Υπολογιστικό Πρόβληµα

Σχετικά έγγραφα
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστική Πολυπλοκότητα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Δομές Δεδομένων. Ενότητα 1 - Εισαγωγή. Χρήστος Γκουμόπουλος. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Δομές Δεδομένων & Αλγόριθμοι

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

για NP-Δύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΑΕΠΠ Ερωτήσεις θεωρίας

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)

Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

Αναζήτηση Κατά Πλάτος

Αλγόριθµοι Γραφηµάτων

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Δυναμικός Προγραμματισμός

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Άπληστοι Αλγόριθµοι. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1

Υπολογιστική Πολυπλοκότητα

(Γραμμικές) Αναδρομικές Σχέσεις

Προσεγγιστικοί Αλγόριθμοι

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

υναμικός Προγραμματισμός

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Υπολογιστικά & Διακριτά Μαθηματικά

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Δυναμικός Προγραμματισμός

Συντομότερες Διαδρομές

βασικές έννοιες (τόμος Β)

(Γραμμικές) Αναδρομικές Σχέσεις

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Υπολογιστική Πολυπλοκότητα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Συντομότερες Διαδρομές

Δυναμικός Προγραμματισμός

Αλγόριθμοι. Σενάριο για μαθητές της Γ γυμνασίου, διάρκειας 4 ωρών διδασκαλίας

(Γραμμικές) Αναδρομικές Σχέσεις

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Άπληστοι Αλγόριθμοι. Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

υναμικός Προγραμματισμός

Περιεχόμενα. 2 Αριθμητικά συστήματα

Τεχνητή Νοημοσύνη. 2η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Συντομότερες ιαδρομές

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

υναμικός Προγραμματισμός

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Τεχνολογίες Υλοποίησης Αλγορίθµων

Chapter 7, 8 : Time, Space Complexity

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

περιεχόμενα υπολογιστικό πρόβλημα αλγόριθμοι παράδειγμα ταξινόμησης ταξινόμηση αλγόριθμοι τεχνολογία αλγορίθμων Παύλος Εφραιμίδης

Αναγνώριση Προτύπων Ι

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

Μοντελοποίηση προβληµάτων

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

Προσεγγιστικοί Αλγόριθμοι

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μηχανές Turing (T.M) I

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι έχουμε δει μέχρι τώρα. Ισομορφισμός γράφων: Μία σχέση ισοδυναμίας μεταξύ γράφων.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

viii 20 Δένδρα van Emde Boas 543

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Παράλληλοι Αλγόριθµοι

ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Πλάτος

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

Transcript:

Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις συµβ/ρές εισόδου, εξόδου. Διαισθητικά: ερώτηση που αφορά στιγµιότυπα. Στιγµιότυπο: µαθηµατικό αντικείµενο που ορίζεται από δεδοµένα εισόδου. Διατυπώνουµε ερώτηση και περιµένουµε απάντηση. Άπειρο σύνολο στιγµιοτύπων. Κατηγορίες Προβληµάτων: Βελτιστοποίησης: λύση µε βέλτιστη αντικειµενική τιµή. Απόφασης: απάντηση ΝΑΙ ή ΌΧΙ. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 1

Προβλήµατα Βελτιστοποίησης Πρόβληµα βελτιστοποίησης Π: Σύνολο στιγµιότυπων Σ Π Σύνολο αποδεκτών λύσεων: Αντικειµενική συνάρτηση: Δεδοµένου στιγµιότυπου σ, ζητείται Συνδυαστικής βελτιστοποίησης: πεπερασµένο σύνολο αποδεκτών λύσεων που περιλαµβάνει βέλτιστη. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 2

Προβλήµατα Απόφασης Πρόβληµα απόφασης Π: Σύνολο στιγµιότυπων Σ Π Σύνολο (αποδεκτών) λύσεων: Δεδοµένου Επιδέχεται µόνο δύο απαντήσεων: ΝΑΙ ή ΌΧΙ. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 3

Παραδείγµατα Προβληµάτων Πρόβληµα Προσπελασιµότητας: Στιγµιότυπο: Κατευθυνόµενο γράφηµα G(V, E), κορυφές s, t V. Ερώτηση: Υπάρχει s t µονοπάτι; Πρόβληµα Συντοµότερου Μονοπατιού: Στιγµιότυπο: Κατευθυνόµενο γράφηµα G(V, E), µήκη στις ακµές w: E R, κορυφές s, t V. Ερώτηση: Ποιο είναι το συντοµότερο s t µονοπάτι; Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 4

Παραδείγµατα Προβληµάτων Πρόβληµα κύκλου Hamilton: Στιγµιότυπο: Γράφηµα G(V, E). Ερώτηση: Υπάρχει κύκλος Hamilton στο G; Πρόβληµα Πλανόδιου Πωλητή (TSP): Στιγµιότυπο: Σύνολο Ν = {1,..., n} σηµείων, αποστάσεις d : N N R +. Ερώτηση: Ποια περιοδεία ελαχιστοποιεί συνολικό µήκος ή ισοδύναµα, ποια µετάθεση π του Ν ελαχιστοποιεί το: Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 5

Αλγόριθµος Σαφώς ορισµένη διαδικασία για την επίλυση προβλήµατος σε πεπερασµένο χρόνο από υπολογιστική µηχανή. «Συνταγή» για την επίλυση υπολογιστικού προβλήµατος. Σαφήνεια: κάθε ενέργεια ορίζεται επακριβώς. Είναι µηχανιστικά αποτελεσµατικός. Δέχεται ως είσοδο στιγµιότυπο προβλήµατος και παράγει ως έξοδο πάντα την σωστή λύση. Η λύση υπολογίζεται έπειτα από πεπερασµένο #ενεργειών. Ορθότητα αλγόριθµου: απαντάει πάντα σωστά. Λάθος: αντιπαράδειγµα. Ορθότητα: µαθηµατική απόδειξη. Προβλήµατα λύνονται από πολλούς σωστούς αλγόριθµους: Ποιος είναι ο καλύτερος (για συγκεκριµένη εφαρµογή); Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 6

Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία, τυχαιότητα. Χειρότερης, µέσης, καλύτερης περίπτωσης. Μέγεθος στιγµιότυπου εισόδου n : #bits για αναπαράσταση δεδοµένων εισόδου στη µνήµη. Πλήθος βασικών συνιστωσών που αποτελούν µέτρο µεγέθους και δυσκολίας στιγµιότυπου (π.χ. κορυφές & ακµές). Υπολογιστική πολυπλοκότητα προβλήµατος Π: Πολυπλοκότητα (χειρότερης περίπτωσης) καλύτερου αλγόριθµου που λύνει πρόβληµα Π. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 7

Ανάλυση Αλγορίθµου Απόδειξη ορθότητας Μερικές φορές για ένα καλώς ορισµένο υποσύνολο των στιγµιοτύπων εισόδου. Εκτίµηση υπολογιστικής πολυπλοκότητας. Χειρότερης, µέσης, και καλύτερης περίπτωσης. Καταλληλότερη λύση ανάλογα µε απαιτήσεις εφαρµογής. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 8

Πειραµατική Μελέτη Υλοποίηση αλγόριθµου σε πρόγραµµα. Δηµιουργία στιγµιοτύπων διαφορετικού µεγέθους και σύνθεσης. Επιβεβαίωση ορθότητας και καταγραφή πόρων για κάθε εκτέλεση. Απεικόνιση αποτελεσµάτων σε γραφική παράσταση και εξαγωγή συµπερασµάτων. Περιορισµοί Δυσκολίες: Υλοποίηση χρονοβόρα και ενδεχοµένως δύσκολη. Αποτελέσµατα όχι κατ ανάγκη αντιπροσωπευτικά. Συµπεράσµατα δεν γενικεύονται κατ ανάγκη. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 9

Θεωρητική Ανάλυση Δεν απαιτεί υλοποίηση αλλά σαφή περιγραφή αλγόριθµου. Καταλήγει σε γενικά συµπεράσµατα: Λαµβάνει υπόψη όλα τα στιγµιότυπα. Προσδιορίζει υπολογιστική πολυπλοκότητα ως συνάρτηση µεγέθους εισόδου,...... αλλά ανεξάρτητα από υπολογιστικό περιβάλλον. Εστιάζει στις εγγενείς ιδιότητες του αλγόριθµου. Συµπεράσµατα επιβεβαιώνονται εύκολα. Μαθηµατικό υπόβαθρο: Διακριτά Μαθηµατικά. Γραφήµατα, µαθηµατική λογική, επαγωγή, αναδροµικές σχέσεις, συνδυαστική, πιθανότητες,... Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 10

Υπολογιστικό Μοντέλο Μηχανή Άµεσης Προσπέλασης Μνήµης (Random Access Machine, RAM). Ιδεατό µονο-επεξεργαστικό σύστηµα που ακολουθεί αρχιτεκτονική von Neumann. Ένας επεξεργαστής, ακολουθιακή εκτέλεση εντολών Απεριόριστες θέσεις µνήµης προσπελάσιµες µε διεύθυνση. Στοιχειώδη υπολογιστικά βήµατα εκτελούνται σε µοναδιαίο χρόνο: Ανάγνωση από / εγγραφή σε θέση µνήµης, αριθµητικές και λογικές πράξεις, συγκρίσεις, εντολές ελέγχου ροής,... Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 11

Ασυµπτωτική Εκτίµηση Χρόνος εκτέλεσης αλγόριθµου Α: Αύξουσα συνάρτηση του Τ(n) που εκφράζει σε πόσο χρόνο ολοκληρώνεται ο Α όταν εφαρµόζεται σε στιγµ. µεγέθους n. Ενδιαφέρει η τάξη µεγέθους T(n) και όχι ακριβής εκτίµηση Τ(n). Ακριβής εκτίµηση είναι συχνά δύσκολη και εξαρτάται από υπολογιστικό περιβάλλον, υλοποίηση,... Τάξη µεγέθους είναι εγγενής ιδιότητα του αλγόριθµου. Δυαδική αναζήτηση έχει λογαριθµικό χρόνο. Γραµµική αναζήτηση έχει γραµµικό χρόνο. Ασυµπτωτική εκτίµηση αγνοεί σταθερές και εστιάζει σε τάξη µεγέθους χρόνου εκτέλεσης. Αλγόριθµοι & Πολυπλοκότητα (2012) Εισαγωγικές Έννοιες 12