Al(99.95%) Al-10Sr Ñ Sr(99.5%)

Σχετικά έγγραφα
STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

2 SFI

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Quick algorithm f or computing core attribute

. O 2 + 2H 2 O + 4e 4OH -

Delta Inconel 718 δ» ¼

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

High order interpolation function for surface contact problem

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Blowup of regular solutions for radial relativistic Euler equations with damping

Micro arc Oxidation Technique for Aluminum and its Alloys

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Ανώτερα Μαθηματικά ΙI

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ER-Tree (Extended R*-Tree)

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

CorV CVAC. CorV TU317. 1

Protective Effect of Surface Coatings on Concrete

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

ZnO-Bi 2 O 3 Bi 2 O 3

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

p din,j = p tot,j p stat = ρ 2 v2 j,

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIA- TURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Transcript:

«3 Í «6 ± ²» Vol.3 No.6 01 Ä 1 Journal of Chinese Society for Corrosion and Protection Dec. 01 Sb Î Mg-5Al-Sr Õ Þ ÖËÆ 1 1 1 1. غ Æ º ºÜ 10016. µà Ì Ä Æ È À 155 : Û«º ±± µ Å Sb Mg-5Al-Sr Ò 3.5 mass% NaCl µ ±µá ³ Mg-5Al-Sr-xSb(x=0 0.3 0.6 1.0) Ò 3.5 mass% NaCl µ ±Û Ñ ± ±Ú Ð Õ τ SbSr Æ ß ÓßØ Ò ±Ò ¼¾ Al Sr ÁÍÊÑÒ ± «Mg-5Al-Sr Ò 0.3% Sb ¼ ÁÍ α-mg Ð Al Sr ±Ê ¼¾ÄØ Ò ± Ö À ± ¾ ±Ä Ò ±µáï Ê : Mg-5Al-Sr Sb ±µá Đ Ð : TG9.6 È Ò : A Ç : 1005 537 01 06 078 07 1 Ù«Mg-Al-Sr Đ Ñ Í Ê ¾ ¹ À ± ÀÅ À Î [1 13] AJ6(Mg-6Al-Sr) Ñ Â ÉÇ Ã 6 Æ [13,1] à ī² Ñ Ô Sb Mg- 5Al-Sr Ñ À Æ [15] Mg-5Al- Sr Ñ Ë» α-mg»½ ÜËË Al Sr «Ô Mg 9 Al 3 Sr (τ ) É Sb Ü Ñ É «Đ SbSr «Ô τ Æ Sb 0.3% Sb» ÀÌ α-mg ««Al Sr É µ»½ã Æ Sb Ñ SbSr º³»½ Al Sr Sb ÀÌ ¼Î Ñ ¼ Ý Ñ [16] Mg-Al-Sr ĐÑ À Õ Ø Ä«Mg-5Al-Sr Ñ ÀÅ Sb Mg-5Al-Sr Ñ 3.5 mass% NaCl À Æ Í ÛØ : 01-0-8 Ô : Á Ç Đ (BE010103) ¾ : 1968 Å ¼ º, Æ ÒÑÓ Ë² Å : E-mail«zililiu@sohu.com ß Ï Ö ÐÅ Mg(99.95%» ) Al(99.95%) Al-10Sr Ñ Sr(99.5%) Sb Đ (99.9%) Ë «Ñ ¹É» ² 1 ȹ Ñ Ï 0.5%SF 6 CO Ñ ß ÄÅÆ ³ Ü 780 0 min ܺ ÐÓ Ð 50 Ñ» É» Ñ Õ Ü Ñ µ Ð 0 mm 10 mm 3mm Ö É Ô Èµ Ü 3.5% NaCl 100 h 0 ßÜ 00 g/l CrO 3 19 g/l AgNO 3 Ê 10 15 min Ý Ý Ô Ø Èµ ¹ Ñ É» µ «µ µ Þ Ñ Ï Ã ν Å ÐÅ ν = W 0 W t S 0 t (1) W 0 Ð Ö W t Ð ÜÝ Table 1 Chemical composition of experimental alloys (mass%) Alloy Al Sr Sb Mg 5 Bal. 5 0.3 Bal. 5 0.6 Bal. 5 1.0 Bal.

6 Ð : Sb Mg-5Al-Sr Ò ±µá 79 Ý S 0 Ð ² t Ð µ CH660A Æ ¹ÅÃ Ñ ÚÅ µ Solartron S 160 / Ê»Þ Á Solartron S 187 Æ ¹»ÞÁ Ñ Æ ¹ Û Åʹ½ Åà Р1 cm Åò º Ö Ü Ü Ä Ã Ð 3.5% NaCl 0»Þ NaCl Ý Ü Ë É «Æ ĐÅŹÆßÆ Ð ¾½Æ ÉÆ Ð Æ Æ ÐÅ ÃÆ ÅÃÆ ¹Æ ËÜÏ ÎÝ 80 mm ÚÅ ÅÆÕÆ Ã Ð 10 mv/s ÆÕ³ 1.8 V 0. V Æ ¹ ÅÆ Í ³ Ð 0.1 Hz 10 khz Æ 5 mv µ XJP-300 Á Ñ 3.5% NaCl À» Ü ³ 3 ÐÑ 3.1 ÝÜ Mg-5Al-Sr Ñ 3.5 wt% NaCl Ê 100 h Ü Ã 1 ȹ Å Ð ³ Mg-5Al-Sr Ñ Ã À» Sb Ü È Ñ Ã È Sb Ð 0.3% Ñ Ã À Ð 0.35 mg cm d 1 Mg-5Al-Sr Ñ ÀĐÐ Î Æ Sb Ñ Ã Sb Ð 0.6% Ñ Ã Ð 0.57mg cm d1 Song [17] à (0.5 mg cm d1 ) Þ Ñ ÏÊ À 3. Ú Ð» Sb Mg-5Al-Sr Ñ 3.5 NaCl ÚÅ Æ Å Þ ½ ÆÕ (E) Æ ½ (logi) ÌÅ ÎĐ Ñ ÚÅÏ Corrosion rate/ mg cm - d -1 1.0 0.8 0.6 0. 0. 0.0 Fig.1 Corrosion rate of experimental alloys Á Tafel Tafel ÚÅÃÑ Å ĐÑ Æ ½ corr ÆÕ (E corr ) Å Æ (R p ) [18,19] ² ȹ ¹ ËØ ÆÕ E corr Þ Ó Þ ² Þ Ý Ó»ÀÖ Ã Ñ² Å Æ R p ¼² Æ Ã À ¹ ² «Æ ¹² Í Á ÖÍÏ ² Å Æ Þ À Þ Æ Ã υ Æ ½ corr Å [0] Å υ = M nf corr = 3.73 10 corr M/n () υ Ð Ã g m h1 corr Ð Æ ½ µa cm M Ð Ö g mol 1 n в Æ Ý mol F Ð Å 968 C 6.8 A h ÂÉ Æ Ã υ Æ ½ corr É ÎĐ Í corr ز Æ Ã ² Å Ð Mg-5Al-Sr Ñ ÆÕÀ Å Æ À Mg-5Al- Sr-xSb Ñ ² ½ À Ê ½ Ó 3 Ð Sb Mg-5Al-Sr Ñ Æ ½ Æ À Ð Mg-5Al-Sr Ñ Æ ½ À Ð.599 10 3 A cm Ñ Í Ê À à Sb Ü Ñ Tafel lg (/ A cm - ) -1 - -3 - -5-6 -7 Passive zone....... Pitting -8-1.8-1.6-1. -1. -1.0-0.8-0.6-0. E/ V...... Fig. Polarization curves of experimental alloys Table Corrosion current density, corrosion potential and linear polarization resistance of experimental alloy Alloy corr/ A cm E corr/ V R p/ω cm.599 10 3 1.377 17.7 1.07 10 5 0.639 6053. 1.91 10 3 0.988 38..07 10 3 1.09.7

80 ß¹ 3Í ÚÅ Tafel ÚÅ Å ½Ð Í ² É ß ÖÍß Æ ¹ Í Ð Æ «Ü (Mg ) Ã Æ ÐÎ Ã Ù Æ Ü (Mg ) Ù ÏÆ Æ Æ Æ ÆÕ ± µ Ó Sb µñ Å Æ Æ ½ ² Ä ³ Ñ Ô Sb ÀÌ Î Mg-5Al-Sr Ñ À Þ Sb Ð 0.3% Ñ ÆÕ Mg-5Al-Sr Ñ «0.738 V 0.58 V 0.5 V 0.39 V 0.33 V ÀÆÕÙ «Ù ( ȹ) 0.58 V 0.5 V Ù Æ ² Ý É Î Æ Æ» Р0.5 V Å ÆÜ Í Ý Mg(OH) «Ð ºÃ [1] Æ Í ³ ¼ 0.39 V 0.33 V Ù ÖÍ É«Ñ Æ» Í ¾ 0.3% Sb Ü Ñ Æ ½ Mg-5Al-Sr Ñ «À Ð 1.07 10 5 A cm Å Æ ¼Mg-5Al-Sr Ñ 3» Đ Sb Ð 0.3% Ñ Ê º À Æ Sb Ñ ÆÕ Å Æ Ì Æ ½ ÑÃ Ñ Ó À Sb Ð 1.0% Ñ ÆÕ Ð 1.09 V ß Mg-5Al-Sr Ñ 0.85 V Å Æ Æ ½» ÊºÊ Þ À 3.3 Ì a b» Ð Ñ 3.5% NaCl corr / ma cm - 3.0.5.0 1.5 1.0 0.5 0.0-0.5 1.0 1.5.0.5 3.0 3.5.0 Sb Content/ % Fig.3 Effects of Sb content on corrosion current density of experimental alloys Ô ÍÚÅ ÃÑ Ñ Æ Ð CDCÅ R(Q(R(CR)))(CR) Ñ Æ Ð CDCÅ R(Q(R(C((LR)(CR))))) 5 ȹ Ñ Bode ( 6) Å Ð Ñ Nyquist ÚÅÏ À» Í Í À Þ Êº ÉÔ ÊºÊ ÆÝ Ñ Ê «À «Í Í À Þ Í» «À Þ Makar [] Ä» Ñ Nyquist ÚÅ Í Þ Ã ÎĐ Nyquist ÚÅ»Þ µã ÚÑ Í Z m / k cm Z m / k cm 0 - - (a) -6 0 6 8 10 1 1 16 Z Re / k cm 0 - - (b) -6 0 6 8 10 1 1 16 Z Re / k cm Fig. Nyquist plots of experimental alloys. (a) experimental values; (b) fitted values Fig.5 Equivalent circuit of experimental alloys. (a),, ; (b)

6 Ð : Sb Mg-5Al-Sr Ò ±µá 81 Þ ÂÞ Ñ Ã ÇÞ Ñ ÇÞ Ñ Í Þ Â (r) Đ Ð r > r > r > r ʺ À Ð ± Í Þ ² É Æ Æ Í Åµ Æ Æ R t Õ»Ô² CPE Ø Æ Æ R t ² ¼ ÆÕÐ E corr Æ Í Æ Æ Æ Í ÈÍ R t Ñ Æ ÍÑ È ³ [9,0 3] Æ Æ Æ Æ C dl Ê Ê ¼ ² É½Û ½ ß Í ÝÜ Æ ² Û Æ ² Ð Æ Á Æ ²» ²» ¼ Ï Õ ÕÔ Í Õ»Ô² CPE Ú Æ Æ C dl ĐÃ Þ Y 0 n ¼ CPE À Z CPE =1/[Y 0 (jω) n ] 0 n 1 Z CPE Ð CPE Y 0 ¼ CPE ß ω Ð»Í n Ð CPE ¼ (ÜÎ Æ ² Í Æ»½ À ² ß Í Þ»¼ À Ø ¼ À Þ) Þ n» Ð 0 0.5 1 CPE» Ú² Æ Warburg Æ Æ [] n Þ CPE Þ Æ ² Þ ² ÃÈ ² n Þ CPE Þ ² ² ÃÏÐ À Phase angle/ deg 60 50 0 30 0 10 0-10 -0-30 10-1 10 0 10 1 10 10 3 10 f/ Hz Fig.6 Bode plots of experimental alloys Þ [3] Í Þ» Ñ ² Í [3,5] Ü Ò Ý Ý Í Å Æ C f Æ R f Ø Í Þ Ñ ² Æ Ü Î Þ ² Þ Ü Þ È [6] ÂÉ Æ ¹ [3] Æ ² «Æ Æ E À² ˱ X µæ / Åß ²¹ÐÅ Y = jωc dl 1 ( F R ct X dx de )/[1jω/( X )] (3) X Y Ðß ω Ð»Í C dl ÐÆ Æ R ct ÐÆ Æ F Ð ÅÆ X в Ë ± X = dx/dt (3)» Í» ÀÜ»ØÙ Í» Þ ( F / X)( X/ E) >0 Æ ¹ Í» À Þ ÚÅ Ì Å Ð Ñ 3.5mass% NaCl ² Ñ ß É Å ² θ ز¹ Ñ Æ ² ˱ X Æ Æ ÆÕ E Ç µ (dθ/de) <0 ÉÔ ÙÐ ÆÆ ÆÕ E Æ Æ ß» µ θ Æ Æ Çµ ( F / θ) <0 À³ß ( F / θ)( X/ θ) >0 Ç Ñ Æ ¹ Í» À Þ ² 3 Ð Ñ ZSimp Win ŲÃÑ Æ R s Ð Æ R t ÐÆ Æ CPE Ð Õ»Ô² C f в Æ R f Ð ² Æ R L L» Ð Ñ ² Æ Ü Î Æ»Þ² 3 É Å Ð ÈÅÑ R s Õ Æ Í ÆÕ Å» Ñ R t R f Ñ Õ Í Î CPE C f ¼ Ñ Ê ½ 0.3%Sb ÀÌ n Table 3 Equivalent circuit parameters of alloy,, and Alloy R s/ω cm R t/ω cm CPE C f /10 3 F cm R f /Ω cm R L /Ω cm L/H cm Y 0 /10 6 Ω1 cm sn 0.5 1053 10.5 0.797 3.17 33 39.13 96 6.78 0.935 1.136 768 80.8 150..37 1879 8.16 0.890.07 538 5. 1365 9.57 0.83.875 61

#\3$h{- 3U = Mg-5Al-Sr m9 &7o m9 3$ ) XPS 6L AZ1 AZ501 AZ91 ( Mg-Al o BÆÆg Æ iæ6" D 7 5 m9& {: EQ" ad Al h O li G h BÆÆ au >' VCm9?3$( sd Mg h O li Al ` h O m$qf H B 1 Al O : 7> m9 {& #" Bl MgO : MgO 3$8"# H ThA&X$ 3. Zy o Mg(OH) : 7> m9 H&B b 7 l ((;m9 3.5% NaCl #(A D QKlw $Q ( : 3$8"#`d 6 #3$x 3$$ ' dmz} m9 i m9& Xr7S N9 (Vx; ( JFY3$ 3$v"l $ R.& 3$$ M d $Q Cl )! :} α-mg h! _7 R. ' # bf p ` " Z " # [ ( X r A3$Æq E q} Ja $Æ N 1s (1 ) lm9# ` 7! 1 O H k } V! F $ { 9 /l3$au#f $f m9 # $ q 9q EP& $Qh $ " l $h $ 1 /11lW} m9 E /Aa α-mg hfx$q Ksl$f HaU M,f7 Al Sr M k7 p τ EQ dmp Æ &Xi -&X m9 $ud k7 p τ m9 n&x H e H & $ 3.5% NaCl #(A D#.Gw h V z = 6&X Mg Mg e a3se # o" 6 =% h;m9 -&X Mg H O Mg OH H #` 7! > q bv m9 #F MgH H O Mg OH H ` 7 `BJY" $ $ qq &X Fy$Q Mg OH Mg(OH) m9 E /Aa α-mg,f7 Al Sr dmz} H Qh =V &Xi -& M 0 /1 ` 7 SbSr EQ dm P X bv r; 6 H TF H _ m9 $ud ` 7 SbSr " H e-hhtf H) D ph m9 # b Hjs ` `" $ VC b d Mg(OH) OH : $Q Mg(OH) m9 E /Aa α-mg 7 Al Sr M $Q m9&: 8!/)A z3$æq js ` 7 SbSr EQ dmp m9 E m9 $bæ " lp wwsd $Æq $ud js ` 7 SbSr 3$ { [ ` d" b 7e l"t( ;m9 Mg-5Al-Sr 3$ 36 h $' Hp{ Z} }m $fj ~ Q T m9& } ) 3$ (;m9 Mg-5Al-Sr-xSb $ 3.5% NaCl # [ (A D# z3$æq E d $Æq E " F m9#! (β ) 3$aU# m9& $QRb {K : Song Rb )K 8 3 p [1] p p [7] [7] Fig.7 Corrosion morphology of experimental alloys etching in 3.5% NaCl solution. (a) Mg-5Al-Sr, 1 h; (b) Mg-5Al-Sr-0.3Sb, 1 h; (c) Mg-5Al-Sr-0.6Sb, 1 h; (d) Mg-5Al-Sr-1.0Sb, 1h; (e) Mg-5Al-Sr, 36 h; (f) Mg-5Al-Sr-0.3Sb, 8 h

6 Ð : Sb Mg-5Al-Sr Ò ±µá 83 (1)»½ β Ø Ñ Al Sr ʺ½»½ Ñ ² «Ñ ² ² Ê Õ Ã ( ) ÉÐÑ ÅÆ α-mg»½ β À ĐÐ Đ ±» 7f Ð Ø Ñ Mg-5Al- Sr-0.3Sb 8 h ³ ÀÔß Ð Ð Al Sr Ö Í Þ² α-mg Ü»½ β ² É Ø [8] Ð Ñ β ² É ¼ ½Ò ph ³ ¼Û Å Â À ß ÊµĐÆ ½ È µ Ý«Ü Í Ñ ÀÌ Æ Í Ü (Mg ) Ã Þ Mg Ã Æ ÐÎ Ã Í ÐÇ Ã ² Ù Æ Æ ÆÕ ± É Æ ÎÜ ( Cl ) Ò Ý Ý α-mg ¾ Í Ð Æ È Ç Æ ² ¹² ³ Î Ñ À () ÖÓ β»½»¼ Ø Ñ τ Ñ Đ SbSr Û Å Í» ÃÐÞÒ² Î [9] «ÆÇ [30] ëʺ ÃÐ α-mg «Ñ Đ Þ ÏÒÞ Ñ ² ß Û ÆÞ «Î ² [31] µñ Ã Ì 5 Ñ (1) Ñ Ô Sb ÀÌÎ Mg-5Al-SrxSb(x=0.3 0.6 1.0) Ñ 3.5% NaCl À Sb Ð 0.3% Ñ ÀÀ Æ Sb Ñ Àº³ () 0.3%Sb Ü Ñ ½»½ Al Sr ² É ÀÌÕ ÆÑ Í Mg-5Al-Sr Ñ Ñ ÆÕ Æ ½ Ã Ñ ÀĐÐÎ É [1] Baril E, Labelle P, Pekguleryuz M O. Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure[j]. JOM., 003, 55(11): 3-39 [] L Espérance G, Plamondon P, Kunst M, et al. Characterization of intermetallics in Mg-Al-Sr AJ6 alloys[j]. ntermetallics. 010, 18(1): 1-7 [3] Hou J C, Guan S K, Ren C X, et al. Effect of small addition of strontium on microstructure and electrochemical performance of Mg-Mn sacrificial anode[j]. J. Chin. Soc. Corros. Prot., 006, 6(3): 166-170 (Ú, Ï, ĐÅ. ƻР¼  [J]. ² ³ ¹Ð¼, 006, 6(3): 166-170) [] Trojanov Z, Drozd Z, Luk P, et al. Mechanical properties of a squeeze cast Mg-Al-Sr alloy[j]. Adv. Mater. Sci. Eng., 008, 9(): 97-10 [5] Aljarrah M, Parvez M A, Li J, et al. Microstructural characterization of Mg-Al-Sr alloys[j]. Sci. Technol. Adv. Mater., 007, 8(): 37-8 [6] Bai J, Sun Y S, Xue F, et al. Effect of extrusion on microstructures, and mechanical and creep properties of Mg-Al-Sr and Mg-Al-Sr-Ca alloys[j]. Scr. Mater., 006, 55(1): 1163-1166 [7] Bai J, Sun Y S, Xue F, et al. nfluence of annealing on microstructures, mechanical and creep properties of Mg- Al-Sr alloy[j]. Mater. Sci. Technol., 006, (10): 108-11 [8] Cao H B, Zhu J, Zhang C, et al. Experimental investigation and thermodynamic modelling of the Mg-Al-rich region of the Mg-Al-Sr system[j]. nt. J. Mater. Res., 006, 97(): -8 [9] Zhao P, Wang Q, Zhai C, et al. Tensile and compressive creep behavior of coarse-grained Mg-Al-Sr castings[j]. Mater. Sci. Forum., BeiJing: 006, 56-59: 171-17 [10] Parvez M A, Medraj M, Essadiqi E, et al. Experimental study of the ternary magnesium-aluminium-strontium system[j]. J. Alloys Compd., 005, 0(1-): 170-185 [11] Czerwinski F, Zielinska-Lipiec A. The microstructure evolution during semisolid molding of a creep-resistant Mg- 5Al-Sr alloy[j]. Acta Mater., 005, 53(1): 333-3 [1] Pekguleryuz M O, BarilE,Labelle P, et al. Creep resistant Mg-Al-Sr alloys[j]. J. Adv. Mater., 003, 35(3): 3-38 [13] Pekguleryuz M O, Baril E. Development of creep resistant Mg-Al-Sr alloys[j]. JOM., 001: 119-15 [1] Klüting M L C. The new BMW inline six-cylindercomposite Mg/Al crankcase[a]. MA 6nd Annual World Magnesium Conference[C]. Berlin, 005: 51-60 [15] Zhu X C, Liu Z L, Zhou G B, et al. Effects of Sb addition on microstructure and properties of Mg-5Al-Sr alloy[j]. Mater. Sci. Technol., in accepted (¹,, µ. Sb Mg-5Al-Sr Ó Â [J]. ¼ ÆÆ, à ) [16] Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys[j]. Acta Metall. Sinica., 008, 1(5): 313-38 [17] Song G, Atrens A, Dargusch M. nfluence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 1(): 9-73 [18] Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[j]. Corros. Sci., 010, 5(): 579-588

8 ß¹ 3Í [19] Cao C N. Corrosion Theory[M]. Beijing: Chemical ndustry Press, 00 (. ³ ¼ Þ [M]. : ¼Æ, 00) [0] Zhang B H, Cong WB, Yang P. Electrochemical Corrosion and Protection of Metals [M]. Beijing: Chemical ndustry Press, 005 ( Ù, Ù, Ï. ¼ ³ ¹Ð [M]. : ¼Æ, 005) [1] Song G, Atrens A. Understanding magnesium corrosion: A framework for improved alloy performance[j]. Adv. Eng. Mater., 003, 5(1): 837-858 [] Makar GL,KrugerJ,Joshi A.Advances in MagnesiumAlloys and Composites[M]. Pennsylvania: Metallurgical Society, 1988 [3] Cao C N, Zhang J Q. ntroduction to Electrochemical mpedance Spectroscopy [M]. Beijing: Science Press, 00 (, ±Õ. ¼ [M]. : ¼, 00) [] Liu L, Hu J M, Zhang J Q, et al. Evaluation of protectiveness of organic coatings by means of high-frequency ES measurement [J]. Corros. Sci. Prot. Technol., 010(): 35-38 (, Ý, ±Õ. Î ¼ ¹ Ð Â ± [J]. ³¼ ¹Ð. 010(): 35-38) [5] Kouisni L, Azzi M, Dalard F, et al. Phosphate coatings on magnesium alloy AM60: Part : Electrochemical behaviour in borate buffer solution[j]. Surf. Coat. Technol., 005, 19(-3): 39-6 [6] Bessone J B, Salinas D R, Mayer C E, et al. An ES study of aluminium barrier-type oxide films formed in different media[j]. Electrochim. Acta, 199, 37(1): 83-90 [7] Song G L, Andrej A, Wu X L, et al. Corrosion behaviour of AZ1, AZ501 and AZ91 in sodium chloride[j]. Corros. Sci., 1998, 0(10): 1769-1791 [8] Frederick, P S. Corrosion and protection of magnesium[a]. 37th Annual World Conference on Magnesium[C]. New York, 1980: 33-37 [9] Song Y, Shan D, Chen R, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[j]. Corros. Sci., 010, 5(5): 1830-1837 [30] Shi F, Yu Y C, Guo X F, et al. Corrosion behavior of ascast Mg 68 Zn 8 Y alloy with -phase[j]. Trans. Nonferrous Met. Soc. China., 009, 19(5): 1093-1097 [31] Rajan A, Naing A, W Z, et al. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[j]. Corros. Sci., 000, (8): 133-155 EFFECTS OF Sb ADDTON ON CORROSON PROPERTES OF Mg-5Al-Sr ALLOY LU Zili 1, ZHU Xiaochun 1, ZHOU Guibin 1, L Jian 1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 10016;. Jiangsu Favour Automotive New Stuff Sci-Tech Co., Ltd, Changshu 155 Abstract: Corrosion weight loss, polarization techniques, electrochemical impedance spectroscopy(es) and corrosion morphology were used to estimate the impact of Sb addition on corrosion properties of Mg-5Al-Sr alloys in 3.5% NaCl solution. Experimental results show that the initial corrosion types of Mg-5Al-Sr-xSb(x=0, 0.3, 0.6, 1.0) alloy in 3.5% NaCl solution is pitting corrosion. Pitting originated in massive ternary τ phase and granular SbSr phase. The larger amount and the bigger size of these phases corresponds to the poorer resistance. Mesh distribution Al Sr phase can become an effective barrierofcorrosion. Adding 0.3% Sb not only refines the α-mg matrix of Mg-5Al-Sr alloy, but also promotes the formation of Al Sr phase which distributed more in network. The corrosion potential of the alloy shifts positive obviously, the corrosion current density and corrosion rate reduces, thus, the corrosion resistance of the alloy is improved. Key words: Mg-5Al-Sr, Sb, corrosion property