Διάλεξη 6: Ατομική Δομή Συμμετρία Εναλλαγής

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα


Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς

Διάλεξη 9: Στατιστική Φυσική

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Κομβικές επιφάνειες. Από τη γνωστή σχέση: Ψ(r, θ, φ) = R(r).Θ(θ).Φ(φ) για Ψ = 0 θα πρέπει είτε R(r) = 0 ή Θ(θ).Φ(φ) = 0

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 08 / 09 /2013 ΑΠΑΝΤΗΣΕΙΣ

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ V. ΑΡΧΕΣ ΔΟΜΗΣΗΣ ΤΩΝ ΠΟΛΥΗΛΕΚΤΡΟΝΙΑΚΩΝ ΑΤΟΜΩΝ

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 7: Μοριακή Δομή

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 9 Πολυηλεκτρονιακά Άτομα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

1.2 Αρχές δόμησης πολυηλεκτρονικών ατόμων

Ασκήσεις στην ηλεκτρονιακή δόμηση των ατόμων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Ατομική και Μοριακή Φυσική

) σχηματίζονται : α. Ένας σ και δύο π δεσμοί β. Τρεις σ δεσμοί γ. Ένας π και δύο σ δεσμοί δ. Τρεις π δεσμοί.

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Ηλεκτρονική φασματοσκοπία ατόμων

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ

Αρχές δόμησης πολυηλεκτρονικών ατόμων.

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ. a. Ο μέγιστος αριθμός ηλεκτρονίων σε ένα άτομο τα οποία χαρακτηρίζονται με n=2 και m l =0

Συστήματα Πολλών Σωματίων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων

Ζαχαριάδου Φωτεινή Σελίδα 1 από 21. Γ Λυκείου Κατεύθυνσης Κεφάλαιο 1: Ηλεκτρονιακή δοµή του ατόµου

Κύριος κβαντικός αριθμός (n)

Κεφάλαιο 1 Χημικός δεσμός

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau)

ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν. 2. Ο µέγιστος αριθµός των ηλεκτρονίων που είναι δυνατόν να υπάρχουν

Υλικά Ηλεκτρονικής & Διατάξεις

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 07 / 09 /2014 ΑΠΑΝΤΗΣΕΙΣ

Πρωτόνια, νετρόνια και ηλεκτρόνια. πρωτόνιο 1 (1,67X10-24 g) +1 νετρόνιο 1 0 1,6X10-19 Cb ηλεκτρόνιο 1/1836 (9X10-28 g) -1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Επέκταση του μοντέλου DRUDE. - Θεωρία SOMMERFELD

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 1 ου ΚΕΦΑΛΑΙΟΥ

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

Μάθημα 10 ο. Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας. Μέγεθος ατόμων Ενέργεια Ιοντισμού Ηλεκτρονιακή συγγένεια Ηλεκτραρνητικότητα

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος. Φαινόμενα αλληλεπίδρασης σπιν-τροχιάς στα άτομα με πολλά ηλεκτρόνια.

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

1o Kριτήριο Αξιολόγησης

Ατομική δομή. Σχήμα 10

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ

Μοριακή δομή. Απλοϊκή εικόνα του μορίου του νερού. Ηλεκτρονιακοί τύποι κατά Lewis. Δημόκριτος π.χ.

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 3: Ηλεκτρονική διαμόρφωση των ατόμων

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

κυματικής συνάρτησης (Ψ) κυματική συνάρτηση

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Από τι αποτελείται το Φως (1873)

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 1 ο ΚΕΦΑΛΑΙΟΥ ( ) Χημεία Γ Λυκείου. Υπεύθυνη καθηγήτρια: Ε. Ατσαλάκη

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Τα ηλεκτρόνια των ατόμων, όπως έχουμε δει μέχρι τώρα, έχουν τροχιακή στροφορμή και στροφορμή λόγω ιδιοπεριστροφής των (σπιν).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΧΗΜΕΙΑ θετικής κατεύθυνσης

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΟΔΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΑΤΟΜΙΚΗ ΑΚΤΙΝΑ ΕΝΕΡΓΕΙΑ ΙΟΝΤΙΣΜΟΥ

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Κβαντική θεωρία και ηλεκτρονιακή δομή των ατόμων

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Φερμιόνια & Μποζόνια

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Δομή ενεργειακών ζωνών

Κεφάλαιο 9: Συστήματα Πολλών σωματίων

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 3 η : Περιοδικότητα & Ατομική Δομή. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

H εικόνα του ατόμου έχει αλλάξει δραστικά

Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα

Ατομικός αριθμός = Αριθμός πρωτονίων. Μαζικός αριθμός = Αριθμός πρωτονίων + Αριθμός νετρονίων (nucleon number)

ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν. 2. Ο µέγιστος αριθµός των ηλεκτρονίων που είναι δυνατόν να υπάρχουν

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

ΑΠΑΝΤΗΣΕΙΣ. A2. Ο μέγιστος αριθμός ηλεκτρονίων σε ένα άτομο που χαρακτηρίζεται από τους κβαντικούς αριθμούς n = 2 και m l = 0 είναι: α. 4 β.3 γ.2 δ.

Transcript:

Συμμετρία Εναλλαγής Σε μονοηλεκτρονιακά άτομα ιόντα η κατάσταση του ηλεκτρονίου καθορίζεται από τέσσερις κβαντικούς αριθμούς {n, l, m l, m s } ή {n, l, j, m j }. Σε πολυηλεκτρονιακά άτομα πόσα ηλεκτρόνια μπορούν να έχουν ίδιους κβαντικούς αριθμούς; Απαγορευτική Αρχή Puli: Δεν μπορεί δυο ηλεκτρόνια στο ίδιο άτομο να έχουν τους ίδιους κβαντικούς αριθμούς! Ας δούμε γιατί Θεωρούμε την ελαστική σκέδαση δυο ηλεκτρονίων: Εάν τα ηλεκτρόνια τα θεωρήσουμε κλασικά σωμάτια τότε μπορούμε παρακολουθώντας την τροχιά τους να ανιχνεύσουμε πιο σωμάτιο πήγε που [περιπτώσεις α και β]. Ωστόσο τα ηλεκτρόνια είναι κβαντικά σωμάτια και η τροχιά τους δεν μπορεί να καθοριστεί στην περιοχή σκέδασης με αποτέλεσμα να μην μπορούμε να γνωρίζουμε ποιο αρχικά σωμάτιο βρίσκεται στην θέση του ανιχνευτή [περίπτωση γ]. Η παραπάνω αδυναμία πηγάζει από το γεγονός ότι τα ηλεκτρόνια είναι ταυτόσημα σωμάτια, δηλ. έχουν όλες τις φυσικές τους ιδιότητες ίδιες π.χ. μάζα, φορτίο, σπιν, κτλ. και κατά συνέπεια είναι μη-διακρίσιμα. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Συμμετρία Εναλλαγής Παράδειγμα: Επίδραση της μη-διακρισιμότητας σε ατομικό σύστημα δυο ηλεκτρονίων άτομο He. Κάθε ηλεκτρόνιο αλληλεπιδρά μόνο με τον πυρήνα προς το παρόν παραλείπουμε την αλληλεπίδραση μεταξύ των ηλεκτρονίων. Οι δείκτες, αναφέρονται στις συντεταγμένες του κάθε ηλεκτρονίου. Παρατηρείστε ότι οι Η κι Η είναι ίδιες, διαφέρουν μόνο στις μεταβλητές τους Μηδιακρισιμότητα. m m k k e e e e + [ ] Η κυματοσυνάρτηση που περιγράφει τα δυο ηλεκτρόνια θα έχει τη μορφή, με την πυκνότητα πιθανότητας να βρεθεί το ένα ηλεκτρόνιο0 στη θέση και το άλλο στη θέση, Η μη-διακρισιμότητα των δυο ηλεκτρονίων μέσα στο άτομο επιβάλει όπως,, Συμμετρία Εναλλαγής Συμμετρική,,, Αντισυμμετρική, Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Μποζόνια: Σωμάτια με ακέραιο σπιν Φερμιόνια: Σωμάτια με ημιακέραιο σπιν

Συμμετρία Εναλλαγής Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03, ' ' ' ' m m l n m nlm s l s l Εφόσον παραλείπουμε την αλληλεπίδραση μεταξύ των ηλεκτρονίων μπορούμε να γράψουμε για την ολική κυματοσυνάρτηση Άρα η είναι λύση της εξίσωσης Schodinge. Ωστόσο επειδή περιγράφει φερμιόνια θα πρέπει να είναι και αντισυμμετρική. Επειδή η ίδια δεν είναι κατασκευάζουμε την κατάλληλη ως εξής: Έχει τη σωστή συμμετρία εναλλαγής Είναι αδύνατο να πει κανείς ποιο ηλεκτρόνιο καταλαμβάνει ποια κατάσταση μη-διακρισιμότητα. Στην περίπτωση που α = ίδιοι κβαντικοί αριθμοί τότε Απαγορευτική Αρχή του Puli! 0

Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Ταυτόσημα Σωμάτια Μη-διακρισιμότητα Συμμετρία Εναλλαγής Απαγορευτική Αρχή Παράδειγμα: Κατασκευή κυματοσυνάρτησης θεμελιώδους κατάστασης στο άτομο του He He: Z =, θεμελιώδης κατάσταση s : n=, l=0, m l =0 Δυο ηλεκτρόνια με σπιν +/ και -/ την καταλαμβάνουν 0 0 / 3 / 0 / 3 / 0 00 Z e e 00 / 00, 00 / 00, Θέτω 0 / 3 0 00 00 00 00 00 00 00 00 00 00, e Τότε Η ενέργεια της κατάστασης θα είναι ev n Z.8 08 3.6 3.6 Συμβολισμός Dic Πειραματική τιμή: -79 ev?

Θωράκιση Η αλληλεπίδραση των ηλεκτρονίων δεν είναι καθόλου αμελητέα βλ. παράδειγμα He Η συμπερίληψή της στο πρόβλημα καθιστά τη λύση περίπλοκη και μόνο μη-αναλυτικές αριθμητικές λύσεις θεραπεύουν με ακρίβεια το πρόβλημα Προσεγγιστική αναλυτική λύση: Προσέγγιση ενεργού πεδίου. Κάθε ηλεκτρόνιο βλέπει ένα μέσο πεδίο που είναι το άθροισμα των ελκτικών και απωστικών δυνάμεων εξαιτίας του πυρηνικού φορτίου, του φορτίου των υπολοίπων ηλεκτρονίων, της σύζευξης σπιν-τροχιάς, κ.α. Παράδειγμα: Εξωτερικά ηλεκτρόνια Βλέπουν ένα θωρακισμένο Κουλομπικό πεδίο που είναι το άθροισμα του φορτίου του πυρήνα και του φορτίου των ηλεκτρονίων που βρίσκονται εσωτερικά του εξωτερικού ηλεκτρονίου. Το ηλεκτρόνιο βλέπει ένα ενεργό φορτίο Z eff κι μια αντίστοιχη ενεργό δυναμική ενέργεια U eff k Z e e eff Τέλεια θωράκιση: Z eff = Ζ Ζ- = Μηδενική θωράκιση: Z eff = Ζ Υπολογισμός Z eff για το ηλεκτρόνιο 3s του N Z Z eff eff Έργο ιονισμού 3s = 5,4 ev 3.6 3.6 Z. 84 eff n 3 Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Ηλεκτρονική Δομή Ατόμων: Διαδοχή από κατειλημμένες ενεργειακές στιβάδες. θυμηθείτε τον εκφυλισμό n για το άτομο του υδρογόνου. Τα ηλεκτρόνια των εξωτερικών στοιβάδων είναι λιγότερο συζευγμένα με τον πυρήνα λόγω του φαινομένου της θωράκισης. Προσέγγιση Κεντρικού Πεδίου U = U Η ενέργεια των σταθμών εξαρτάται από τους κβαντικούς αριθμούς n, l. n στιβάδα l υποστιβάδα: Μέγιστος αριθμός ηλεκτρονίων l+ Εάν λάβουμε υπόψη την σύζευξη σπιν-στροφορμής η ενέργεια των σταθμών εξαρτάται από τους κβαντικούς αριθμούς n, l, j. n στιβάδα l,j υποστιβάδα: Μέγιστος αριθμός ηλεκτρονίων j+ Σειρά κατάληψης υποστιβάδων Αρχή Ελάχιστης Ενέργειας Όταν μια υποστιβάδα είναι κατειλημμένη, το επόμενο ηλεκτρόνιο καταλαμβάνει την αμέσως επόμενη μη-κατειλημμένη υποστιβάδα με την μικρότερη ενέργεια. Στα ηλεκτρόνια της υποστιβάδας με την υψηλότερη ενέργεια ηλεκτρόνια σθένους οφείλονται οι χημικές ιδιότητες των στοιχείων. Στοιχεία με συμπληρωμένη την υψηλότερη υποστιβάδα τείνουν να είναι χημικά αδρανή. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Ηλεκτρονική Διάταξη Ατόμων: Προσδιορισμός των κβαντικών αριθμών n, l για κάθε ηλεκτρόνιο. Π.χ. Για το στοιχείο C που έχει 6 ηλεκτρόνια γράφουμε s s p Ηλεκτρονική Διάταξη Ατόμων στη βασική κατάσταση Περιοδικός Πίνακας των Στοιχείων Κατανομή ηλεκτρονίων σε υποστιβάδες n, l και συμβολισμός τους Άτομο s s p Li Be B C N O F Ne s s s s s s p s s p s s p 3 s s p 4 s s p 5 s s p 6 Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Περίπτωση Άνθρακα: Γιατί βάλαμε ομοπαράλληλα σπιν στα p ηλεκτρόνια; κανόνας Hund Αντισυμμετρική κυματοσυνάρτηση Αντισυμμετρική Χωρική κυματοσυνάρτηση Ψ Α Συμμετρική Χωρική κυματοσυνάρτηση Ψ S Χ Χ Συμμετρική Σπιν κυματοσυνάρτηση Αντισυμμετρική Σπιν κυματοσυνάρτηση Στην χωρικά αντισυμμετρική κυματοσυνάρτηση τα ηλεκτρόνια είναι πιο απομακρυσμένα μικρότερη θωράκιση μεγαλύτερη ενέργεια σύνδεσης Ποιοτική απεικόνιση χωρικά συμμετρικής και αντισυμμετρικής κυματοσυνάρτησης καθώς και των τετραγώνων τους Ψ S Ψ Α Ψ S Ψ Α Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Σειρά των υποστιβάδων ως προς την ενέργεια Μνημονικός κανόνας s s p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 5p 6d 6f 6g 6i 7s s < s < p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5d Η ενεργειακή εξάρτηση των υποστοιβάδων από τον κβαντικό αριθμό l γίνεται πιο έντονη σε μεγάλους κβαντικούς αριθμούς n με αποτέλεσμα καταστάσεις με κβαντικό αριθμό n να παρουσιάζουν μεγαλύτερη ενέργεια σύνδεσης από καταστάσεις με κβαντικό αριθμό n-. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

ΟΜΑΔΑ Διάλεξη 6: Ατομική Δομή Η ύπαρξη του περιοδικού πίνακα οφείλεται στην επανεμφάνιση παρόμοιων ηλεκτρονικών δομών στις υποστιβάδες ΠΕΡΙΟΔΟΣ Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Έργο Ιονισμού Το έργο Ιονισμού είναι μεγαλύτερο για τα άτομα με συμπληρωμένες στιβάδες. Μη-συμπληρωμένες στιβάδες εμφανίζουν φαινόμενα θωράκισης από τις συμπληρωμένες εσωτερικές στιβάδες. Επομένως εμφανίζουν μικρότερη ενέργεια σύνδεσης κι άρα παρουσιάζουν μικρότερο έργο ιονισμού. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Ατομικός Όγκος Ο όγκος ενός ατόμου γίνεται μέγιστος σε συνθήκες μέγιστης θωράκισης. Αυτό συμβαίνει στα αλκάλια όπου ένα μόνο ηλεκτρόνιο υπάρχει έξω από συμπληρωμένη στιβάδα. Τότε η θωράκιση είναι μέγιστη κι άρα το μέγεθος του ατόμου γίνεται μέγιστο. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03