Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)



Σχετικά έγγραφα
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Θέματα υπολογισμού στον πολιτισμό

Ορατότητα σε απλά πολύγωνα

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Θεωρία Γραφημάτων 11η Διάλεξη

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Θεωρία Γραφημάτων 8η Διάλεξη

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Φροντιστήριο 11 Λύσεις

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης

Θεωρία Γραφημάτων 10η Διάλεξη

y(p) = 0 y(p) = 0 y(p) = 0

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

χ(k n ) = n χ(c 5 ) = 3

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

E(G) 2(k 1) = 2k 3.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Π(n) : 1 + a + + a n = αν+1 1

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 9 η Διάλεξη Χρωματισμός γράφων Θεωρήματα Τεχνικές Εφαρμογές

Σειρά Προβλημάτων 1 Λύσεις

Επίπεδα Γραφήματα (planar graphs)

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος ΙΙ)

Χρωματισμός γραφημάτων

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος Ι)

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Κατανεμημένα Συστήματα Ι

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Σειρά Προβλημάτων 5 Λύσεις

1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα;

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Το πρόβλημα του σταθερού γάμου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2012


Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Σειρά Προβλημάτων 5 Λύσεις

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διμερή γραφήματα και ταιριάσματα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

... a b c d. b d a c

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Εργοστάσιο Ανακύκλωσης

ΧΡΩΜΑΤΙΣΜΟΣ ΓΡΑΦΗΜΑΤΩΝ

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Εισαγωγή στους Αλγορίθμους

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κατανεμημένα Συστήματα Ι

P G = 1 2 (x x 3 2 ) 2 [(y 1 + y y n ) 6 + (y y y 2 n ) 3 ] 2 (n6 + n 3 ) = n3 (n 3 + 1)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Κατανεμημένα Συστήματα Ι

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΤΗ ΔΙΕΘΝΗ ΦΟΙΤΗΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑ Α

Θεωρία Γραφημάτων 6η Διάλεξη

Στοιχεία Θεωρίας Γραφηµάτων (3)

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Αλγόριθμοι και Πολυπλοκότητα

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Μεταπτυχιακή εργασία ειδίκευσης

Σημειωματάριο Δευτέρας 4 Δεκ. 2017

A) στην 2 Β) στην 3 Γ) στην 4 Δ) στην 8 E) στην 16

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Λύσεις 4ης Σειράς Ασκήσεων

Κατανεμημένα Συστήματα Ι

ΕΦΑΡΜΟΓΗ ΕΠΑΥΞΗΜΕΝΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΓΙΑ ΔΙΑΔΡΑΣΤΙΚΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΜΟΝΤΕΛΩΝ CAD

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)

Transcript:

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε ποια σημεία πρέπει να τοποθετηθούν οι κάμερες; Ποιος είναι ο ελάχιστος απαιτούμενος αριθμός καμερών ώστε να είναι προστατευμένες οι καλλιτεχνικές;

Ιστορικό Το 1973, ο Victor Klee ασχολήθηκε με το εξής πρόβλημα: Υποθέτουμε ότι διαθέτουμε μια πινακοθήκη της οποίας ηκάτοψημπορείνααναπαρασταθεί από ένα πολύγωνο με n κορυφές. Ποιος είναι ο ελάχιστος αριθμός στατικών φυλάκων που απαιτούνται για την προστασία της αίθουσας;

Το θεώρημα Art Gallery Το 1975, ο Vasek Chvatal έλυσε το πρόβλημα του Klee χρησιμοποιώντας το εξής θεώρημα: Απαιτούνται περιστασιακά [n/3] φύλακες οι οποίοι πάντα είναι αρκετοί για να καλύψουν ένα πολύγωνο με n κορυφές.

Αποδείξεις Ο Chvatal έδωσε την πρώτη απόδειξη για το θεώρημά του το 1975 ηοποίαήταν λεπτομερής και χρησιμοποιούσε επαγωγή. Το 1978 ο Steve Fisk έδωσε μια αρκετά απλούστερη απόδειξη - που θα παρουσιάσουμε στη συνέχεια - ηοποία βασιζόταν στη διαίρεση του πολυγώνου σε τρίγωνα με χρήση διαγωνίων.

Διαγώνιος ενός απλού πολυγώνου P: Κάθε ευθύγραμμο τμήμα μεταξύ δύο μη γειτονικών Κορυφών του P που βρίσκεται πλήρως εντός του P. όχι ναι

Πιθανά πολύγωνα (art galleries)

Διαχωρισμός σε τρίγωνα Αρχικά, διαχωρίζουμε το πολύγωνο σε τρίγωνα και οι κορυφές του πολυγώνου γίνονται κορυφές των τριγώνων. Κάποιες κορυφές ανήκουν σε παραπάνω από ένα τρίγωνα. Προσέχουμε οι ακμές που προσθέτουμε να μην τέμνονται ούτε να βγαίνουν έξω από το περίγραμμα του πολυγώνου. Αυτό μπορούμε να το κάνουμε με πολλούς τρόπους.

Απλό πολύγωνο P

Μια τριγωνοποίηση του P

3-χρωματισμός Στη συνέχεια, εφαρμόζουμε ένα θεώρημα που λέει ότι οι κορυφές κάθε τριγωνοποιημένου πολυγώνου μπορούν να χρωματιστούν με 3 χρώματα. Χρησιμοποιώντας μόνο κόκκινο, μπλε και πράσινο μπορούμε να χρωματίσουμε όλες τις κορυφές του πολυγώνου έτσι ώστε γειτονικές κορυφές να μη λαμβάνουν το ίδιο χρώμα. Αν η διαδικασία γίνει σωστά, κάθε τρίγωνο καταλήγει με μία κορυφή από κάθε χρώμα.

Τοποθέτηση φυλάκων Διαλέγουμε ένα από τα χρώματα και τοποθετούμε φύλακα σε όσες κορυφές έχουν το χρώμα αυτό. Σε ένα σχήμα με n κορυφές, όπου το n δε διαιρείται ακριβώς με το 3, όλαταχρώματαδε θα έχουν ίδιο πλήθος κορυφών. Μας ενδιαφέρει ο ελάχιστος αριθμός φυλάκων που πρέπει να τοποθετήσουμε, οπότε επιλέγουμε ένα χρώμα με ελάχιστο αριθμό κορυφών.

Λύση του προβλήματος Αφού κάθε τρίγωνο έχει κάθε χρώμα στις 3 κορυφές του, γνωρίζουμε ότι οι φύλακες, αν τοποθετηθούν στις κορυφές ενός δοσμένου χρώματος, θα μπορούν να βλέπουν κάθε τρίγωνο, συλλογικά. Αφού κάθε τρίγωνο είναι προστατευμένο, το συνολικό πολύγωνο είναι επίσης προστατευμένο. Άρα, ένα πολύγωνο με n κορυφές μπορεί να προστατευτεί από [n/3] φύλακες.

Παραλλαγές Το 1980, οι Kahn, Klawe, και Kleitman απέδειξανότιοαριθμόςτωνφυλάκων που απαιτούνται και επαρκούν για την προστασία ενός παραλληλόγραμμου πολυγώνου με n κορυφές είναι [n/4].

Παραλλαγές Το 1982, ο Shermer εξέτασε μια πιο ρεαλιστική κάτοψη πινακοθήκης. Η αίθουσα περιείχε εμπόδια, τα οποία αναπαράστησε με οπές. Έλυσε το πρόβλημα για n κορυφές και h οπές.

Εφαρμογές Οι λύσεις που έχουν προταθεί για το Πρόβλημα της Πινακοθήκης έχουν αποτελέσει στρατηγικές για τη βελτίωση πολλών προβλημάτων (φυσικής) ασφάλειας. Για παράδειγμα, σε ποια σημεία, σε μια πανεπιστημιούπολη, είναι καλύτερο να τοποθετηθούν αστυνομικοί και πόσοι απαιτούνται;

Το Πρόβλημα της Πινακοθήκης κάμερα Πόσες κάμερες απαιτούνται για την εποπτεία της gallery και Πώς πρέπει να τοποθετηθούν;

Απλό μοντέλο πολυγώνου Αναπαριστούμε την πινακοθήκη σαν περιοχή περιορισμένη από κάποιο απλό πολύγωνο (όχι self-crossing). Δεν επιτρέπονται περιοχές με ασυνέχειες (τρύπες). κυρτό πολύγωνο μία κάμερα Αυθαίρετο πολύγωνο με n-γωνο Πρόβλημα: η εύρεση του ελάχιστου αριθμού καμερών για δοσμένο πολύγωνο είναι NP-hard (εκθετικός χρόνος).

Τριγωνοποίηση (Triangulation) Αποσυνθέτουμε το πολύγωνο σε κομμάτια που είναι εύκολο να τα εποπτεύσουμε. Προσθέτουμε διαγωνίους μεταξύ ζευγών κορυφών. Ανοιχτό ευθύγραμμο τμήμα που συνδέει δύο κορυφές και κείται στο εσωτερικό του πολυγώνου Εποπτεύουμε το πολύγωνο τοποθετώντας μία κάμερα σε κάθε τρίγωνο Τριγωνοποίηση: διαχωρισμός ενός πολυγώνου σε τρίγωνα μέσω μέγιστου συνόλου μη τεμνόμενων διαγωνίων.

# Τριγώνων v Θεώρημα 1 Κάθε απλό πολύγωνο έχει μια τριγωνοποίηση. Κάθε τριγωνοποίηση απλού πολυγώνου με n κορυφές περιέχει ακριβώς n 2 τρίγωνα. Απόδειξη Με επαγωγή. Είναι τετριμμένη η περίπτωση n = 3. Έστω ότι η δήλωση είναι αληθής για κάθε m < n. Επαγωγικό βήμα Έστω v η αριστερότερη κορυφή και u, w οι δύο γειτονικές της. w u P uw είναι εντός του P είναι διαγώνιος. Διαφορετικά, το τρίγωνο που ορίζεται από τις u, v, w περιέχει τουλάχιστον μία κορυφή. Έστω v η πλησιέστερη στη v. w Τότε vv είναι διαγώνιος. v Η διαγώνιος χωρίζει το πολύγωνο σε δύο (που τριγωνοποιούνται λόγω της επαγωγής). v u

Απόδειξη (συνέχεια) # τριγώνων = n 2 Κάθε διαγώνιος χωρίζει το P σε δύο απλά πολύγωνα με k και m κορυφές, αντίστοιχα. Λόγω επαγωγής, τα δύο αυτά πολύγωνα τριγωνοποιούνται. Αποσυντίθενται σε k 2 και m 2 τρίγωνα, αντίστοιχα. Οι κορυφές που ορίζουν τη διαγώνιο εμφανίζονται μία φορά σε κάθε πολύγωνο. Οι υπόλοιπες κορυφές του P εμφανίζονται η κάθε μία ακριβώς σε ένα υπο-πολύγωνο. Επομένως k + m = n + 2. Από επαγωγή, η τριγωνοποίηση του P έχει (k 2) + (m 2) = n 2 τρίγωνα.

# καμερών για την πινακοθήκη Θεώρημα 1 n 2 κάμερες μπορούν να εποπτεύσουν ένα απλό πολύγωνο. Μια κάμερα σε διαγώνιο εποπτεύει δύο τρίγωνα. # καμερών μπορεί να μειωθεί σε περίπου n/2. Μια κορυφή ανήκει σε πολλά τρίγωνα. Οπότε η τοποθέτηση καμερών σε κορυφές δίνει ακόμα καλύτερα αποτελέσματα

3-χρωματισμός Ιδέα: Διαλέγουμε ένα σύνολο κορυφών, έτσι ώστε κάθε τρίγωνο να έχει τουλάχιστον μία κορυφή του στο σύνολο αυτό. Αναθέτουμε σε κάθε κορυφή ένα χρώμα: ροζ, πράσινο, ή κίτρινο. Κορυφές που συνδέονται με ακμή ή με διαγώνιο πρέπει να λάβουν διαφορετικά χρώματα. Επομένως οι κορυφές κάθε τριγώνου θα έχουν 3 διαφορετικά χρώματα. Αν υπάρχει 3-χρωματισμός, τοποθετούμε κάμερες σε όλες τις κορυφές ίδιου χρώματος. Επιλέγουμε τη μικρότερη χρωματική κλάση για την τοποθέτηση καμερών. n/3 κάμερες.

Το δυικό γράφημα

Το δυικό γράφημα Το δυικό γράφημα G έχει μία κορυφή μέσα σε κάθε τρίγωνο και ακμή μεταξύ ζεύγους κορυφών των οποίων τα αντίστοιχα τρίγωνα έχουν κοινή κάποια διαγώνιο. Το G είναι συνεκτικό. Κάθε διαγώνιος κόβει το πολύγωνο σε δύο. Κάθε διαγώνιος αντιστοιχεί σε ακμή στο δυικό γράφημα. Απομάκρυνση οποιασδήποτε ακμής από το δυικό γράφημα το κάνει μη συνεκτικό. Επομένως το δυικό γράφημα είναι δέντρο.

Ένας αλγόριθμος 3-χρωματισμού Βρίσκουμε έναν 3-χρωματισμό διασχίζοντας το γράφημα (π.χ., με DFS). Κατά το DFS, πρέπει: u Όλες οι κορυφές του πολυγώνου σε τρίγωνα που έχουμε ήδη συναντήσει χρωματίζονται ώστε γειτονικές κορυφές να μην έχουν το ίδιο χρώμα. v Ξεκινάμε DFS σε κάποια κορυφή του G. Χρωματίζουμε τις 3 κορυφές του αντίστοιχου τριγώνου. Έστω ότι πάμε στη v από τη u. Τα τρίγωνά τους T(v) και T(u) είναι γειτονικά. Μόνο μια κορυφή του T(v) δεν χρωματίζεται. Το χρώμα της καθορίζεται μονοσήμαντα. Αφού το G είναι δέντρο, δεν έχουμε επισκεφθεί ακόμα τις άλλες γειτονικές κορυφές της v. Αλλιώς υπάρχει κύκλος (αντίφαση αφού το G είναι δέντρο.) Δίνουμε το χρώμα στην v.

Μια χειρότερη περίπτωση Ένα τριγωνοποιημένο πολύγωνο είναι πάντα 3-χρωματίσιμο. Κάθε απλό πολύγωνο μπορεί να φυλαχθεί με n/3 κάμερες. n/3 ακίδες Δεν υπάρχει θέση που να μπορεί μια κάμερα να εποπτεύσει δύο ακίδες. n/3 κάμερες είναι αναγκαίες. Η προσέγγιση του 3-χρωματισμού είναι βέλτιστη στη χειρότερη περίπτωση.

Θεώρημα για το Πρόβλημα της Πινακοθήκης Για απλό πολύγωνο με n κορυφές, n/3 κάμερες αρκούν ώστε κάθε εσωτερικό σημείο να είναι ορατό από τουλάχιστον μία από τις κάμερες αυτές. Λύση στο Art Gallery Problem 1. Τριγωνοποίηση απλού πολυγώνου με έναν γρήγορο αλγόριθμο. DCEL αναπαράσταση για το απλό πολύγωνο ώστε να επισκεπτόμαστε γειτονικά τρίγωνα σε σταθερό χρόνο. 2. Παραγωγή ενός 3-χρωματισμού με DFS. 3. Τοποθέτηση καμερών σύμφωνα με τη μικρότερη χρωματική κλάση.

[Chvătal 1975, Fisk 1978]: n/3 φύλακες είναι πάντα επαρκείς και μερικές φορές αναγκαίοι για την παρακολούθηση ενός απλού πολυγώνου με n κορυφές. Απόδειξη: Αναγκαιότητα: Επάρκεια: 1. T = τριγωνοποίηση του πολυγώνου. 2. 3-χρωματισμός των κορυφών του T (ώστε οι κορυφές κάθε τριγώνου να λαμβάνουν 3 διαφορετικά χρώματα). Αυτό γίνεται αν διασχίσουμε με DFS το δυικό δέντρο του T. 3. Επιλογή του λιγότερο χρησιμοποιούμενου χρώματος (αυθαίρετη επιλογή σε περίπτωση ισοπαλίας). 4. Τοποθέτηση φύλακα στις κορυφές με το επιλεγμένο χρώμα. (Κάθε τρίγωνο έχει φύλακα.)