Gait Identification Using a View Transformation Model in the Frequency Domain

Σχετικά έγγραφα
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Detection and Recognition of Traffic Signal Using Machine Learning

Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Area Location and Recognition of Video Text Based on Depth Learning Method

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

ECE 468: Digital Image Processing. Lecture 8

ER-Tree (Extended R*-Tree)

Buried Markov Model Pairwise

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Comparison of Discriminant Analysis in Ear Recognition

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Kernel Methods and their Application for Image Understanding

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems


Mapping Textures on 3D Geometric Model Using Reflectance Image

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Sampling Basics (1B) Young Won Lim 9/21/13

Section 8.3 Trigonometric Equations

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Stabilization of stock price prediction by cross entropy optimization

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Anomaly Detection with Neighborhood Preservation Principle

Probabilistic Approach to Robust Optimization

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Free-viewpoint Video Rendering in Large Outdoor Space such as Soccer Stadium based on Object Extraction and Tracking Technology

Applying Markov Decision Processes to Role-playing Game

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ

A High Precision Iris Feature Extraction and Its Application in Iris Recognition

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

{takasu, Conditional Random Field

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Invariant Relations of 3D to 2D Projection of Point Sets

Homework 3 Solutions

Automatic extraction of bibliography with machine learning

NMBTC.COM /

,,, (, ) , ;,,, ; -

Development of a basic motion analysis system using a sensor KINECT

Text Mining using Linguistic Information

Adaptive grouping difference variation wolf pack algorithm

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Psychological Evaluation on Interactions between People and Robot

Numerical Analysis FMN011

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Ψηφιακή Επεξεργασία Φωνής

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Splice site recognition between different organisms

Homomorphism in Intuitionistic Fuzzy Automata

IMES DISCUSSION PAPER SERIES

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Simplex Crossover for Real-coded Genetic Algolithms

Bayesian modeling of inseparable space-time variation in disease risk

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Bayesian Discriminant Feature Selection

Reading Order Detection for Text Layout Excluded by Image

Ψηφιακή Επεξεργασία Φωνής

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis


UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena

CORDIC Background (4A)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Transcript:

Vol. 48 No. SIG 1(CVIM 17) Feb. 2007 15 24 Gait Identification Using a View Transformation Model in the Frequency Domain Yasushi Makihara, Ryusuke Sagawa, Yasuhiro Mukaigawa, Tomio Echigo and Yasushi Yagi Gait identification have recently gained attention as methods of individual identification at a distance from a camera. However, appearance changes due to view direction changes cause difficulties for gait identification. We propose a method of gait identification using frequencydomain features and a view transformation model. We first extract frequency-domain features from a spatio-temporal gait silhouette volume. Next, our view transformation model is obtained with a training set of multiple persons from multiple view directions. In an identification phase, the model transforms gallery features into the same view direction as that of a probe feature. Experiments involving gait identification from 24 view directions demonstrate the effectiveness of our method. 1. 2),7),18),19),21),22) The Institute of Scientific and Industrial Research, Osaka University Department of Engineering Informatics, Osaka Electro- Communication University 3),6),8) 10),12),15),16) Urtasun 19) Spencer 18) Sarkar 16) Sagawa 15) x-y-t volume 1 78

Vol. 48 No. SIG 1(CVIM 17) 79 BenAbdelkader 1) Yu 23) 24) 17) 1 5) 4) Mukaigawa 11) Utsumi 20) View Transformation Model VTM 1 VTM VTM Utsumi 20) Gait Silhouette Volume GSV 2 GSV 3 GSV 4 VTM 5 6 2. GSV 2.1 2 (b) NEC TH1702MX 320 pixel 240 pixel 30 fps 2(c) (a) Input image with color camera (b) Background subtraction for (a) 1 Fig. 1 Problem setting of view transformation. (c) Input image with infrared-ray camera 2 (d) Background subtraction for (c) (c) Fig. 2 Comparison of background subtraction by color camera and that by infrared-ray camera (In (c), brighter value indicates higher temperature).

80 Feb. 2007 (a) time slice images (x-y plane, every 3 frames) (b) horizontal slice image (t-x plane at y = 27) (c) vertical slice image (t-y plane at x =6) 3 GSV Fig. 3 An example of GSV. 2(d) 1 2.2 30 30 pixel 20 pixel 30 pixel GSV GSV x-y t-x t-y 3 3(b) (c) 3. GSV 3.1 1 N gait GSV N gait =arg C(N) = x,y x,y max N [N min,n max ] T (N) n=0 T(N) n=0 g(x,y,n)2 x,y C(N) (1) g(x, y, n)g(x, y, n + N) T(N) n=0 g(x,y,n+n)2 (2) T (N) =N total N 1 (3) C(N) N GSV g(x, y, n) n (x, y) GSV [0,1] N total GSV N min =20 N max =40 3.2 1 S N gait {S i } i =1, 2,...,N sub i S i [in gait, (i +1)N gait 1] DFT N gait G i (x, y, k) = (i+1)n gait 1 n=in gait g(x, y, n)e jω0kn (4) A i (x, y, k) = 1 N gait G i (x, y, k). (5) ω 0 N gait G i (x, y, k) DFT k A i (x, y, k) N gait G i (x, y, k) k>2 DFT DFT A i (x, y, k) k =0, 1, 2 N A 20 30 3 = 1800 4 θ 5 VTM

Vol. 48 No. SIG 1(CVIM 17) 81 4 15 Fig. 4 Gait features for some subjects from each view (every 15 deg). Fig. 5 5 θ Definition of view direction θ at top view. 3.3 2 S i S j S i A i (x, y, k) N A a(s i ) d(s i, S j ) d(s i, S j )= a(s i ) a(s j ). (6) 2 S P S G {S P i } i =1, 2,... {S G j } j =1, 2,... D(S P, S G ) S P i {S G j } j =1, 2,... D(S P, S G )=Median i [min{d(s P i, S G j )}]. (7) j 4. 4.1 Utsumi 20) VTM Utsumi VTM GSV VTM θ K m k N A a m θ k M K SVD a 1 θ 1 a M θ 1 P θ1 ]....... =USV T =. [v 1 v M. a 1 θ K a M θ K P θk (8) U KN A M V M M S M M P θk US N A M v m M v m m P θk v θ k m θ i a m θ i a m θ i = P θi v m. (9) θ ref θ i â m θ i = P θi P + θ ref a m θ ref. (10) P + θ ref P θref 1 4 a m 0 a m 90 θ ref (1),...,θ ref (k) θ i + P θref (1) a m θ â m θ i = P θi ref (1)... (11) P θref (k) a m θ ref (k)

82 Feb. 2007 2.2 y i y j y i y i 4.2 5 θ ref I opp (θ ref ) θ ref I(θ ref ) I opp (θ ref ) I(θ ref +180) I(θ ref +180) I(θ ref ) pers. I(360 θ ref ) I(θ ref ) sym. 2 I(θ ref ) I(180 θ ref ) pers.+sym. θ ref (180 θ ref ) (θ ref + 180) (360 θ ref ) 0 180 θ ref 5. 5.1 20 15 24 736 10 20 VTM 10 24 240 20 k 20k VTM 10 NT PP 5) VTM VTM+ VTM NT PP 5.2 1 0 45 90 2 0 90 VTM+ 6 6(a) a â RMSE 7 VTM VTM (tr.) NT PP 0 180 0 180 0 7(a) θ ref =0 180 7(c) θ ref =90 270

Vol. 48 No. SIG 1(CVIM 17) 83 (a) θ ref =0 (b) θ ref =45 (a): original feature, (b) (e): transformed features from 0, (c) θ ref =90 45, 90, and 0 and 90 deg. reference Fig. 6 6 Transformed features. VTM(tr.) VTM VTM(tr.) 2 NT PP VTM+ NT PP VTM (d) θ ref (1) = 0,θ ref (2) = 90 7 RMSE Fig. 7 Root mean squared errors (RMSE) of transformed features. 0 6(b) 90 270 7(a) 90 6(d) 0 180

84 Feb. 2007 7(c) 45 135 315 6(c) 7(b) 0 90 7(a) (c) 0 90 2 6(e) 7(d) 5.3 20 ROC 14) 10% 0 45 90 1 0 90 2 8 PP VTM 0 8(a) NT PP NT PP PP VTM+ PP 45 8(b) 3 135 225 315 0 90 8(a) (c) 84% 0 90 2 8(d) 80% 94% 8(a) θ ref =0 180 8(c) θ ref =90 270 Fig. 8 (a) θ ref =0 (b) θ ref =45 (c) θ ref =90 (d) θ ref (1) = 0,θ ref (2) = 90 8 10% Verification rate at 10% false alarm. 9 Fig. 9 Averaged verification rate for the number of references. 9 best worst average best

Vol. 48 No. SIG 1(CVIM 17) 85 2 94% worst 3 87% 6. VTM VTM 20 24 739 10% VTM 45 1 84% 0 90 2 94% Sarkar 16) 30 10% 96% FRVT2002 13) 10% 96% 2 94% 1 HumanID Gait Challenge Problem Datasets 16) 1) BenAbdelkader, C.: Gait as a Biometric For Person Identification in Video, Ph.D. Thesis, Maryland Univ. (2002). 2) Cunado, D., Nixon, M. and Carter, J.: Automatic Extraction and Description of Human Gait Models for Recognition Purposes, Computer Vision and Image Understanding, Vol.90, No.1, pp.1 41 (2003). 3) Cuntoor, N., Kale, A. and Chellappa, R.: Combining Multiple Evidences for Gait Recognition, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Vol.3, pp.33 36 (2003). 4) Han, J., Bhanu, B. and Roy-Chowdhury, A.: A STUDY ON VIEW-INSENSITIVE GAIT RECOGNITION, Proc. IEEE Int. Conf. on Image Processing, Vol.3, pp.297 300 (2005). 5) Kale, A., Roy-Chowdhury, A. and Chellappa, R.: Towards a View Invariant Gait Recognition Algorithm, Proc. IEEE Conf. on Advanced Video and Signal Based Surveillance, pp.143 150 (2003). 6) Kobayashi, T. and Otsu, N.: Action and Simultaneous Multiple-Person Identification Using Cubic Higher-Order Local Auto-Correlation, Proc. 17th Int. Conf. on Pattern Recognition, Vol.3, pp.741 744 (2004). 7) Lee, L.: Gait Analysis for Classification, Ph.D. Thesis, Massachusetts Institute of Technology (2002). 8) Liu, Y., Collins, R. and Tsin, Y.: Gait sequence analysis using frieze patterns, Proc. 7th European Conf. on Computer Vision, Vol.2, pp.657 671 (2002). 9) Liu, Z. and Sarkar, S.: Simplest Representation Yet for Gait Recognition: Averaged Silhouette, Proc. 17th Int. Conf. on Pattern Recognition, Vol.1, pp.211 214 (2004). 10) Mowbray, S. and Nixon, M.: Automatic Gait Recognition via Fourier Descriptors of Deformable Objects, Proc. IEEE Conf. on Ad-

86 Feb. 2007 vanced Video and Signal Based Surveillance, pp.566 573 (2003). 11) Mukaigawa, Y., Nakamura, Y. and Ohta, Y.: Face Synthesis with Arbitrary Pose and Expression from Several Images An integration of Image-based and Model-based Approach, Proc. 3rd Asian Conf. on Computer Vision, Vol.1, pp.680 687 (1998). 12) Murase, H. and Sakai, R.: Moving Object Recognition in Eigenspace Representation: Gait Analysis and Lip Reading, Pattern Recognition Letters, Vol.17, pp.155 162 (1996). 13) Phillips, P., Blackburn, D., Bone, M., Grother, P., Micheals, R. and Tabassi, E.: Face Recogntion Vendor Test (2002). http://www.frvt.org 14) Phillips, P., Moon, H., Rizvi, S. and Rauss, P.: The FERET Evaluation Methodology for Face-Recognition Algorithms, Trans. of Pattern Analysis and Machine Intelligence, Vol.22, No.10, pp.1090 1104 (2000). 15) Sagawa, R., Makihara, Y., Echigo, T. and Yagi, Y.: Matching Gait Image Sequences in the Frequency Domain for Tracking People at a Distance, Proc. 7th Asian Conference on Computer Vision, Vol.2, pp.141 150 (2006). 16) Sarkar, S., Phillips, J., Liu, Z., Vega, I., Grother, P. and Bowyer, K.: The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis, Trans. Pattern Analysis and Machine Intelligence, Vol.27, No.2, pp.162 177 (2005). 17) Shakhnarovich, G., Lee, L. and Darrell, T.: Integrated Face and Gait Recognition from Multiple Views, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Vol.1, pp.439 446 (2001). 18) Spencer, N. and Carter, J.: TOWARDS POSE INVARIANT GAIT RECONSTRUC- TION, Proc. IEEE Int. Conf. on Image Processing, Vol.3, pp.261 264 (2005). 19) Urtasun, R. and Fua, P.: 3D Tracking for Gait Characterization and Recognition, Proc. 6th IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp.17 22 (2004). 20) Utsumi, A. and Tetsutani, N.: Adaptation of appearance model for human tracking using geometrical pixel value distributions, Proc. 6th Asian Conf. on Computer Vision, Vol.2, pp.794 799 (2004). 21) Wagg, D. and Nixon, M.: On Automated Model-Based Extraction and Analysis of Gait, Proc. 6th IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp.11 16 (2004). 22) Yam, C., Nixon, M. and Carter, J.: Automated Person Recognition by Walking and Running via Model-based Approaches, Pattern Recognition, Vol.37, No.5, pp.1057 1072 (2004). 23) Yu, S., Tan, D. and Tan, T.: Modelling the Effect of View Angle Variation on Appearance- Based Gait Recognition, Proc. 7th Asian Conf. on Computer Vision, Vol.1, pp.807 816 (2006). 24) Nayar, S. 2 3 Vol.J77-D-II, No.11, pp.2179 2187 (1994). ( 18 5 5 ) ( 18 11 10 ) 2001 2002 2005 2006 79 18 18 1998 2000 2003 IEEE

Vol. 48 No. SIG 1(CVIM 17) 87 1997 2002 2003 2004 10 2004 11 IEEE 1980 1982 2003 1982 2003 2006 1983 1985 1990 2003 1995 1996 2002 1996 2003 ACM VRST2003 Honorable Mention Award IEEE