Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Σχετικά έγγραφα
Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

Μαγνητικό πεδίο.

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Φυσική για Μηχανικούς

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Β Λυκείου Κυριακή 23 Μαρτίου 2014

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β )

+ E=mc 2! Οι επιταχυντές επιλύουν δυο προβλήματα :

Κωστής Χαλκιαδάκης, φυσικός. Συσκάκης Γιάννης, φυσικός. 10 Ερωτήσεις και 10 απαντήσεις για το CERN

Μελέτη της επίδρασης ενός μαγνητικού πεδίου στην κίνηση των ηλεκτρονίων. Μέτρηση του μαγνητικού πεδίου της γης.

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

ΥΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Μ Α Θ Η Μ Α : Ε Π Ω Ν Τ Μ Ο :... Ο Ν Ο Μ Α :... Σελίδα 1 από 5 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΜΠΑΡΛΙΚΑ ΩΣΗΡΗ

B 2Tk. Παράδειγμα 1.2.1

Λύση Α. Σωστή η επιλογή α. Β.

Πλησιάζοντας την ταχύτητα του φωτός. Επιταχυντές. Τα πιο ισχυρά μικροσκόπια

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα Δ

Στις ερωτήσεις 1.1 έως 1.5 επιλέξτε τη σωστή απάντηση.

Κίνηση σε Ηλεκτρικό Πεδίο.

ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Ηλεκτρικό Πεδίο - Πυκνωτές

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ Ο.Μ.Π. 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1

Φυσικά ή τεχνητά ραδιονουκλίδια

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 1γ: Επιταχυντές (α' μέρος) Λέκτορας Κώστας Κορδάς

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

Αναζητώντας παράξενα σωματίδια στο A LargeIonColliderExperimnent. MasterClasses : Μαθήματα στοιχειωδών σωματιδίων

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου

Γ ΚΥΚΛΟΣ ΣΥΓΧΡΟΝΩΝ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ Προτεινόμενα Θέματα Γ ΓΕΛ Φεβρουάριος Φυσική ΘΕΜΑ Α

ΟΡΟΣΗΜΟ ΘΕΜΑ Δ. Δίνονται: η ταχύτητα του φωτός στο κενό c 0 = 3 10, η σταθερά του Planck J s και για το φορτίο του ηλεκτρονίου 1,6 10 C.

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 2β Μέτρηση ορμής σωματιδίου

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ

φορτισμένου πυκνωτή με διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου, όπως

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

Μαθηµα Φεβρουαρίου 2011 Tuesday, February 22, 2011

Κίνηση σε Ηλεκτρικό Πεδίο.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ B Λυκείου

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : ΘΕΜΑ 1 Ο

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819.

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΔΙΑΓΩΝΙΣΜΟΣ 2002 ΣΤΗ ΜΝΗΜΗ ΒΑΣΙΛΗ ΞΑΝΘΟΠΟΥΛΟΥ

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ

Q2-1. Η Φυσική του Φούρνου Μικροκυμάτων. Theory. Μέρος Α: Δομή και λειτουργία του μάγνητρον (6.6 points) Greek (Greece)

Α2. Στο πρότυπο του Bohr, ο λόγος της κινητικής προς τη δυναμική ενέργεια του ηλεκτρονίου του ατόμου του υδρογόνου είναι ίσος με: α. β. γ. δ.

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 2. Λύση. Εικόνα 1

Α2. Στο πρότυπο του Bohr, ο λόγος της κινητικής προς τη δυναμική ενέργεια του ηλεκτρονίου του ατόμου του υδρογόνου είναι ίσος με: α. β. γ. δ.

ΘΕΜΑ Β Β.1 Α) Μονάδες 4 Μονάδες 8 Β.2 Α) Μονάδες 4 Μονάδες 9

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

ΑΝΙΧΝΕΥΤΕΣ ΚΑΒΑΛΑΡΗ ΑΝΝΑ ΟΙΚΟΝΟΜΙΔΟΥ ΙΩΑΝΝΑ ΚΟΥΣΟΥΝΗ ΜΑΡΓΑΡΙΤΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Φυσική για Μηχανικούς

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

Η κατακόρυφη τομή...

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

και προσπίπτει σε ακίνητο άτομο υδρογόνου που αρχικά βρίσκεται στη θεμελιώδη κατάσταση.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ

Ακτίνες Χ. Θέμα Δ. Για διευκόλυνση στους υπολογισμούς σας να θεωρήσετε ότι: hc J m

Περι-Φυσικής. Θέµα Α. 5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Ονοµατεπώνυµο: Βαθµολογία % Οµάδα Γ. (α) τη δύναµη που ασκείται στο υπόθεµα.

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: 3 ο -4 ο κεφάλαιο ΗΜΕΡΟΜΗΝΙΑ: 23/03/2014

Ασκήσεις 6 ου Κεφαλαίου

d = 1m, και είναι αρχικά ακλόνητες, βρισκόμενες στο κενό. Να υπολογιστεί η ηλεκτρική δυναμική ενέργεια των δύο σφαιρών και να επιλέξετε το σωστό

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Φυσική Β Λυκείου Γενικής

Μιόνιο μ ±. Mass m = ± MeV Mean life τ = ( ± ) 10 6 s τμ+/τ μ = ± cτ = 658.

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 27/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ & ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΕΚΦΩΝΗΣΕΙΣ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - 1 Λυμένα Προβλήματα - IV

ΟΡΟΣΗΜΟ. Ηλεκτρικό πεδίο - Δυναμική ενέργεια

ΜΑΘΗΜΑ / ΤΑΞΗ: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3. Υλικό σημείο μάζας m και ταχύτητας υ κινείται σε περιφέρεια οριζόντιου κύκλου ακτίνας r, όπως στο σχήμα:

Επίδραση μαγνητικού πεδίου της Γης. (συνοδεύει τις διαφάνειες)

Φυσική για Μηχανικούς

Τελική Εξέταση - Φυσική Γενικής Παιδείας Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (6) Ονοµατεπώνυµο: Θέµα Α

Transcript:

Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική που κρύβεται πίσω από τη λειτουργία του επιταχυντή σωματιδίων LHC (Large Hadron Collider - Μεγάλος Επιταχυντής Αδρονίων) που βρίσκεται στο CERN. Το CERN είναι το μεγαλύτερο παγκόσμιο ερευνητικό κέντρο σωματιδίων. Στόχος του είναι η κατανόηση των θεμελιωδών φυσικών νόμων. Δύο δέσμες σωματιδίων επιταχύνονται ώστε να αποκτήσουν μεγάλη ενέργεια, καθοδηγούμενες κατά μήκος του δακτυλίου επιτάχυνσης από ένα ισχυρό μαγνητικό πεδίο και τελικά συγκρούονται μεταξύ τους. Τα πρωτόνια δεν κατανέμονται ομοιόμορφα στην περιφέρεια του ανιχνευτή, αλλά συγκεντρώνονται στα αποκαλούμενα πακέτα. Τα σωματίδια που δημιουργούνται λόγω των συγκρούσεων παρατηρούνται με μεγάλους ανιχνευτές. Κάποια στοιχεία που αφορούν τον LHC δίνονται στον πίνακα 1. Δακτύλιος LHC Περιφέρεια δακτυλίου 26659 m Αριθμός πακέτων πρωτονίων ανά δέσμη 2808 Αριθμός πρωτονίων ανά πακέτο 1.15 10 11 Δέσμες πρωτονίων Ενέργεια πρωτονίων 7.00 TeV Ενέργεια σύγκρουσης στο σύστημα Κέντρου Μάζας 14.0 TeV Πίνακας 1: Τυπικές αριθμητικές τιμές των παραμέτρων του LHC. Οι επιστήμονες που ασχολούνται με τη Σωματιδιακή Φυσική χρησιμοποιούν βολικές μονάδες για την ενέργεια, την ορμή και τη μάζα: Η ενέργεια μετριέται σε ηλεκτρονιοβόλτ [ev]. Εξ ορισμού, 1 ev είναι η ενέργεια που αποκτά ένα σωματίδιο με φορτίο ίσο με to κβάντο φορτίου e, που κινείται ανάμεσα σε δύο σημεία με διαφορά δυναμικού ένα Volt (1 ev = 1.602 10 19 kg m 2 s 2 ). Η μονάδα μέτρησης της ορμής είναι ev/c και της μάζας ev/c 2, όπου c είναι η ταχύτητα του φωτός στο κενό. Καθώς το 1 ev είναι μια πολύ μικρή ποσότητα ενέργειας οι επιστήμονες Σωματιδιακής Φυσικής πολύ συχνά χρησιμοποιούν τα MeV (1 MeV = 10 6 ev), GeV (1 GeV = 10 9 ev) ή TeV (1 TeV = 10 12 ev). Το Μέρος Α αναφέρεται στην επιτάχυνση πρωτονίων ή ηλεκτρονίων. Το Μέρος Β ασχολείται με την ταυτοποίηση των σωματιδίων που δημιουργούνται λόγω των συγκρούσεων στο CERN. Μέρος Α. Επιταχυντής LHC (6 Μονάδες) Επιτάχυνση: Να υποθέσετε ότι τα πρωτόνια έχουν επιταχυνθεί με τόση διαφορά δυναμικού V ώστε η ταχύτητα που έχουν αποκτήσει να είναι πολύ κοντά στην ταχύτητα του φωτός. Αγνοήστε την απώλεια ενέργειας που υπάρχει λόγω της ακτινοβολίας ή λόγω των συγκρούσεων τους με άλλα σωματίδια. A.1 Να βρείτε την ακριβή έκφραση της τελικής ταχύτητας v των πρωτονίων σε συνάρτηση με τη διαφορά δυναμικού V που τα επιταχύνει, καθώς και με φυσικές σταθερές. 0.7pt

Q3-2 Στο σχεδιασμό ενός μελλοντικού πειράματος στο CERN προβλέπεται η χρήση πρωτονίων από τον επιταχυντή LHC τα οποία θα συγκρουστούν με ηλεκτρόνια ενέργειας 60.0 GeV. A.2 Για σωματίδια με μεγάλη ενέργεια και μικρή μάζα ο συντελεστής σχετικής απόκλισης Δ = (c v)/c της τελικής ταχύτητας v από την ταχύτητα του φωτός είναι πολύ μικρός. Βρείτε μια πρώτης τάξης (πρωτοβάθμια) προσεγγιστική έκφραση του Δ και υπολογίστε την τιμή του για ηλεκτρόνια ενέργειας 60.0 GeV, χρησιμοποιώντας την επιταχύνουσα διαφορά δυναμικού V και φυσικές σταθερές. 0.8pt Ας επανέλθουμε στα πρωτόνια του LHC. Υποθέστε ότι o σωλήνας της δέσμης πρωτονίων έχει κυκλικό σχήμα. A.3 Να εξάγετε μια σχέση για την ένταση του ομογενούς μαγνητικού πεδίου B που απαιτείται για να παραμείνει η δέσμη πρωτονίων σε κυκλική τροχιά. Η σχέση που θα εξάγετε θα πρέπει να περιλαμβάνει μόνο: την ενέργεια E των πρωτονίων, την περιφέρεια L, θεμελιώδεις σταθερές και αριθμούς. Μπορείτε να χρησιμοποιήσετε κατάλληλες προσεγγίσεις εφόσον δεν επηρεάζεται η ακρίβεια που καθορίζεται από τον ελάχιστο αριθμό σημαντικών ψηφίων. Υπολογίστε την τιμή του B για ένα πρωτόνιο ενέργειας E = 7.00 TeV, αμελώντας τις αλληλεπιδράσεις μεταξύ των πρωτονίων. 1.0pt Ισχύς εκπεμπόμενης ακτινοβολίας: Ένα επιταχυνόμενο φορτισμένο σωματίδιο εκπέμπει ενέργεια υπό μορφή ηλεκτρομαγνητικών κυμάτων. Για ένα φορτισμένο σωματίδιο που κινείται σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα η ισχύς της εκπεμπόμενης ακτινοβολίας P rad του εξαρτάται μόνο από την επιτάχυνση του a, το φορτίο του q, την ταχύτητα του φωτός c και τη διηλεκτρική σταθερά του κενού ε 0. A.4 Χρησιμοποιώντας διαστατική ανάλυση να βρείτε μια έκφραση της ισχύος της εκπεμπόμενης ακτινοβολίας P rad. 1.0pt Η πραγματική σχέση για την ισχύ της ακτινοβολούμενης ισχύος περιέχει έναν παράγοντα 1/(6π), ενώ μια ολοκληρωμένη σχετικιστική εξαγωγή της σχέσης περιέχει ακόμα ένα πρόσθετο πολλαπλασιαστικό παράγοντα γ 4, όπου γ = (1 v 2 /c 2 ) 1 2. A.5 Υπολογίστε τη συνολική εκπεμπόμενη ισχύ P tot του LHC για ενέργεια πρωτονίου E = 7.00 TeV (Λάβετε υπόψη σας τον Πίνακα 1). Μπορείτε να χρησιμοποιήσετε κατάλληλες προσεγγίσεις. 1.0pt Γραμμική επιτάχυνση: Στον LHC, πρωτόνια που βρίσκονται σε ηρεμία επιταχύνονται από ένα ευθύγραμμο επιταχυντή μήκους d = 30.0 m στον οποίο εφαρμόζεται διαφορά δυναμικού V = 500 MV. Υποθέστε ότι το ηλεκτρικό πεδίο είναι ομογενές. Ένας ευθύγραμμος επιταχυντής αποτελείται από δύο πλάκες όπως φαίνεται στην Εικόνα 1.

Q3-3 A.6 Να υπολογίσετε το χρόνο T που χρειάζονται τα πρωτόνια για να διασχίσουν το εν λόγω ηλεκτρικό πεδίο. 1.5pt d + - V Εικόνα 1: Σχηματική αναπαράσταση ενός τμήματος του επιταχυντή.

Q3-4 Μέρος Β. Ταυτοποίηση Σωματιδίων (4 Μονάδες) Χρόνος Πτήσης: Για την ερμηνεία της διαδικασίας αλληλεπίδρασης, είναι σημαντικό να ταυτοποιηθούν τα σωματίδια υψηλής ενέργειας που δημιουργούνται κατά τη σύγκρουση. Μια απλή μέθοδος συνίσταται στη μέτρηση του χρόνου (t) που χρειάζεται ένα σωματίδιο γνωστής ορμής για να διανύσει απόσταση l στον αποκαλούμενο Ανιχνευτή Χρόνου Πτήσης (Time-of-Flight - ToF). Στον πίνακα 2 αναγράφονται τα ονόματα σωματιδίων που έχουν ταυτοποιηθεί καθώς και οι μάζες τους. Σωματίδιο Μάζα [MeV/c 2 ] Δευτέριο 1876 Πρωτόνιο 938 Φορτισμένο σωματίδιο Κ ή Καόνιο (Kaon) 494 Φορτισμένο σωματίδιο Π ή Πιόνιο (Pion) 140 Ηλεκτρόνιο 0.511 Πίνακας 2: Σωματίδια και οι μάζες τους. y μάζα m ορμή p x χρόνος t 1 μήκος l χρόνος t 2 Εικόνα 2: Σχηματική αναπαράσταση ενός ανιχνευτή Χρόνου Πτήσης. B.1 Να εκφράσετε τη μάζα m του σωματιδίου σαν συνάρτηση της ορμής p, του μήκους πτήσης l και του χρόνου πτήσης t. Να υποθέσετε ότι τα σωματίδια φέρουν το κβάντο φορτίου e και κινούνται με ταχύτητα κοντά στο c σε ευθύγραμμες τροχιές μέσα στον ανιχνευτή ToF καθώς και ότι κινούνται κάθετα στα δύο επίπεδα ανίχνευσης. (βλ. Εικ. 2). 0.8pt

Q3-5 B.2 Να υπολογίσετε το ελάχιστο μήκος l ενός ανιχνευτή ToF ο οποίος επιτρέπει τη σαφή διάκριση ενός φορτισμένου καονίου από ένα φορτισμένο πιόνιο, με δεδομένο ότι η ορμή καθενός από αυτά έχει βρεθεί ίση προς 1.00 GeV/c. Για ικανοποιητικό διαχωρισμό των σωματιδίων πρέπει η διαφορά των χρόνων πτήσης τους να ξεπερνά το τριπλάσιο της διαχωριστικής ικανότητας χρόνου του ανιχνευτή. Τυπική τιμή της διαχωριστικής ικανότητας του ανιχνευτή ToF είναι 150 ps (1 ps = 10 12 s). 0.7pt Στα ακόλουθα, σωματίδια που παράγονται σε ένα τυπικό ανιχνευτή LHC ταυτοποιούνται σε ένα ανιχνευτή δύο σταδίων, ο οποίος περιέχει έναν ανιχνευτή ίχνους (τροχιάς) και έναν ανιχνευτή ToF. Η Εικ. 3 απεικονίζει τις τομές της πειραματικής διάταξης σε επίπεδο κάθετο και παράλληλο προς τη δέσμη πρωτονίων. Και οι δύο ανιχνευτές είναι σωλήνες οι οποίοι περιβάλλουν την περιοχή αλληλεπίδρασης με τη δέσμη να διέρχεται από το μέσο των σωλήνων. Ο ανιχνευτής ίχνους καταγράφει την τροχιά ενός φορτισμένου σωματιδίου, που διέρχεται από ένα μαγνητικό πεδίο η διεύθυνση της έντασης του οποίου είναι παράλληλη προς την κίνηση των δέσμών πρωτονίων. Η ακτίνα r της τροχιάς επιτρέπει τον υπολογισμό της εγκάρσιας συνιστώσας ορμής p T του σωματιδίου. Αφού ο χρόνος σύγκρουσης είναι γνωστός, ο ανιχνευτής ToF χρειάζεται μόνο ένα σωλήνα για να μετρήσει τον χρόνο πτήσης, που μετράται από το σημείο σύγκρουσης μέχρι το σωλήνα ToF. Ο σωλήνας αυτός είναι τοποθετημένος στην έξοδο του θαλάμου αποτύπωσης ίχνους. Για το ερώτημα αυτό υποθέστε ότι όλα τα σωματίδια που παράγονται από τη σύγκρουση, κινούνται κάθετα στις δέσμες πρωτονίων. Αυτό σημαίνει ότι τα σωματίδια που παράγονται δεν έχουν συνιστώσα ορμής παράλληλη με τις δέσμες πρωτονίων.

Q3-6 y x (2) y z (2) (1) (4) (4) (3) R (1) (5) (3) (5) (4) Εγκάρσιο επίπεδο (1) Τομή της διαμήκους όψης κατά μήκος της τροχιάς της δέσμης (1) - Σωλήνας ToF (2) - Ίχνος (Τροχιά) (3) - Σημείο κρούσης (4) - Σωλήνας αποτύπωσης ίχνους (5) - Δέσμες πρωτονίων - Μαγνητικό πεδίο Εικόνα 3 : Πειραματική διάταξη για ταυτοποίηση σωματιδίων με ένα θάλαμο αποτύπωσης ίχνους και ένα ανιχνευτή ToF. Και οι δύο ανιχνευτές είναι σωλήνες που περιβάλλουν το σημείο κρούσης που βρίσκεται στο κέντρο. Αριστερά: Εγκάρσια Όψη, κάθετη στην τροχιά της δέσμης. Δεξιά: Διαμήκης Όψη παράλληλη στην τροχιά της δέσμης. Το σωματίδιο κινείται παράλληλα προς τη τροχιά της δέσμης. B.3 Να εκφράσετε τη μάζα του σωματιδίου συναρτήσει της έντασης του μαγνητικού πεδίου B, της ακτίνας R του σωλήνα ToF, θεμελιωδών σταθερών και των μετρούμενων ποσοτήτων όπως η ακτίνα r της τροχιάς και ο χρόνος πτήσης t. 1.7pt Έχουμε ανιχνεύσει τέσσερα σωματίδια και θέλουμε να τα ταυτοποιήσουμε. Η ένταση του μαγνητικού πεδίου στον ανιχνευτή ίχνους ήταν B = 0.500 T. Η ακτίνα R του σωλήνα ToF ήταν 3.70 m. Ακολούθως δινονται οι μετρήσεις (1 ns = 10 9 s): Σωματίδιο Ακτίνα της τροχιάς r [m] Χρόνος πτήσης t [ns] A 5.10 20 B 2.94 14 C 6.06 18 D 2.31 25

Q3-7 B.4 Να ταυτοποιήσετε τα τέσσερα σωματίδια υπολογίζοντας τη μάζα του καθενός. 0.8pt

A3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες) Μέρος Α. Μεγάλος Επιταχυντής Αδρονίων (LHC) (6 μονάδες) A.1 (0.7 pt) v = A.2 (0.8 pt) προσέγγιση: r = αριθμητική τιμή: r = A.3 (1.0 pt) μαθηματική σχέση: B = αριθμητική τιμή: B = A.4 (1.0 pt) P rad A.5 (1.0 pt) P tot =

A3-2 A.6 (1.5 pt) T =

A3-3 Μέρος B. Ταυτοποίηση Στοιχειωδών Σωματίων (4 Μονάδες) B.1 (0.8 pt) m = B.2 (0.7 pt) l = B.3 (1.7 pt) m = B.4 (0.8 pt) Στοιχειώδες σωμάτιο Μετρούμενη μάζα, μονάδα μάζας [ ] : Ταυτοποιείται ως: A B C D