ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

Σχετικά έγγραφα
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 12η Διάλεξη Διάσχιση Δέντρων και Ουρές Προτεραιότητας. Ε. Μαρκάκης

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

ΠΛΗ111. Ανοιξη Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διδάσκων: Παναγιώτης Ανδρέου

Δομές Δεδομένων & Αλγόριθμοι

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ΔυαδικάΔΕΝΔΡΑΑναζήτησης

Δομές Δεδομένων (Data Structures)

υαδικό έντρο Αναζήτησης (BSTree)

Βασικές Έννοιες Θεωρίας Γραφημάτων

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Δομές Δεδομένων και Αλγόριθμοι

ένδρα (tail, head) Γονέας Παιδί (ancestor, descendant) Φύλλο Εσωτερικός Κόµβος (leaf, non-leaf) που αποτελεί το γονέα του v.

Διδάσκων: Κωνσταντίνος Κώστα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

Δομές Δεδομένων Ενότητα 5

ΗΥ240 - Παναγιώτα Φατούρου 1

ιαφάνειες παρουσίασης #11

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Ουρά Προτεραιότητας (priority queue)

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

Εισαγωγή στην Επιστήμη των Υπολογιστών

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής

Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

υαδικά δέντρα αναζήτησης

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 3η: Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων

ιαφάνειες παρουσίασης #10 (β)

Εισαγωγή στην Επιστήμη των Υπολογιστών

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Οντοκεντρικός Προγραμματισμός

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής

3 Αναδροµή και Επαγωγή

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Προγραμματισμός Ι (ΗΥ120)

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

ΠΛΗ111. Ανοιξη Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δέντρα (Trees) - Ιεραρχική Δομή

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

Αναδρομικοί Αλγόριθμοι

Αλγόριθµοι Divide-and- Conquer

Γράφοι: κατευθυνόμενοι και μη

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Στοιχεία Θεωρίας Γραφηµάτων (1)

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

Συγκρίσιμα Αντικείμενα (comparable)

Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Δομές Δεδομένων και Αλγόριθμοι (Γ εξάμηνο) Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Ηπείρου. Άσκηση εργαστηρίου #6 (Υλοποίηση δυαδικού δένδρου αναζήτησης)

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

Αλγόριθµοι και Πολυπλοκότητα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης

Transcript:

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής

Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder, inorder, levelorder Δοµές Δεδοµένων 10-2

Δέντρα Γράφηµα ή γράφος Οποιοδήποτε σύνολο κορυφών (κόµβων) και πλευρών (ακµών) Κάθε πλευρά συνδέει δύο κορυφές Η ακµή µπορεί να είναι κατευθυνόµενη ή όχι Μονοπάτι: ακολουθία από διαδοχικές πλευρές Δέντρο: ειδική µορφή γραφήµατος Ανάµεσα σε δύο κόµβους υπάρχει ένα ακριβώς µονοπάτι Μας βοηθά στην αναπαράσταση της εκτέλεσης αλγορίθµων (union-find, divide and conquer, ) Δέντρο µε ρίζα: Δέντρο όπου ένας κόµβος ορίζεται ως ρίζα Συνήθως θεωρούµε ότι οι ακµές κατευθύνονται προς ή από τη ρίζα Σχεδόν πάντα αναφερόµαστε σε δέντρα µε ρίζα Υποδέντρο: δέντρο που ξεκινά από κόµβο διαφoρετικό από τη ρίζα Δοµές Δεδοµένων 10-3

Δέντρα Ορολογία δέντρων Γονέας ενός κόµβου: ο αµέσως από πάνω κόµβος (µε κατεύθυνση προς τη ρίζα) Η ρίζα είναι ο µόνος κόµβος που δεν έχει γονέα Παιδιά ενός κόµβου: οι αµέσως από κάτω κόµβοι Αδέλφια: παιδιά του ίδιου γονέα Μη τερµατικός κόµβος: έχει ένα τουλάχιστον παιδί Φύλλο ή τερµατικός κόµβος: δεν έχει κανένα παιδί Δάσος: συλλογή από δέντρα ξένα µεταξύ τους Δοµές Δεδοµένων 10-4

Δέντρα Διατεταγµένο δέντρο Ένα δέντρο στο οποίο η σειρά των παιδιών έχει σηµασία Παράδειγµα: τα παιδιά έχουν αύξουσα διάταξη κλειδιών Μ-αδικό δέντρο Κάθε µη τερµατικός κόµβος έχει M παιδιά Κάποιες φορές το ορίζουµε ως «κάθε κόµβος έχει Μ παιδιά» Συχνά θεωρούµε ότι υπάρχουν εξωτερικοί κόµβοι (ίσοι µε null) Χρησιµεύουν στο να έχουν όλοι οι κόµβοι ακριβώς Μ παιδιά Δυαδικό δέντρο Ειδική περίπτωση διατεταγµένου Μ-αδικού δέντρου µε Μ=2 Ονοµάζουµε τα παιδιά αριστερό και δεξιό Δοµές Δεδοµένων 10-5

Δέντρα Αναδροµικοί ορισµοί δέντρων: χρήσιµοι στην απόδειξη ιδιοτήτων τους µε επαγωγή Αναδροµικός ορισµός δυαδικού δέντρου: Βάση: Είτε ένας κόµβος χωρίς παιδιά (τερµατικός κόµβος) Βήµα επαγωγής: Είτε ένας κόµβος µε παιδιά δύο δυαδικά δέντρα Δοµές Δεδοµένων 10-6

Δέντρα Αναπαράσταση δέντρων Μπορεί να γίνει µε πολλούς τρόπους ανάλογα µε την εφαρµογή 1. Πίνακες ή λίστες γειτνίασης (ισχύει για κάθε γράφηµα) 2. Πίνακας parent parent[i] δείχνει τον γονέα του i Για τη ρίζα µπορούµε να κάνουµε τη σύµβαση ότι parent[i] = i Δοµές Δεδοµένων 10-7

Δέντρα Αναπαράσταση δυαδικών δέντρων Ορίζουµε κόµβους µε στοιχείο και δύο συνδέσµους προς αριστερό και δεξιό υποδέντρο Οι κόµβοι χωρίς παιδιά έχουν συνδέσµους null Class Node { Item item; Node l; Node r; Node(Item v, Node l, Node r) { this.item = v; this.l = l; this.r = r; }} Κατάλληλη για κίνηση προς τα κάτω Για κίνηση προς τα πάνω προσθέτουµε σύνδεσµο στο γονέα Δοµές Δεδοµένων 10-8

Δέντρα Αναπαράσταση γενικών δέντρων Στα Μ-αδικά δέντρα γενικεύουµε τα δυαδικά δέντρα Είτε Μ επώνυµοι σύνδεσµοι, είτε πίνακας µε Μ συνδέσµους Στα γενικά δέντρα χρήση συνδεδεµένης λίστας παιδιών Αριστερός δείκτης: λίστα παιδιών, δεξιός δείκτης: επόµενος αδελφός Υπάρχει ισοδύναµη αναπαράσταση µε δυαδικό δέντρο Δοµές Δεδοµένων 10-9

Μαθηµατικές ιδιότητες Ικανές και αναγκαίες συνθήκες: ένας γράφος G µε Ν κορυφές είναι δέντρο αν και µόνο αν ισχύει µία από τις συνθήκες: Ο G έχει Ν-1 πλευρές και κανένα κύκλο Ο G έχει Ν-1 πλευρές και είναι συνδεδεµένος (για κάθε ζεύγος κορυφών υπάρχει µονοπάτι που τις συνδέει) Κάθε ζεύγος κορυφών συνδέεται µε ένα µόνο µονοπάτι Ο G είναι συνδεδεµένος αλλά παύει να είναι αν αφαιρέσουµε οποιαδήποτε πλευρά Ο G είναι συνδεδεµένος, δεν έχει κύκλους, και η προσθήκη οποιασδήποτε επιπλέον πλευράς δηµιουργεί κάποιο κύκλο Οι συνθήκες αυτές είναι ισοδύναµες µεταξύ τους Δοµές Δεδοµένων 10-10

Μαθηµατικές ιδιότητες Ιδιότητες δυαδικών δέντρων Αποδεικνύονται µε επαγωγή (δοµική επαγωγή structural induction) Πλήθος κόµβων Έστω δυαδικό δέντρο µε Ν εσωτερικούς κόµβους Το δέντρο έχει Ν+1 τερµατικούς κόµβους Πλήθος ακµών Έστω δυαδικό δέντρο µε Ν εσωτερικούς κόµβους Το δέντρο έχει 2Ν συνδέσµους Ν-1 σύνδεσµοι µεταξύ εσωτερικών κόµβων Ν+1 σύνδεσµοι από εξωτερικούς κόµβους Δοµές Δεδοµένων 10-11

Μαθηµατικές ιδιότητες Άλλοι ορισµοί δέντρων Επίπεδο κόµβου Η ρίζα έχει επίπεδο 0 Άλλοι κόµβοι: επίπεδο ίσο µε 1 παραπάνω από τον γονέα τους Ύψος δέντρου: µέγιστο επίπεδο κόµβων Μήκος διαδροµής: άθροισµα επιπέδων όλων των κόµβων Μήκος εσωτερικής και εξωτερικής διαδροµής Πλήρες δυαδικό δέντρο (complete binary tree): όλα τα επίπεδα γεµάτα εκτός τελευταίου Στο τελευταίο επίπεδο είναι γεµάτοι οι αριστερότεροι κόµβοι Δοµές Δεδοµένων 10-12

Μαθηµατικές ιδιότητες - Παραδείγµατα Ύψος δέντρου Έστω δυαδικό δέντρο µε Ν εσωτερικούς κόµβους Το ύψος είναι τουλάχιστον logn και το πολύ N-1 Δοµές Δεδοµένων 10-13

Διάσχιση δέντρου Διάσχιση δέντρου (tree traversal) Έστω ότι θέλουµε να επεξεργαστούµε όλους τους κόµβους ενός δέντρου µε συστηµατικό τρόπο 4 βασικές επιλογές διάσχισης Προδιατεταγµένη (preorder): επεξεργαζόµαστε πρώτα έναν κόµβο, και µετά επεξεργαζόµαστε το αριστερό και δεξιό υποδέντρο Ενδοδιατεταγµένη (inorder): επεξεργαζόµαστε πρώτα το αριστερό υποδέντρο, µετά τον κόµβο, και µετά το δεξί υποδέντρο Μεταδιατεταγµένη (postorder): αριστερό υποδέντρο, δεξί υποδέντρο, και στο τέλος ο κόµβος Διάσχιση ανά επίπεδο (level-order): πρώτα η ρίζα, µετά όλοι οι κόµβοι στο επίπεδο 1, κ.ο.κ. (ή µε ανάποδη σειρά από κάτω προς τα πάνω) Δοµές Δεδοµένων 10-14

Διάσχιση δέντρου Αναδροµική υλοποίηση για preorder, inorder, postorder Γενική µορφή κώδικα διάσχισης (preorder) /*έστω visit() µία µέθοδος που επεξεργάζεται έναν κόµβο H διάσχιση παίρνει ως όρισµα τον δείκτη από όπου ξεκινάµε π.χ. τη ρίζα του δέντρου */ private void traverser(node h) { if (h == null) return; h.item.visit(); traverser(h.l); traverser(h.r); } void traverse() { traverser(root); } Παρόµοιος κώδικας για inorder, postorder Δοµές Δεδοµένων 10-15

Διάσχιση δέντρου Παράδειγµα διάσχισης Σειρά επίσκεψης/επεξεργασίας των κοµβων: Α) προδιατεταγµένη: 20, 15, 10, 18, 19, 32, 27, 21, 29, 35 Β) ενδοδιατεταγµένη: 10, 15, 18, 19, 20, 21, 27, 29, 32, 35 Γ) µεταδιατεταγµένη: 10, 19, 18, 15, 21, 29, 27, 35, 32, 20 Δ) ανά επίπεδο: 20, 15, 32, 10, 18, 27, 35, 19, 21, 29 Δοµές Δεδοµένων 10-16

Διάσχιση δέντρου Μη αναδροµική διάσχιση δέντρου (για preorder, inorder, postorder) Στην αναδροµή οι κλήσεις µπαίνουν στη στοίβα Χρησιµοποιώντας τη δική µας στοίβα δεν χρειάζεται αναδροµή Αντί για κλήση, ωθούµε τον κόµβο ή το υποδέντρο στη στοίβα private void traverses(node h) {//παράδειγµα για preorder NodeStack s = new NodeStack(max); s.push(h); while (!s.isempty()) { h = s.pop(); h.item.visit(); if (h.r!= null) s.push(h.r); if (h.l!= null) s.push(h.l); } } void traverses() { traverses(root); } Δοµές Δεδοµένων 10-17

Διάσχιση δέντρου Διάσχιση δέντρου ανά επίπεδο (level-order) Επισκεπτόµαστε τους κόµβους στο ίδιο επίπεδο µε τη σειρά Απλά αντικαθιστούµε τη στοίβα µε ουρά Eπεξεργαζόµαστε τους κόµβους µε τη σειρά που τους βλέπουµε Δεν υπάρχει προφανής αναδροµική υλοποίηση private void traverseq(node h) { NodeQueue q = new NodeQueue(max); q.put(h); while (!q.isempty()) { h = q.get(); h.item.visit(); if (h.l!= null) q.put(h.l); if (h.r!= null) q.put(h.r); } } void traverseq() { traverseq(root); } Δοµές Δεδοµένων 10-18