36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 1 2 1 1 1 1 1 100124 2 100124 3 1 5 1 /5 230 115 77 2 TU 375 A 0254-0037 2010 08-1059 - 10 1-3 20 70-4-5 6 4 1 2 2 2 1 2 2 3 mm 2 2 7 2 8-9 10-12 13 2004 CECS159 2010-05-20 D08050603720000 50878007 PHR20100502 1954
1060 2010 14-15 1 3 SW1 5-1 SW1 5-2 SW1 5-3 3 1 /5 1 5 460 mm 3 β SW1 5-1 2 mm β = 230 β 250 SW1 5-2 4 mm β = 115 β 100 ~ 250 SW1 5-3 6 mm β = 77 β 100 3 0 54 870 kn 3 140 mm 140 mm 4 mm 1 1 3 t 2 4 6 mm GB -1 GB -2 GB - 3 GZ -1 GZ -2 1 2 Fig 1 Steel bar and steel details of models Fig 2 Test set-up C40 45 1 MPa Q235 1 Table 1 1 Mechanical properties of materials / mm / MPa / MPa / % / MPa 2 SW1 5-1 221 5 359 7 27 3 2 06 10 5 4 SW1 5-2 273 8 406 3 23 4 2 03 10 5 6 SW1 5-3 278 2 405 5 24 4 2 09 10 5
8 1061 1 110 m 250 mm 2 2 2 1 3 2 F y F u μ yu = F y / F u Table 2 2 Experimental results of yield load and ultimate load F y / kn F u / kn μ yu SW1 5-1 171 60 208 32 189 96 1 000 276 49 291 38 283 94 1 000 0 67 1 000 SW1 5-2 280 70 289 60 285 15 1 501 400 15 374 89 387 52 1 365 0 73 1 090 SW1 5-3 327 96 388 33 358 15 1 885 463 52 489 22 476 37 1 678 0 75 1 119 2 1 SW1 5-2 SW1 5-3 SW1 5-1 50 1% 88 5% 2 SW1 5-2 SW1 5-3 SW1 5-1 36 5% 67 8% 3 SW1 5-2 SW1 5-3 SW1 5-1 9 0% 11 9% SW1 5-1 2 2 3 3 U y F y U d θ d μ = U d / U y 3 1 SW1 5-1 SW1 5-2 2 SW1 5-3 SW1 5-1 SW1 5-2 10 0% 7 2% 31 6% 27 1% 3 SW1 5-3 SW1 5-1 SW1 5-2 19 6% 18 5% Table 3 3 Experimental displacement on different times U y / mm U d / mm μ θ d SW1 5-1 6 20 6 34 6 27 1 100 33 60 38 42 36 01 1 316 1 /31 5 74 1 196 SW1 5-2 6 01 6 21 6 11 1 072 35 56 36 86 34 79 1 271 1 /32 5 69 1 185 SW1 5-3 5 57 5 83 5 70 1 000 27 02 27 71 27 37 1 000 1 /41 4 80 1 000
1062 2010 2 3-3 3 SW1 5-1 SW1 5-2 SW1 5-1 SW1 5-3 SW1 5-1 SW1 5-2 Fig 3 3 - Hysteretic curves of horizontal load - displacement of specimens 3 4 3 1 3 1 4 4 SW1 5-2 SW1 5-3 SW1 5-1 45 0% 32 4% Table 4 4 Experimental results of energy dissipation E / p kn mm Fig 4 4 Skeleton curve of specimens about F and U SW1 5-1 21 884 33 1 000 SW1 5-2 31 735 01 1 450 SW1 5-3 28 979 85 1 324 2 4 h e 5 h e U 5 h e 12 mm 3 h e 5 Fig 5 Equivalent viscous damping versus drift SW1 5-2 SW1 5-3 SW1 5-1 12 ~ 27 mm 3 27 mm 3 6 mm 4 mm 2 mm 4 mm 6 mm
8 1063 0 22 0 27 0 28 SW1 5-2 2 5 K θ 6 K o K y K u β yo = K y / K o β uo = K u / K o SW1 5-1 SW1 5-2 SW1 5-3 5 6 5 1 SW1 5-2 SW1 5-3 SW1 5-1 24 5% 78 2% 2 SW1 5-2 SW1 5-3 β yo SW1 5-1 1 9% 22 0% β uo SW1 5-1 18 9% 61 5% 1 /100 rad SW1 5-3 SW1 5-6 K - θ 1 SW1 5-2 SW1 5-3 Fig 6 Stiffness attenuation curves 3 3 Table 5 5 Experimental stiffness on different times K o / kn mm - 1 K y / kn mm - 1 K u / kn mm - 1 β yo β yo β uo β uo SW1 5-1 46 63 26 84 7 89 0 578 1 000 0 169 1 000 SW1 5-2 56 67 33 42 11 44 0 589 1 019 0 201 1 189 SW1 5-3 67 67 47 83 18 47 0 705 1 220 0 273 1 615 6 3 3 K - θ SW1 5-1 K = 50 288θ 2-2 746 2θ + 45 453 1 SW1 5-2 K = 54 024θ 2-3 076 7θ + 55 372 2 SW1 5-3 K = 81 789θ 2-4 073 7θ + 67 366 3 1 ~ 3 2 6 3 1 /100 rad 7 3 8 1 /40 rad 1 SW1 5-1 1 /100 rad 7 a 1 /41 rad 8 a 8 a 3 45 2 2 30 130 mm 30 130 mm
1064 2010 Fig 7 7 1 /100 rad Failure modes of specimens when the drift is 1 /100 rad Fig 8 8 1 /40 rad Failure modes of specimens when the drift is 1 /40 rad 2 SW1 5-2 1 /100 rad SW1 5-1 1 /41 rad 8 a 8 a SW1 5-1 3 45 140 mm 3 SW1 5-3 SW1 5-2 SW1 5-1 1 /100 rad 1 /41 rad 2 3 45 SW1 5-3 2 2 70 190 mm 4 4 110 mm 190 mm 290 mm 500 mm 2 4 3
8 1065 3 2 1 2 2 3 4 5 6 45 9 H /2 H /2 10 Fig 9 9 Mechanical model of capacity 1 F 1 N 2 = α f c x - b a h f - 2b a + 2x + h f b a f' a - f a 3h f - 2x b a 4 M = b a f' a h f - 2b a ( h f - x b a f a h f x - b ) 2 - b a h f - 2b f a ( h f - x + b f 2 ) - 5 M = F 1 H 2 6 2 F 2 3 t L L = 12 5t 2-140t + 430 7 1 /5 8
1066 2010 Fig 10 10 Mechanical model of capacity of big eccentricity 9 42 ~ 50 45 F 2 = F b cos θ + F b cos θ 8 3 2 F = 2F 1 + F 2 9 4 ~ 9 α 1 2 h f b a N F H F 1 F 2 f a f' a f ab f' ab f' ab = 0 2f ab F b F' F b = f ab A ab F' b = f ab A' L t A ab A' A ab = A' ab = tl θ 45 6 6 Table 6 6 Comparison of experimental and calculated results of ultimate capacity / kn / kn / % SW1 5-1 305 46 283 94 8 58 SW1 5-2 404 39 387 52 4 35 SW1 5-3 466 65 476 37 2 14 4 1 2
8 1067 3 1 /100 rad 3 4 2 5 6-1 ANWAR Hossain K M Design aspects of double skin profiled composite framed shear walls in construction and service stages J ACI Structural Journal 2004 101 1 94-102 2 J 2007 27 5 80-87 WANG Min CAO Wan-lin ZHANG Jian-wei Seismic research and development in composite shear walls J Journal of Earthquake Engineering and Engineering Vibration 2007 27 5 80-87 in Chinese 3 - J 2006 26 5 130-135 LIAO Fei-yu TAO Zhong HAN Lin-hai A state-of-the-art review of composite shear walls under cyclic loading J Journal of Earthquake Engineering and Engineering Vibration 2006 26 5 130-135 in Chinese 4 CACCESE V ELGAALY M Experimental study of thin steel-plate shear walls under cyclic load J J of Structural Engrg ASCE 1993 119 2 573-587 5 ASTANEH-ASL Abolhassan ZHAO Qiu-hong Cyclic behavior of steel shear wall systems C Proceedings of Annual Stability Conference Structural Stability Research Council Seattle WA Structural Stability Research Council 2002 21-36 6 YAMADA Minoru Steel panel encased R C composite shear walls C Composite Construction in Steel and Concrete Ⅱ New York ASCE 1992 899-912 7 J 2002 33 5 351-352 XU Yue Experiment reaseach on shear wall made of reinforced concrete strengthend by thin steel plate J Architecture Technology 2002 33 5 351-352 in Chinese 8 J 2010 38 1 18-23 SUN Fei-fei LIU Gui-ran A simplified model for composite steel plateshear walls J Journal of Tongji University Natural Science 2010 38 1 18-23 in Chinese 9 DRIVER R G KULAK G L ELWI A E et al FE and simplified models of steel plate shear wall J ASCE Journal of Structure Engineer 1997 124 2 121 10 J 2004 34 1 3-6 LI Zhong-xian XU Cheng-xiang WANG Dong et al Experimental research on the seismic behavior of concrete-filled steel tubular frame J Building Structure 2004 34 1 3-6 in Chinese 11 J 2001 29 6 24-34 HAN Lin-hai TAO Zhong LIU Wei Concrete filled steel tubular structures from theory to practice J Journal of Fuzhou University Natural Science 2001 29 6 24-34 in Chinese 12 J 1998 28 10 1-5 HAN Lin-hai Characters and development of concrete filled steel tubes J Industrial Construction 1998 28 10 1-5 in Chinese 13 J 1999 32 4 17-25 CAI Shao-huai The latest developments of concrete-filled steel tube structure in China J China Civil Engineering Journal 1999 32 4 17-25 in Chinese 14 J 2008 25 S1 58-70 CAO Wan-lin WANG Min WANG Shao-he et al Aseismic research of composite shear wall and core walls with
1068 2010 rectangular concrete filled steel tube columns J Engineering Mechanics 2008 25 S1 58-70 in Chinese 15 J 2009 39 6 1187-1192 CAO Wan-lin YANG Ya-bin ZHANG Jian-wei Seismic behaviors of shear wall with concrete filled round steel tube columns and concealed bracing J Journal of Southeast University Natural Science 2009 39 6 1187-1192 in Chinese Seismic Behavior of Steel-plate Shear Walls With Concrete Filled Steel Tube Columns and Different Ratio of Height to Sectional Thickness of the Walls CAO Wan-lin 1 2 LI Gang 1 ZHANG Jian-wei 1 ZHANG Wen-jiang 1 GENG Hai-xia 1 1 College of Architecture and Civil Engineering Beijing University of Technology Beijing 100124 China 2 Key Lab of Urban Security and Disaster Engineering Ministry of Education Beijing 100124 China Abstract In order to know the seismic behavior three 1 /5 scale specimens with the same shear span ratio 1 5 but different ratio of height to sectional thickness of the steel-plate shear wall which were 230 115 and 77 respectively were tested under cyclic loading Based on the experiment the carrying capacity stiffness hysteresis characteristics ductility energy dissipation and damage characteristics of the specimens were analyzed The mechanical model for calculating load-carrying capacity of the new style shear walls was proposed And the calculating results agreed well with those from the experiments It shows that the thinner steel-plate shear wall with higher ratio of height to sectional thickness has lower capacity lower stiffness and better ductility and vice versa The load capacity and stiffness of the wall with moderate ratio of height to sectional thickness are in between of the thinner and the thicker walls But the overall ability of its seismic energy dissipation is the best It is suggested that the stronger concrete filled steel tube columns and weaker steel plate should be used in steel-plate shear walls in order to provide two earthquake fortification lines Key words concrete filled steel tube steel-plate composite shear wall seismic behavior mechanical model of carrying capacity