, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

On the Galois Group of Linear Difference-Differential Equations

Second Order Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

The one-dimensional periodic Schrödinger equation

Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

ADVANCED STRUCTURAL MECHANICS

High order interpolation function for surface contact problem

Robust Markowitz Portfolio Selection in a Stochastic Factor Model

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

Single-value extension property for anti-diagonal operator matrices and their square

Solution Series 9. i=1 x i and i=1 x i.

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

EE512: Error Control Coding

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Solvability of a Maximum Quadratic Integral Equation of Arbitrary Orders

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Homomorphism in Intuitionistic Fuzzy Automata

= df. f (n) (x) = dn f dx n

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

An Inventory of Continuous Distributions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Homomorphism of Intuitionistic Fuzzy Groups

Homework for 1/27 Due 2/5


Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Example Sheet 3 Solutions

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Isoperimetrikèc anisìthtec kai sugkèntrwsh tou mètrou

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Quick algorithm f or computing core attribute

Commutative Monoids in Intuitionistic Fuzzy Sets

ECE 468: Digital Image Processing. Lecture 8

Uniform Convergence of Fourier Series Michael Taylor

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

D Alembert s Solution to the Wave Equation

The ε-pseudospectrum of a Matrix

Generating Set of the Complete Semigroups of Binary Relations

Solutions to Exercise Sheet 5

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Homework 8 Model Solution Section

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

Prey-Taxis Holling-Tanner

On Generating Relations of Some Triple. Hypergeometric Functions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

ST5224: Advanced Statistical Theory II

SPECIAL FUNCTIONS and POLYNOMIALS

Parts Manual. Trio Mobile Surgery Platform. Model 1033


ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.

CorV CVAC. CorV TU317. 1

Some Fundamental Properties of Fuzzy Linear Relations between Vector Spaces

Biostatistics for Health Sciences Review Sheet

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

Matrices and Determinants

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Limit theorems under sublinear expectations and probabilities

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Déformation et quantification par groupoïde des variétés toriques

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Stochastic Target Games with Controlled Loss

Conductivity Logging for Thermal Spring Well

Srednicki Chapter 55

ODE, SDE and PDE. Shizan Fang Université de Bourgogne, France. February 29, 2008

Divergence for log concave functions

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Transcript:

212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965, Aumann. R. J.,, 1964, Vind. K.. 197, Debreu. G. Radon-Nikodym. 1973, KendaII D. G.,. 198,, 1996, [3],. [2] (1), L[, 1]L 2 [, 1] C[, 1]. 2 P bkc (X) [3]. 1 β G.X Banach, F : β X {F (A) A β X. {sh s R s R. sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, π A (s) X, s R, ε >, λ >, A β, s s < λ, δ(π A (s), π A (s )) ε. {F (A) A β X, [4-5],, π A (s) P bkc (X). A A + s H, 211-5-31. (194-),,.

1 28 A β, A s H A, A s H β, A s H + sh A + sh, A s H + sh β. ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε, F (A ) F (A s H + sh) = F ((A s H) + s H) F ((A s H) + sh) < ε. π 1 A (s) = {F (A ) A A + sh, A β d(f (A ), π A (s)) d(f (A ), π 1 A(s)) d(f (A ), F (A s H + sh)) < ε, A A + s H, A β, x π 1 A (s ), d(x, π A (s)) < ε, [5] co B = {B, x co π 1 A (s ), n {x 1, x 2,, x n πa(s 1 ), α i, α i = 1, x = n α i x i. d(x i, π A (s)) < ε), y i π A (s), x i y i < ε, i = 1, 2,, n, y = n α i y i π A (s), d(x, y) n α i x i y i < ε, d(x, π A (s)) d(x, y) < ε, x co π 1 A (s ), sup d(x, π A (s)) ε. x co πa 1 (s ) x π A (s ), {x n co π 1 A (s ), x n x, d(x, π A (s)) x, d(x, π A (s)) ε, sup d(x, π A (s)) ε. x π A (s ) sup d(x, π A (s )) ε. x π A (s) A β, s s < λ, δ(π A (s), π A (s )) ε. 1 [3] (G, β), X, π : G P f (X), U X, π 1 (U) = {s G π(s) U β.. 2 (G, β), X Banach, F : β X {F (A) A β X, {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε, π A (s) = co{f (A ) A A + sh, A β, s R, A β,

1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 11 π A (s) P bkc (X). 1 π A (s) P bkc (X), 1 [3] 1.2.5, ε >, λ > x X, A β, s s < λ, d(x, π A (s)) d(x, π A (s )) ε, x X, A β, d(x, π A (s)) s, d(x, π A (s)) (R, B(R)), B(R) R Borel σ, X, [3] 2.1.3 π A (s). 1 2 : 1 (G, β),x Banach, F : β X, {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, s R, ε >, λ > A β, s s < λ, δ(π A (s), π A (s )) ε, π A (s) P fc (X). 3 (G, β, µ) θ, H, h θ, A β, πa(s) 1 = co{µ(a + th) A A + sh, A β, { x πa(s) 2 = co µ(a + th)dt A A + sh, A β, { πa(s) 3 = co k(x, t)µ(a + th)dt A A + sh, A β, π i A (s) P bkc(c[, 1]), k(x, t) [, 1] [, 1], i = 1, 2, 3, s R. F 1 (A) = µ(a+th), A β, [6] 4, h θ, {µ(a+th) A β, t R, ε >, λ >, A β, t 2 t 1 < λ, µ(a + t 2 h) µ(a + t 1 h) < ε, F 1 (A) C[, 1], {F 1 (A) A β C[, 1], s R, ε >, λ >, A β, s s < λ, F 1 (A + sh) F 1 (A + s H) c[,1] = µ(a + th + sh) µ(a + th + s H) c[,1] < ε, c[, 1] Banach, 2 π 1 A (s) P bkc(c[, 1]). F 2 (A) c[, 1], F 2 (A) = x { x {F 2 (A) A β = µ(a + th)dt, A β, x 1, µ(a + th)dt A β

12 28, {F 2 (A) A β c[, 1], s R, [6] 4, ε >, λ >, A β, s s < λ, F 2 (A + sh) F 2 (A + s H) c[,1] x x = µ(a + th + sh)dt µ(a + th + s H)dt µ((a + th) + sh) µ((a + th) + s H) dt < ε. c[, 1], 2 π 2 A (s) P bkc(c[, 1]). F 3 (A) = K(x, t), f(t) c[, 1], (Kf)(x) = K(x, t)µ(a + th)dt, A β, K(x, t)f(t)dt, [4] K c[, 1] c[, 1], F 3 (A) c[, 1], {F 3 (A) A β c[, 1], K(x, t) [, 1] [, 1],, K(x, t) L, [6] 4, ε >, λ >, A β, s s < λ, µ(a + sh) µ(a + s H) < ε L. F 3 (A + sh) F 3 (A + s H) c[,1] = K(x, t)µ(a + th + sh)dt K(x 1, t)µ(a + th + s H)dt K(x, t) µ((a + th) + sh) µ((a + th) + s H) dt < ε. c[, 1], 2 π 3 A (s) P bkc(c[, 1]). 4 (G, β, µ) θ, H, h θ, A β, πa(s) 4 = co{µ(a + th) A A + sh, A β, { x πa(s) 5 = co µ(a + th)dt A A + sh, A β, { πa(s) 6 = co k(x, t)µ(a + th)dt A A + sh, A β { πa(s) 7 = co k(x, t)µ(a + th)dt A A + sh, A β k(x, t) [, 1] [, 1], k(x, t) L 2 ([, 1] [, 1]) s R, π i A (s) P bkc (L P [, 1]) P 1, i = 4, 5, 6, π 7 A (s) P bkc(l 2 [, 1]).,,

1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 13 F 4 (A) = µ(a + th), A β, F 5 (A) = x µ(a + th)dt, A β, y 1 (t), y 2 (t) c[, 1], F 6 (A) = x k(x, t)µ(a + th)dt, A β. y 1 (t) y 2 (t) L P [,1] y 1 (t) y 2 (t) c[,1]. 3 {F 1 (A) A β, {F 2 (A) A β {F 3 (A) A β c[, 1], {F 4 (A) A β, {F 5 (A) A β {F 6 (A) A β L P [, 1], 3 F 4 (A + sh) F 4 (A + s ) L P [,1] F 1 (A + sh) F 1 (A + s H) c[,1], F 5 (A + sh) F 5 (A + s ) L P [,1] F 2 (A + sh) F 2 (A + s H) c[,1], F 6 (A + sh) F 6 (A + s ) L P [,1] F 3 (A + sh) F 3 (A + s H) c[,1] s R, ε >, λ >, A β, s s < λ, F i (A + sh) F i (A + s H) L P [,1] ε, i = 4, 5, 6, L P [, 1], 2, π i A (s) P bkc(l P [, 1]), i = 4, 5, 6. F 7 (A) = k(x, t)µ(a + th)dt, A β, k(x, t), k(x, t) L, f(t) L 2 [, 1], (kf)(x) = k(x, t)f(t)dt, [4] k L 2 [, 1] L 2 [, 1], F 7 (A) L 2 [, 1], {F 7 (A) A β, L 2 [, 1]. [6] 4, s R, ε >, λ >, A β, s s < λ, µ(a + sh) µ(a + s H) < ε L, F 7 (A + sh) F 7 (A + s ) L 2 [,1] k(x, t) µ((a + th) + sh) µ((a + th) + s H) dt ε. L 2 [, 1], 2, π 7 A (s) P bkc(l 2 [, 1]). 3 2 [7] XY, π : X P (Y ), x X, π x (usc), π(x ) U, x V, x V, π(x) U. π x X usc, π (usc).

14 28 π x (lsc), U, π(x ) U, x V, x V, π(x) U. π x X lsc, π (lsc). π x, π x. π, π. 3 [7] X, Y, π : X P (Y ), x X π x Hausdorff (Hlsc), ε >, x U, π(x ) x U {y d(y, π(x)) < ε. X Hausdorff, Y Hausdorff, y Y, x σ(y, π(x)) x, π x h- (husc), σ(y, π(x)) π. 5 β G, X Banach, F : β X {F (A) A β X. {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, A β, π A (s) P bkc (X) h-. 1 π A (s) P bkc (X), s R, ε >, λ >, A β, s s < λ, δ(π A (s), π A (s )) ε 2. [3] 1.2.5, π A (s ) {x d(x, π A (s)) < ε, s (s λ, s + λ), 3 π A s R Hausdorff (Hlsc). [3] 1.4.11, A β, s s < λ, δ(π A (s), π A (s )) = sup σ(x, π A (s)) σ(x, π A (s )) ε x 1 2. : a, σ(ax, B) = aσ(x, B), x X, σ(x, π A (s)) s R, σ(x, π A (s)) s R, 3 π A s R h- (husc), π A s R Hausdorff (Hlsc), s R h- (husc). π A (s) h-. [7] 1.4.9 1.5.11, π A (s). 6 (G, β, µ) θ, H, h θ, A β, 3 π 1 A (s), π2 A (s), π3 A (s) P bkc(c[, 1]); 4 π 4 A (s), π5 A (s), π6 A (s) P bkc (L P [, 1]); π 7 A (s) P bkc(l 2 [, 1]) h-. 3 4 {F i (A) A β,, s R, ε >, A β, s s < λ, F i (A + sh) F i (A + s H) < ε. i = 1, 2, 3, 4, 5, 6, 7,

1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 15 5.. 7 β G, X Banach, F : β X {F (A) A β X. Q s Q, s : β β, s Q, A β, ε >, s V, A s A, A β, s V, F (A ) F (A s + s ) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π S (s) P bkc (X) s (usc), π A (s) s h- (husc), s V, sup d(x, π A (s )) ε. x π A (s) 1 π A (s) X, A A + s, A β, A s + s A + s, A s + s β. π 1 A(s) = {F (A ) A A + s, A β, s Q, A s A, A β, s V, F (A ) F (A s + s ) < ε. d(f (A ), π A (s )) d(f (A ), π 1 A(s )) d(f (A ), F (A s + s )) < ε, A A + s, A β, x π 1 A (s), d(x, π A(s )) < ε [5], co B = {B, x co π 1 A (s), 1 d(x, π A(s )) < ε, x co πa 1 (s), 1, sup d(x, π A (s )) ε, s V. x co πa 1 (s) sup d(x, π A (s )) ε, s V. x π A (s) U π A (s ), U U C, π A (s ) U C =, x 1 π A (s ), ( B x 1, 1 ) { 2 d(x1, U C ) = x d(x, x 1 ) < 1 2 d(x1, U C ) U, { ( B x 1, 1 2 d(x1, U )) C x 1 π A (s ) π A (s ), {x 1, x 2,, x n π A (s ) π A (s ) n ( B x i, 1 ) 2 d(x i, U C ) U.

16 28 { 1 2ε = min 2 d(x 1, U C ),, 1 2 d(x n, U C ), x d(x, π A (s )) < 2ε, x π A (s ), d(x, x) < 2ε, π A (s ) n j, x B(x j, 1 2 d(x j, U C )), j n, ( B x i, 1 ) 2 d(x i, U C ) d(x, x j ) d(x, x) + d(x, x j ) < 2ε + 1 2 d(x j.u C ) d(x j, U C ), x U, {x d(x, π A (s )) < 2ε U. s V, sup d(x, π A (s )) ε, s V, x π A (s) π A (s) {x d(x, π A (s )) ε {x d(x, π A (s )) < 2ε U, 2 π A (s) s (usc). x X, ε >, { π A (s ) x d(x, π A(s )) < ε x, π A (s) s (usc), s V, s V, { π A (s) x d(x, π A(s )) < ε { x = π A (s ) + x x <, s V, ( { σ(x, π A (s)) σ(x, π A (s )) + σ x, x x < ε x. ε ) x < σ(x, π A (s )) + ε. x X, σ(x, π A (s)) s, 3 π A (s) s h- (husc). 2 β G, X Banach, F : β X {F (A) A β X. Q s Q, s : β β, A β, s Q, ε >, s V, A s A, A β, s V, F (A ) F (A s + s ) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π A (s) P bkc (x) Q (usc), (π A ).

1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 17 7 [7] 1.3.19. 8 β G, X Banach, F : β X, Q s Q, s : β β, s Q, A β, ε >, s V, A s A, A β, s V, F (A ) F (A s + s) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π A (s) P fc (x) s Hausdorff (Hlsc), s (lsc), sup d(x, π A (s)) ε, s V. x π A (s ), π A (s) P fc (x) A A+s, A β, A s +s A + s, A s + s β. A s A, A β, s V, π 1 A(s) = {F (A ) A A + s, A β, s Q, d(f (A ), π A (s)) d(f (A ), π 1 A(s)) F (A ) F (A s + s) < ε. A A + s, A β, x π 1 A (s ), d(x, π A (s)) < ε, s V. 1 : sup d(x, π A (s)) ε, s V. x π A (s ) x π A (s ), d(x, π A (s)) ε, s V π A (s ) {x d(x, π A (s)) ε, s V. 3 π A (s) s Hausdorff (Hlsc). U, π A (s ) U, x π A (s ) U, λ >, {x d(x, x ) < λ U. π A (s) s Hausdorff (Hlsc), s V, s V, π A (s ) {x d(x, π A (s)) < λ. x π A (s ) {x d(x, π A (s)) < λ, x π A (s), d(x, x ) < λ, x U, s V,π A (s) U, π A (s) s (lsc). Y, Q Y, x Q, a >, ax Q [7]. 9 β G, X Banach, F : β X, Q s Q, s : β β, A β s Q ε >, < t < 1, A A + as, A β, a (1 t, 1), F (A ) F (A + (1 a)s ) < ε. b (1, 1 + t), A + bs A + (2 b)s, π A (s) P fc (X) a 1 < t, π A (s) = co{f (A ) A A + s, A β, s Q, sup d(x, π A (s )) ε. x π A (as )

18 28 π A (s) P fc (X), a (1 t, 1), A A + as, A β A + (1 a)s A + as + (1 a)s = A + s, A + (1 a)s β. π 1 A(s) = {F (A ) A A + s, A β, s Q, A A + as, A β, a (1 t, 1), F (A ) F (A + (1 a)s ) < ε, d(f (A, π A (s )) d(f (A ), π 1 A(s )) d(f (A ), F (A + (1 a)s )) < ε. A A + as, A β, x π 1 A (as ), d(x, π A (s )) < ε, a (1 t, 1). b (1, 1+t), A A+bs, A β, A+bs A+(2 b)s, A A+(2 b)s, 2 b (1 t, 1), d(f (A ), π A (s )) < ε, A A + bs, A β x π 1 A (bs ), d(x, π A (s )) < ε, b (1, 1 + t). a 1 < t, x π 1 A (as ), d(x, π A (s )) < ε, 1 sup d(x, π A (s )) ε, a 1 < t. x π A (as ) [1]. [M]. :, 29. [2]. [J]., 21,26(5),872-88. [3],,. [M]. :, 1996. [4],,,. : [M]. :, 198. [5],,,. [M]. :, 29. [6]. [J]. : A, 1987,8(6):664-667. [7],. [M]. :, 24. Value of set-valued stochastic variables between P bkc (c[, 1]) and P bkc (L p [, 1]) Lin Yixing (Longyan Normal School, Longyan 364, China) Abstract: In this paper,we study the quasi-continuous measure space (G, β, µ) of uniformly boundness of continuous functions, and the containment relations of convex and closure set. We have constructed value of set-valued stochastic variables and continuous set-valued mapping between P bkc (c[, 1]) and P bkc (L p [, 1]). It will deepen the set-valued stochastic process theory. Key words: quasi-continuous measure space, set-valued stochastic variable, continuous set-valued mapping 21 MSC: 28B2