32 3 Vol. 32, No. 3 2014 8 PROGRESS IN ASTRONOMY Aug., 2014 doi: 10.3969/j.issn.1000-8349.2014.03.05 1,2,3 2 1,3 (1. 200030 2. 200241 3. 200030) GPS VLBI SLR 1 2 h ( ) UT 1 90% 60% 30% 20 80 UT 1 10% 20% P183.3 A 1 ( ) [1 4] (ERP P MX P MY UT 1) [5] χ(t) = p(t) + i dp(t) σ 0 dt, (1) χ z (t) = Λ(t) Λ 0, (2) 2013-12-26 2014-03-19 (11303073 11373017 11373057) (06DZ22101) xqxu@shao.ac.cn
3 339 χ(t) = χ x (t) + iχ y (t), χ x (t) = 1.608[h x(t) + 0.684Ω I xz (t)] (C A)Ω χ y (t) = 1.608[h y(t) + 0.684Ω I yz (t)] (C A)Ω χ z (t) = 0.997 CΩ [h z(t) + 0.750Ω I zz (t)]. (3) p(t) (CIP) σ 0 Chandler Λ 0 86 400 s C A Ω (1) (2) (3) χ(t) I ij h i I h (3) 20 70 0.01 [6,7] 0.01 (F CN) [8,9] 20 70 (VLBI) (LLR) (SLR) (GPS) (IERS) EOP 08 C04 X Y 0.5 0.02 mas 0.08 0.005 ms 1 d 1 2 h 1990 (MIT) VLBI [10] GIG 91 (1991 GPS ) EPOCH92 (1992 GPS ) CONT94 (1994 VLBI ) (IAU) 2000
340 32 [11] (NCEP) (ECMWF) 1 2 (12 h ) 1 4 (6 h ) (VLBI GPS SLR) 2 3 20 4 2 (LOD UT 1 ) ω 10 Chandler [12 15] 2.1 ( ) ( ) 1 1 10 Elnino 10 Chandler
3 341 2 2 10 Chandler 20 70 3 40 50 d 1978 Zheng [16] AR 50 d 1980 Feisse 4 UT 1 [17] 1981 Langley 4 [18] 1987 50 d 45 50 d [19] 1993 Eubanks 60% [20] Gross 2003 65% [21] UT 1 Lambeck [1] ( I 22 I 23 ) ( ) Yoder 0.002 ms [22] [23] Yoder 5.6 d 2.2 B A C 22 S 22 [1,24]
342 32 C 22 = (I 11 I 22 ) 4M 1 R 2. (4) I 12 S 22 = 2M 1 R 2 C 22 S 22 ( ) UT B A = 4MR 2 C 2 22 + S 2 22. (5) UT (t) = 3GM B A sin 2 θ sin 2(λ λ 8Ω 2 R 3 0 ), (6) C m m(t) = 0.36GM Ω 2 R 3 B A A sin 2θe i(λ 2λ0), (7) G M R Ω θ λ C 22 S 22 Chao 0.06 mas [24] (GGP) 18 (SG) [25] 20 GPS VLBI ( UT 1) UT 1 (3) [5,26] 1990 Dong [10] Chao 1996 UT 1 90% 60% [27,28] 3
3 343 20 80 VLBI VLBA VLBI 1994 VLBI 2002 3 20 GPS 1991 GPS GIG 91 (IGS) 1992 GPS 1992 8 10 TOPEX/Poseidon 3.1 VLBI GPS TOPEX/Poseidon 1994 20 3 Herring 8 VLBI Alias HD94 UT 1 (O 1, K 1, M 2, S 2 ) P M (O 1, K 1, P 1, M 2, S 2, K 2 ) [28] Gipson96 VLBI 41 UT 1 56 VLBI ( 18.6 a ) [29] Gipson (8) a j j a j V j a j a j = V j V j, (8) j j V j j j Gipson VLBI VLBI SLR Rothacher 3 (1995 1998 ) 2 h GPS 41 UT 1 57 [30] GPS Z UT 1 LOD UT 1 LOD GPS 12 h 12 h 24 h GPS UT 1
344 32 n X P = p c j cos ϕ j + p s j sin ϕ j, (9) j=1 n Y P = p c j sin ϕ j + p s j cos ϕ j, (10) UT 1 = j=1 n u c j cos ϕ j + u s j sin ϕ j, (11) j=1 ϕ j = a j l + b j l + c j F + d j D + e j Ω + f j (θ + π), (12) (9) (12) n ϕ j p c j, p s j, u c j, u s j l, l, F, D, Ω, θ Shum 10 [31] (2 3 cm) [32 40] 2011 Böckmann [41 44] VLBI (1 h) UT 1 µs P M 10 30 µas [45,46] 3.2 Schwiderski CRS 4.0 GPS (MIT) GPS GAMIT/GLOBK 21 IERS conventions 2010 Eanes2000 [47] Ray 1994 [32] 41 30 30 41 IERS conventions 1996 P M UT 1 100 µas 10 µs [48,49] 10% 20% [50] 12 h
3 345 IERS 0.1 mas 3 mm GPS GPS 4 90% 60% 30% 10% 20% VLBI GPS Z (VLBI GPS) [1] Lambeck K. The Earth s variable rotation. Cambridge: Cambridge University Press, 1980: 87 [2] Zhou Y H, Chen J L, Salstein D A. Geophysical Journal International, 2008, 174: 453 [3] Chao B F, Yan H M. JGR, 2010, 115: B10417 [4] Yan H M, Chao B F. JGR, 2012, 117: B02401 [5] Gross R S. Physical Geodesy, 2007,11: 7 [6] Thomas D V. Nature, 1964, 201: 481 [7] Rochester M G, Jensen O G, Smylie D E. Geophys.J.R. Astr.Soc, 1974, 38: 349 [8] Toomre A. Geophys. J.R. Astron.Soc, 1974, 50: 335
346 32 [9] Sasao T, Wahr J M. Geophys. J.R. Astron.Soc, 1981, 64: 729 [10] Dong D N, Herring T A. EOS Trans Am. Geophys. Un, 1990, 71: 482 [11] Capitaine N, Gambis D, Dennis D, et al. IERS, 2002, 29: 37 [12] Zheng D W, Ding X L, Zhou Y H. Chinese Science Bulletin. 2000, 45: 2231 [13] Zhong M, Isao N, Akio K. JGR, 2003, 108: 2057 [14] Zhou Y H, Salstein D A, Chen J L. JGR, 2006, 111: D12108 [15] Gross R S, Fukumori I, Menemenlis D. JGR, 2004, 109: B01406 [16] Zheng D W. Chinese Astron. Astrophys, 1979, 3: 114 [17] Feissel M, Gambis D. C R Acad Sc Paris, 1980, 291: 271 [18] Langley R B, King R W, Shapiro II, et al. Nature, 1981, 294: 730 [19], Wilson C R., 1987, 28: 29 [20] Eubanks. Variations in the orientation of the earth. Washington, D.C: University of Washington, 1993: 45 [21] Gross R S, Fukumori I, Menemenlis D. JGR, 2003, 108: B2370 [22] Yoder C F, Williams J G, Parke M E. JGR, 1981, 86: 881 [23],,,., 2003, 2: 60 [24] Chao B F, Dong D N, Liu H S, et al. Geophys. Res. Lett, 1991, 18: 2007 [25],., 2002, 12: 70 [26] Dickman S R. Geophys. J. Int. 2005, 161: 33 [27] Herring T A, Dong D N. JGR, 1994, 99: 18051 [28] Chao B F, Ray R D, Egbert G D. JGR, 1996, 101: 20151 [29] Gipson J M. JGR, 1996, 101: 28051 [30] Rothacher M, Beutler G, Weber R, et al. JGR. 2001, 115: 13711 [31] Shum C K, Woodworth P L, Andersen O B, et al. JGR. 1997, 115: 25173 [32] Ray R, Sanchez B, Cartwright D. AGU. 1994, 75: 108 [33] Egbert G, Bennett A, Foreman M. JGR, 1994, 99: 24821 [34] Schrama E, Ray R. JGR, 1994, 99: 24799 [35] Andersen O. JGR, 1995, 100: 25249 [36] Desai S, Wahr J. JGR, 1995, 100: 25205 [37] Kantha L. JGR, 1995, 100: 25283 [38] Matsumoto K, Ooe M, Sato T, et al. JGR, 1995, 100: 25319 [39] Sanchez B, Pavlis N. JGR, 1995, 100: 25229 [40] Eanes R, Beuadpur S. Dissertation. Austin: Univ. of Tex, 1996: 35 [41] Böckmann S, Artz T. Dissertation. Germany: Institute of Geodesy and Geo-information University of Bonn, 2011: 87 [42] Böckmann S, Artz T, Nothnagel S, et al. JGR, 2010, 115: B05404 [43] Böckmann S, Artz T, Nothnagel, S. J Geod, 2011, 859: 565 [44] Bernhard, Artz T, Nothnagel L, et al. J Geod, 2011, 86: 230 [45] Ray R, Steinberg D, Chao B, et al. Science, 1994, 264: 830 [46] Chao B F, Ray R D, Egbert G D. Geophys. Res. Lett. 1995, 22: 1993 [47] Eanes R. personal communication, 2000 [48] Dickman S R, Gross R S. J. Geod, 2010, 84: 457 [49] Gerard P, Brian L. IERS Conventions. 2010, 37: 125 [50] Ray J, Griffiths J, Collilieux X, et al. Geophys. Res. Lett. 2013, 40: 5860
3 347 Progress in Research on Diurnal and Semidiurnal Earth Rotation Change XU Xue-qing 1,2,3, DONG Da-nan 2, ZHOU Yong-hong 1,2 (1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China; 2. School of Information Science Technology, East China Normal University Shanghai 200241, China; 3. Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Shanghai 200030, China) Abstract: We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT 1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the 1980s, as well as the application research on diurnal and semidiurnal polar motion and UT 1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement. Finally, the future work of the diurnal and semidiurnal earth rotation are briefly discussed. Key words: Earth rotation; diurnal and semidiurnal changes; length of day change; polar motion; global ocean tidal correction model