ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Σχετικά έγγραφα
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ιαγώνισµα στη Φυσική Κατεύθυνσης Γ Λυκείου

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

3. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η

Α3. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις συχνότητας f. (Μονάδες 5)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

Προτεινόμενα θέματα για τις εξετάσεις 2011

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γκύζη 14-Αθήνα Τηλ :

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤ.&ΤΕΧΝΟΛ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (3/6/04)

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Φυσική Ο.Π. Γ Λυκείου

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

ΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ Α : α V/m β V/m γ V/m δ V/m

Α4. α. β. Μονάδες 5 Α5. Σωστό Λανθασμένο Σωστό Λάθος Μονάδες 5

δ. έχουν πάντα την ίδια διεύθυνση.

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ. m 2 s. Kg s m

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΥ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

Physics by Chris Simopoulos

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/02/12 ΛΥΣΕΙΣ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

Για τις παρακάτω ερωτήσεις 2-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

1.3 α. β. γ. δ. Μονάδες Μονάδες Στήλης Ι Στήλης ΙΙ Στήλη ΙΙ

Περι-Φυσικής. Βαθµολογία % E = E max ηµπ(10 15 t 2x )

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1o. , τότε η ένταση του ρεύµατος στο κύκλωµα γίνεται µέγιστη τη χρονική στιγµή: T t= γ. 4. T 2 Μονάδες 5

ΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Transcript:

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Η ιδιοσυχνότητα ενός συστήματος που εκτελεί εξαναγκασμένη ταλάντωση χωρίς τριβή είναι 0 Hz. Το πλάτος της ταλάντωσης γίνεται μέγιστο όταν η συχνότητα του διεγέρτη είναι: α. 0 Hz β. 0 Hz γ. 30 Hz δ. 40 Hz.. Ηλεκτρικό κύκλωμα LC, αμελητέας ωμικής αντίστασης, εκτελεί ηλεκτρική ταλάντωση με περίοδο Τ. Αν τετραπλασιάσουμε η χωρητικότητα του πυκνωτή χωρίς να μεταβάλουμε το συντελεστή αυτεπαγωγής του πηνίου, τότε η περίοδος της ηλεκτρικής ταλάντωσης θα είναι: α. Τ/ β. Τ γ. Τ δ. 4Τ. 3. Το μήκος κύματος δύο κυμάτων που συμβάλλουν και δημιουργούν στάσιμο κύμα είναι λ. Η απόσταση μεταξύ δύο διαδοχικών δεσμών του στάσιμου κύματος θα είναι: α. λ β. λ/ γ. λ δ. λ/4. 4. Υλικό σημείο εκτελεί απλή αρμονική ταλάντωση υπό την επίδραση συνισταμένης δύναμης F. Αν x είναι η απομάκρυνση του σημείου από τη θέση ισορροπίας του και D θετική σταθερά, τότε για τη δύναμη ισχύει: α. F = D β. F = D x γ. F = D x δ. F = 0 5. Να γράψετε στο τετράδιό σας τη λέξη που συμπληρώνει σωστά καθεμία από τις παρακάτω προτάσεις.

α. Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή από μια περιοχή του υλικού μέσου σε άλλη, αλλά δεν μεταφέρεται... β. Διαμήκη ονομάζονται τα κύματα στα οποία τα σημεία του ελαστικού μέσου ταλαντώνονται... στη διεύθυνση διάδοσης του κύματος. γ. Η αιτία δημιουργίας του ηλεκτρομαγνητικού κύματος είναι η... κίνηση ηλεκτρικών φορτίων. δ. Το αλγεβρικό άθροισμα των... που δρουν σ' ένα στερεό που περιστρέφεται γύρω από σταθερό άξονα, είναι ίσο με την αλγεβρική τιμή του ρυθμού μεταβολής της στροφορμής του. ε. Μη αδρανειακό είναι ένα σύστημα αναφοράς που... σε σχέση με ένα αδρανειακό σύστημα. ΘΕΜΑ ο. Ακτίνα μονοχρωματικού φωτός που διαδίδεται στο οπτικό μέσο Α με δείκτη διάθλασης n Α προσπίπτει με γωνία μικρότερη της κρίσιμης στη διαχωριστική επιφάνεια με άλλο διαφανές οπτικό μέσο Β με δείκτη διάθλασης n Β, όπου n Β < n Α. Α. Να μεταφέρετε το σχήμα στο τετράδιό σας και να σχεδιάσετε τη διαθλώμενη ακτίνα. Μονάδες Β. Ποια από τις δύο γωνίες είναι μεγαλύτερη; α. η γωνία προσπτώσεως, β. η γωνία διαθλάσεως. Να αιτιολογήσετε την απάντησή σας. Μονάδες

. Δίσκος παιδικής χαράς περιστρέφεται περί κατακόρυφο άξονα κάθετο στο επίπεδό του διερχόμενο από το κέντρο του δίσκου Ο. Στο δίσκο δεν ασκείται καμία εξωτερική δύναμη. Ένα παιδί μετακινείται από σημείο Α της περιφέρειας του δίσκου στο σημείο Β πλησιέστερα στο κέντρο του. Τότε ο δίσκος θα περιστρέφεται: α. πιο αργά β. πιο γρήγορα. Να αιτιολογήσετε την απάντησή σας. Μονάδες 3. Σφαίρα μάζας m κινούμενη με ταχύτητα μέτρου υ συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα ίσης μάζας. Να βρείτε τις σχέσεις που δίνουν τις ταχύτητες των δύο σφαιρών, μετά την κρούση, με εφαρμογή των αρχών που διέπουν την ελαστική κρούση. Μονάδες 8 ΘΕΜΑ 3 ο Το σημείο Ο ομογενούς ελαστικής χορδής, τη χρονική στιγμή t = 0, αρχίζει να εκτελεί απλή αρμονική ταλάντωση με εξίσωση y = 0,05ημ8πt (SI) κάθετα στη διεύθυνση της χορδής. Το κύμα που παράγεται διαδίδεται κατά τη θετική φορά του άξονα x x, κατά μήκος της χορδής, που διέρχεται από το σημείο Ο με ταχύτητα μέτρου 0m/s. α. Να βρεθεί ο χρόνος που χρειάζεται ένα υλικό σημείο του ελαστικού μέσου για να εκτελέσει μια πλήρη ταλάντωση. Mονάδες 6 β. Να βρεθεί το μήκος κύματος του αρμονικού κύματος. γ. Να γραφεί η εξίσωση του ίδιου κύματος.

δ. Να βρεθεί το μέτρο της μέγιστης ταχύτητας με την οποία ταλαντώνεται ένα σημείο της χορδής. Μονάδες 7 ΘΕΜΑ 4ο Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, που έχουν μάζα Μ = 4 Κg και μήκος L =,5 m η καθεμία, συγκολλούνται στο ένα άκρο τους Ο, ώστε να σχηματίζουν ορθή γωνία. Το σύστημα των δύο ράβδων μπορεί να περιστρέφεται περί οριζόντιο άξονα, κάθετο στο επίπεδο ΑΟΒ, που διέρχεται από την κορυφή Ο της ορθής γωνίας. Το σύστημα αρχικά συγκρατείται στη θέση όπου η ράβδος ΟΑ είναι οριζόντια (όπως στο σχήμα). Η ροπή αδράνειας της κάθε ράβδου ως προς το κέντρο μάζας της είναι I cm = ML. A. Να υπολογίσετε τη ροπή αδράνειας της κάθε ράβδου ως προς τον άξονα περιστροφής που διέρχεται από το Ο. Β. Από την αρχική του θέση το σύστημα των δύο ράβδων αφήνεται ελεύθερο να περιστραφεί περί τον άξονα περιστροφής στο σημείο Ο, χωρίς τριβές. Να υπολογίσετε το μέτρο της γωνιακής επιτάχυνσης του συστήματος των δύο ράβδων τη στιγμή της εκκίνησης. Γ. Τη χρονική στιγμή κατά την οποία οι ράβδοι σχηματίζουν ίσες γωνίες με την κατακόρυφο Οx, να υπολογίσετε: α. Το μέτρο της γωνιακής ταχύτητας του συστήματος των δύο ράβδων. Μονάδες 7 β. Το μέτρο της στροφορμής της κάθε ράβδου ως προς τον άξονα περιστροφής που διέρχεται από το σημείο Ο.

Δίνονται: g = 0ms -, ημ45 ο = συν45 ο = = 0,7. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ β γ 3 β 4 γ 5. α= ύλη (ή μάζα) β = παράλληλα γ = μεταβαλλόμενη (ή επιταχυνόμενη) δ = ροπών ε = επιταχύνεται ΘΕΜΑ ο Α. A nα θα B nb θβ Β. Σωστό είναι το β. η γωνία διάθλασης. Από το νόμο του Snell, ισχύει: n. A ημθ Α = n. B ημθ Β ημθ ημθ n ημθ na > nb B A B = > θ B > θ A. A nb ημθ A. Σωστό το β. πιο γρήγορα. Αφού Στ εξ=0, ισχύει η αρχή διατήρησης στροφορμής, για το σύστημα παιδί δίσκος. L αρχ = L τελ. Ι. w = Ι. w [Iδ + m (OA) ] w = [ Iδ + m(ob) ] w

w ( ) Iδ + m OA OA> OB w = > w > w w Iδ + m( OB) w 3. Από την αρχή διατήρησης της ορμής για την κρούση ισχύει:. m ΠΡΙΝ u m u=0 ΜΕΤΑ m u m u Pολαρχ = Pολ τελ mu + m. 0 = mu + mu U U = U () Αφού η κρούση είναι ελαστικά ισχύει η αρχή διατήρησης κινητικής ενέργειας άρα: Κ ολαρχ = Κ ολτελ Κ + 0 > Κ + Κ mu = mu + mu U = = U ( ) + U U U U U = U () Διαιρώντας τη () κι () κατά μέλη έχουμε: U U () U + U = U (3) () U 0 Με πρόθεση κατά μέλη των () και (3) έχουμε: U =U U = U και () U = 0 ΘΕΜΑ 3 ο α. Απ την εξίσωση y= 0,05 ημ8 πt και την αντίστοιχη της θεωρίας y=aημωt προκύπτουν τα δεδομένα: Α = 0,05m και ω= 8π rad /s. Ο χρόνος που χρειάζεται ένα υλικό σημείο του ελαστικού μέσου για να εκτελέσει μια πλήρη ταλάντωση είναι η περίοδος της ταλάντωσης. Είναι:

π π π ω = T T s T s T = ω = 8π = 4. β. Απ τη θεμελιώδη εξίσωση της κυματικής έχουμε: λ U = λ = U T λ = 5m T γ. Η εξίσωση του κύματος είναι: t x x Y = Aημπ Y = 0, 05ημ π 4 t (S.I.) T λ 5 δ. U max = w. A = 0,4π m/s. ΘΕΜΑ 4 ο Α. Α cm Ο Ο U=0 mg cm L/ L cm 45 0 45 0 L/συν45 0 cm mg mg mg Α Β Β Από το θεώρημα Steiner προκύπτει: I (0) = Icm + Md d =/ I (0) = / ML + ML / 4 I (0) = /3 ML I (0) = 3 kg. m B. Εφαρμόζοντας το θεμελιώδη νόμο της στροφικής κίνησης για το σύστημα των ράβδων έχουμε: Στ = Ι. ΣΥΣ α α = Στ / Ι ΣΥΣΤ. mg a = α= 5 rad / s I (0) Γ. α. Απ την αρχή διατήρησης ενέργειας ισχύει για το σύστημα των ράβδων:

Κ + U = K + U 0+mgl/+0=/ I ΣΥΣΤ. ω + mg (l/ l/συν45 0 ) ω=rad /s. β. Για την στροφορμή της κάθε ράβδου έχουμε: L = I (0). ω L = 6 kg m / s. Τα θέματα επιμελήθηκαν τα φροντιστήρια «ΟΜΟΚΕΝΤΡΟ» Φλωρόπουλου. Ήμελλος Μ. Ποθητάκης Β. Τσουμπρέας Σ.