ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ανάκτηση Πληροφορίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Εισαγωγή στην Πληροφορική. Α σ κ ή σ ε ι ς σ τ η ν ι α χ ε ί ρ ι σ η Μ ν ή µ η ς. Αντώνης Σταµατάκης

Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Ασκήσεις Επεξεργασίας Εικόνας

Ψηφιακή Επεξεργασία Εικόνας

Συμπίεση Πολυμεσικών Δεδομένων

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Κατηγορίες τεχνικών συµπίεσης. Τεχνικές Συµπίεσης

Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1

Επεξεργασία Χαρτογραφικής Εικόνας

Δομές Δεδομένων και Αλγόριθμοι

Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

Θέματα Συστημάτων Πολυμέσων

Συμπίεση Δεδομένων

Κωδικοποίηση εικόνων κατά JPEG

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT

Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 5 Ανάπτυξη Προγράμματος Συμπίεσης/Αποσυμπίεσης Αρχείων

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 2

Συµπίεση Εικόνας: Το πρότυπο JPEG

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων

( ) log 2 = E. Σεραφείµ Καραµπογιάς

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Συµπίεση Ψηφιακών Εικόνων:

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

4. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΧΩΡΙΣ

Δομές Δεδομένων & Αλγόριθμοι

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler

Ανάκτηση Πληροφορίας

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.

Πληροφορική Εφαρμογές Πολυμέσων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Θέματα Συστημάτων Πολυμέσων

Group (JPEG) το 1992.

Ενότητα 3 Επιτηρούµενος διαχωρισµός

Εισαγωγή στον Προγραμματισμό

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

5.1 Θεωρητική εισαγωγή

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων

Συστήματα Πολυμέσων. Ενότητα 11: Χαρακτηριστικά Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1

Μέσα, Πολυµέσα & µέτρηση Πληροφορίας

Τηλεπικοινωνιακά Συστήματα ΙΙ

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Real Number Codes, Algorithm-Based Fault Tolerance, Residue Number Systems, Redundant Residue Number Systems

Κωδικοποίηση βίντεο (H.261 / DVI)

Συμπίεση χωρίς Απώλειες

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας

Η κωδικοποίηση των συντελεστών DC

Συµπίεση Δεδοµένων: Συµπίεση Ψηφιακού Βίντεο

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων

επιφάνεια πυριτίου Αναφορά στο Εκπαιδευτικό Υλικό : 5. Αναφορά στο Εργαστήριο :

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

ΚΕΦΑΛΑΙΟ Μηχανική Μάθηση

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΩΝ (E-CAD) ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης

Ασκήσεις μελέτης της 16 ης διάλεξης

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 Δυαδική Κωδικοποίηση

χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας.

Συµπίεση δεδοµένων: Εισαγωγή, Κατηγορίες τεχνικών συµπίεσης, Ανάλυση βασικών τεχνικών συµπίεσης

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004 Ας υποθέσουµε ότι ένα αρχείο κειµένου περιέχει µόνο τους χαρακτήρες «a» και «b». Η συχνότητα που εµφανίζεται ο χαρακτήρας «a» στο κείµενο αναπαριστάνεται µε το P(a). Όµοια έχουµε το P(b) για τον χαρακτήρα «b». Συνήθως αναπαριστάνουµε τα P(a) και P(b) σαν πιθανότητες, έτσι έχουµε P(a) + P(b) = 1. Η εντροπία (ή η περιεχόµενη πληροφορία) του αρχείου κειµένου αυτού, µπορεί να υπολογιστεί όπως φαίνεται πιο κάτω: Η = - (P(a) log 2P(a) + P(b) log 2P(b)) Γενικά, αν έχουµε ένα σύνολο από n χαρακτήρες s 1, s 2, s n, που ο κάθε ένας συµβαίνει µε πιθανότητα P(s i), τότε: n H = P( Si )log2 P( s i ) i= 1 (1) Υπολογίστε το H για P(a) = 0.2, και P(b) = 0.8. (2) Αν χρησιµοποιηθεί η κωδικοποίηση Huffman για την αποθήκευση του κειµένου, πόσα bits χρειαζόµαστε µέσο όρο (συνήθως ονοµάζεται µέσο µήκος κωδικοποιηµένης λέξης (codeword)); (3) Εναλλακτικά µπορούµε να κωδικοποιήσουµε το ίδιο αρχείο κειµένου χρησιµοποιώντας ζεύγη χαρακτήρων, δηλαδή, (a, a), (a, b), (b, a), (b, b). Εάν υποθέσουµε ότι οι εµφανίσεις των «a» και «b» είναι ανεξάρτητες, υπολογίστε τα P(a, a), P(a, b), P(b, a), και P(b, b). Ποια είναι η αντίστοιχη τιµή της εντροπίας; (4) Βασισµένοι στο (3), ποια θα ήταν η κωδικοποίηση Huffman για κάθε ζεύγος χαρακτήρων; Ποιο είναι το αντίστοιχο µέσο µήκος κωδικοποιηµένης λέξης για αυτό το σχήµα κωδικοποίησης; (5) Τι παρατηρήσεις µπορείτε να κάνετε, µε βάση τις απαντήσεις σας στις πιο πάνω τέσσερις ερωτήσεις; (6) Τι συµβαίνει αν χρησιµοποιήσουµε τριάδες, δηλαδή, (a, a, a), (a, a, b) (b, b, b) κ.τ.λ. για την κωδικοποίηση του κειµένου; Ποιο θα είναι το µέσο µήκος κωδικοποιηµένης λέξης;

2. Κωδικοποίηση Quadtree (1) Κατασκευάστε ένα quadtree για την αναπαράσταση της πιο κάτω εικόνας αποχρώσεων γκρίζου 8bit/pixel και διαστάσεων 16x16. (2) Για quadtree αναπαράσταση µιας εικόνας αποχρώσεων γκρίζου, χρειάζεται µια οµοιογενής µετρική που καθορίζει αν η υποδιαίρεση είναι απαραίτητη. Ποιο κριτήριο θα χρησιµοποιούσατε για την µετρική αυτή; (3) Αποθηκεύοντας τη δοµή quadtree και την µέση χρωµατική ένταση κάθε κόµβου, έχουµε µια τεχνική για συµπίεση εικόνων αποχρώσεων γκρίζου (η οποία ονοµάζεται block encoding). Σχεδιάστε µια δοµή δεδοµένων για αυτή την τεχνική συµπίεσης. Ποιος είναι ο λόγος/ αναλογία συµπίεσης για την πιο κάτω αποχρώσεων γκρίζου εικόνα;

Απαντήσεις 1.1 Υπολογίστε το H για P(a) = 0.2, και P(b) = 0.8.

1.2 Αν χρησιµοποιηθεί η κωδικοποίηση Huffman για την αποθήκευση του κειµένου, πόσα bits χρειαζόµαστε µέσο όρο (συνήθως ονοµάζεται µέσο µήκος κωδικοποιηµένης λέξης (code word));

1.3 Εναλλακτικά µπορούµε να κωδικοποιήσουµε το ίδιο αρχείο κειµένου χρησιµοποιώντας ζεύγη χαρακτήρων, δηλαδή, (a, a), (a, b), (b, a), (b, b). Εάν υποθέσουµε ότι οι εµφανίσεις των «a» και «b» είναι ανεξάρτητες, υπολογίστε τα P(a, a), P(a, b), P(b, a), και P(b, b). Ποια είναι η αντίστοιχη τιµή της εντροπίας;

1.4 Βασισµένοι στο (3), ποια θα ήταν η κωδικοποίηση Huffman για κάθε ζεύγος χαρακτήρων; Ποιο είναι το αντίστοιχο µέσο µήκος κωδικοποιηµένης λέξης για αυτό το σχήµα κωδικοποίησης;

1.5 Τι παρατηρήσεις µπορείτε να κάνετε, µε βάση τις απαντήσεις σας στις πιο πάνω τέσσερις ερωτήσεις;

1.6 Τι συµβαίνει αν χρησιµοποιήσουµε τριάδες, δηλαδή, (a, a, a), (a, a, b) (b, b, b) κ.τ.λ. για την κωδικοποίηση του κειµένου; Ποιο θα είναι το µέσο µήκος κωδικοποιηµένης λέξης;

2.1 Κατασκευάστε ένα quadtree για την αναπαράσταση της πιο κάτω εικόνας αποχρώσεων γκρίζου 8bit/pixel και διαστάσεων 16x16.

2.2 Για quadtree αναπαράσταση µιας εικόνας αποχρώσεων γκρίζου, χρειάζεται µια οµοιογενής µετρική που καθορίζει αν η υποδιαίρεση είναι απαραίτητη. Ποιο κριτήριο θα χρησιµοποιούσατε για την µετρική αυτή;

2.3 Αποθηκεύοντας τη δοµή quadtree και την µέση ένταση κάθε κόµβου, έχουµε µια τεχνική για συµπίεση εικόνων αποχρώσεων γκρίζου (η οποία ονοµάζεται block encoding). Σχεδιάστε µια δοµή δεδοµένων για αυτή την τεχνική συµπίεσης. Ποιος είναι ο λόγος/ αναλογία συµπίεσης για την πιο κάτω αποχρώσεων γκρίζου εικόνα;