Chrousos G P. J. Psych. Res., 2002, 53 : 865 871 [26 ] Pottinger T G, Moran T A. J. Fish Biol., 2005, 43 : 121 130 [27 ] Hinson J P, Raven P W. Best Pract. Res. Clin. Endocrinol Metab., 2006, 20 : 111 120 [28 ] Gracia T, Hilscherova K, Jones P D, et al. Ecotoxicol. Environ. Saf., 2006, 65 : 293 305 [29 ] Bl ha L, Hilscherov K, Mazurov E, et al. Environ. Int., 2006, 32 : 749 757 [30 ] Villeneuvea D L, Ankley G T, Makynen E A, et al. Ecotoxicol. Environ. Saf., 2007, 68 : 20 32 [31 ] He Y, Murphy M B, Yu R M K, et al. Toxicol. Lett., 2008, 176 : 230 238 [32 ] Song R, He Y, Murphy M B, et al. Chemosphere, 2008, 71 : 1888 1894 [33 ] Hecker M, Newste J L, Murphy M B, et al. Toxicol. Appl. Pharmacol., 2006, 217 : 114 124 [34 ] Cant n R F, Scholten D E A, Marsh G, et al. Pharmacol., 2008, 227 : 68 75 Toxicol. Appl. [35 ] Gracia T, Hilscherova K, Jones P D, et al. Toxicol. Appl. Pharmacol., 2007, 225 : 142 153 [36 ] Furuta C, Noda S, Li C M, et al. Toxicol. Appl. Pharmacol., 2008, 229 : 109 120 [37 ] Ding L, Murphy M B, He Y, et al. Environ. Toxicol. Chem., 2007, 26 : 764 772 [38 ] Li L, Lin T. Toxicol. Appl. Pharmacol., 2007, 220 : 252 261 [39 ] Gore A C. Front. Neuroendocrinol., 2008, 29 : 358 374 [40 ] Wu R S S, Zhou B, Randall D J, et al. Environ. Sci. Technol., 2003, 37 : 1137 1141 [41 ] Thomas P, Rahman M S, Khan I A, et al. Proc. Biol. Sci., 2007, 274 : 2693 2671 [42 ] Shang E H H, Wu R S S. Environ. Sci. Technol., 2004, 38 : 4763 4767 [43 ] Shang E H H, Yu R M K, Wu R S S. Environ. Sci. Technol., 2006, 40 : 3118 3122 [44 ] Moens L N, van der Ven K, van Remortel P, et al. Toxicol. Sci., 2006, 93 : 298 310 [45 ] Wang D Y, McKague B, Liss S N, et al. Environ. Sci. Technol., 2004, 38 : 6396 6406 [46 ] Naciff J M, Jump M L, Torontali S M, et al. Toxicol. Sci., 2002, 68 : 184 199 [47 ] Benninghoff A D, Williams D E. Drug Metab. Rev., 2006, 38 (suppl. 2) : 140 141 [48 ] Shrader E A, Henry T R, Greeley M S, et al. Ecotoxicology, 2003, 12 : 485 488 [49 ] Walker C C, Salinas K A, Harris P S, et al. Toxicol. Sci., 2006, 95 : 174 181 [50 ] Knoebl I, Blum J L, Hemmer M J, et al. J. Exp. Zool., 2006, 305A : 707 719 [51 ] Robertson D G. Toxicol. Sci., 2005, 85 : 809 822 [52 ] Samuelsson L M, Forlin L, Karlsson G, et al. Aquat. Toxicol., 2006, 78 : 341 349 [53 ] Phillips R B, Reed K M. Chromosome Res., 2000, 8 : 27 35 [54 ] Hill A J, Teraoka H, Heideman W, et al. Toxicol. Sci., 2005, 86 : 6 19 [55 ] Ankley G T, Johnson R D. ILAR J., 2004, 45 : 469 483 [56 ] Huuskonen H. Toxicol. Appl. Pharmacol., 2005, 207 : 495 500 [57 ] Song H, Zhong T. [ 2008210201 ] http : ΠΠnews. xinhuanet. comπ englishπ2007201π12πcontent - 5597696. htm [58 ] Halloran M C, Sato2Maeda M, Warren J T, et al. Development, 2000, 127 : 1953 1960 [59 ] Krone P H, Lele Z, Sass J B. Biochem. Cell Biol., 1997, 75 : 487 497 [60 ] Zeng Z, Shan T, Tong Y, et al. Environ. Sci. Technol., 2005, 39 : 9001 9008 [61 ] Kurauchi K, Hirata T, Kinoshita M. Mar. Pollut. Bull., 2008, 57 : 441 444 [62 ] Scholz S, Kurauchi K, Kinoshita M, et al. Environ. Toxicol. Chem., 2005, 24 : 2553 2561 [63 ] Ueno T, Yasumasu S, Hayashi S, et al. Mechanisms Dev., 2004, 121 : 803 815