ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Σχετικά έγγραφα
ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

HY121 Ηλεκτρικά Κυκλώματα

Capacitors - Capacitance, Charge and Potential Difference

the total number of electrons passing through the lamp.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

[1] P Q. Fig. 3.1

Μικροηλεκτρονική - VLSI

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Μικροηλεκτρονική - VLSI

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Μικροηλεκτρονική - VLSI

Electronic Analysis of CMOS Logic Gates

Matrices and Determinants

2 Composition. Invertible Mappings

Srednicki Chapter 55

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SMD Transient Voltage Suppressors

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

TMA4115 Matematikk 3

CMOS Technology for Computer Architects

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS. Εαρινό Εξάμηνο ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Μικροηλεκτρονική - VLSI

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

Μικροηλεκτρονική - VLSI

Section 8.3 Trigonometric Equations

Summary of Specifications

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

NMBTC.COM /

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Metal Oxide Varistors (MOV) Data Sheet

Monolithic Crystal Filters (M.C.F.)

C.S. 430 Assignment 6, Sample Solutions

Section 9.2 Polar Equations and Graphs

Instruction Execution Times

EE101: Resonance in RLC circuits

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Statistical Inference I Locally most powerful tests

Assalamu `alaikum wr. wb.

Modbus basic setup notes for IO-Link AL1xxx Master Block

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Homework 8 Model Solution Section

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

First Sensor Quad APD Data Sheet Part Description QA TO Order #

5.4 The Poisson Distribution.

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Homework 3 Solutions

Calculating the propagation delay of coaxial cable

Strain gauge and rosettes

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Μικροηλεκτρονική - VLSI

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

Notes on the Open Economy

Démographie spatiale/spatial Demography

Thermistor (NTC /PTC)

The challenges of non-stable predicates

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Second Order RLC Filters

ΗΜΥ 307 ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ. Εαρινό Εξάμηνο ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

Math 6 SL Probability Distributions Practice Test Mark Scheme

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Areas and Lengths in Polar Coordinates

Abstract Storage Devices

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Example Sheet 3 Solutions

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

derivation of the Laplacian from rectangular to spherical coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Parametrized Surfaces

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

PARTIAL NOTES for 6.1 Trigonometric Identities

Transcript:

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017 ΔΙΑΛΕΞΗ 2: ΑΞΙΟΛΟΓΗΣΗ ΨΗΦΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟΧΟΙ ΣΧΕΔΙΑΣΗΣ ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) [Προσαρμογή από Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al. ]

Overview of Last Lecture l Digital integrated circuits experience exponential growth in complexity (Moore s law) and performance l Design in the deep submicron (DSM) era creates new challenges Devices become somewhat different Global clocking becomes more challenging Interconnect effects play a more significant role Power dissipation may be the limiting factor l Our goal in this class will be to understand and design digital integrated circuits in the deep submicron era l Today we look at some basic design metrics ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.2 Θεοχαρίδης, ΗΜΥ, 2017

Fundamental Design Metrics l Functionality l Cost NRE (fixed) costs - design effort RE (variable) costs - cost of parts, assembly, test l Reliability, robustness Noise margins Noise immunity l Performance Speed (delay) Power consumption; energy l Time-to-market ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.3 Θεοχαρίδης, ΗΜΥ, 2017

Cost of Integrated Circuits l l NRE (non-recurring engineering) costs Fixed cost to produce the design design effort design verification effort mask generation Influenced by the design complexity and designer productivity More pronounced for small volume products Recurring costs proportional to product volume silicon processing also proportional to chip area assembly (packaging) test fixed cost cost per IC = variable cost per IC + ----------------- volume ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.4 Θεοχαρίδης, ΗΜΥ, 2017

NRE Cost is Increasing ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.5 Θεοχαρίδης, ΗΜΥ, 2017

Silicon Wafer Single die Wafer From http://www.amd.com ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.6 Θεοχαρίδης, ΗΜΥ, 2017

Recurring Costs cost of die + cost of die test + cost of packaging variable cost = ---------------------------------------------------------------- final test yield cost of wafer cost of die = ----------------------------------- dies per wafer die yield p (wafer diameter/2) 2 p wafer diameter dies per wafer = ---------------------------------- - --------------------------- die area Ö 2 die area die yield = (1 + (defects per unit area die area)/a) -a ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.7 Θεοχαρίδης, ΗΜΥ, 2017

Yield Example q Example wafer size of 12 inches, die size of 2.5 cm 2, 1 defects/cm 2, a = 3 (measure of manufacturing process complexity) 252 dies/wafer (remember, wafers round & dies square) die yield of 16% 252 x 16% = only 40 dies/wafer die yield! q Die cost is strong function of die area l proportional to the third or fourth power of the die area ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.8 Θεοχαρίδης, ΗΜΥ, 2017

Reliability Noise in Digital Integrated Circuits l Noise unwanted variations of voltages and currents at the logic nodes q from two wires placed side by side capacitive coupling - voltage change on one wire can influence signal on the neighboring wire - cross talk inductive coupling - current change on one wire can influence signal on the neighboring wire v(t) i(t) q from noise on the power and ground supply rails can influence signal levels in the gate V DD ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.9 Θεοχαρίδης, ΗΜΥ, 2017

Example of Capacitive Coupling l Signal wire glitches as large as 80% of the supply voltage will be common due to crosstalk between neighboring wires as feature sizes continue to scale Crosstalk vs. Technology Pulsed Signal 0.12m CMOS 0.16m CMOS Black line quiet Red lines pulsed Glitches strength vs technology 0.25m CMOS 0.35m CMOS From Dunlop, Lucent, 2000 ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.10 Θεοχαρίδης, ΗΜΥ, 2017

Static Gate Behavior l Steady-state parameters of a gate static behavior tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances. l Digital circuits perform operations on Boolean variables x Î{0,1} l A logical variable is associated with a nominal voltage level for each logic state 1 Û V OH and 0 Û V OL V(x) V(y) V OH =! (V OL ) V OL =! (V OH ) q Difference between V OH and V OL is the logic or signal swing V sw ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.11 Θεοχαρίδης, ΗΜΥ, 2017

DC Operation Voltage Transfer Characteristics (VTC) q Plot of output voltage as a function of the input voltage V(y) V(x) V(y) V OH = f (V IL ) f V(y)=V(x) V M Switching Threshold V OL = f (V IH ) V IL V IH V(x) ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.12 Θεοχαρίδης, ΗΜΥ, 2017

Mapping Logic Levels to the Voltage Domain q The regions of acceptable high and low voltages are delimited by V IH and V IL that represent the points on the VTC curve where the gain = -1 "1" V OH V IH V(y) V OH Slope = -1 Undefined Region V IL Slope = -1 "0" V OL V OL V IL V IH V(x) ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.13 Θεοχαρίδης, ΗΜΥ, 2017

Noise Margins q For robust circuits, want the 0 and 1 intervals to be as large as possible V DD V DD V OH Noise Margin High Noise Margin Low V OL NM H = V OH - V IH NM L = V IL - V OL "1" V IH Undefined Region V IL "0" Gnd Gate Output Gnd Gate Input q Large noise margins are desirable, but not sufficient ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.14 Θεοχαρίδης, ΗΜΥ, 2017

The Regenerative Property q A gate with regenerative property ensures that a disturbed signal converges back to a nominal voltage level v 0 v 1 v 2 v 3 v 4 v 5 v 6 5 v 2 V (volts) 3 1 v 0 v 1-1 0 2 4 6 8 10 t (nsec) ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.15 Θεοχαρίδης, ΗΜΥ, 2017

Conditions for Regeneration v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 1 = f(v 0 ) Þ v 1 = finv(v 2 ) v 3 f(v) finv(v) v 1 v 1 finv(v) v 3 f(v) v 2 v 0 v 0 v 2 Regenerative Gate Nonregenerative Gate q To be regenerative, the VTC must have a transient region with a gain greater than 1 (in absolute value) bordered by two valid zones where the gain is smaller than 1. Such a gate has two stable operating points. ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.16 Θεοχαρίδης, ΗΜΥ, 2017

Noise Immunity q Noise margin expresses the ability of a circuit to overpower a noise source noise sources: supply noise, cross talk, interference, offset q Absolute noise margin values are deceptive a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage) l Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise l For good noise immunity, the signal swing (i.e., the difference between V OH and V OL ) and the noise margin have to be large enough to overpower the impact of fixed sources of noise ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.17 Θεοχαρίδης, ΗΜΥ, 2017

Directivity l A gate must be undirectional : changes in an output level should not appear at any unchanging input of the same circuit In real circuits full directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs) l Key metrics: output impedance of the driver and input impedance of the receiver ideally, the output impedance of the driver should be zero input impedance of the receiver should be infinity ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.18 Θεοχαρίδης, ΗΜΥ, 2017

Fan-In and Fan-Out q Fan-out number of load gates connected to the output of the driving gate gates with large fan-out are slower N q Fan-in the number of inputs to the gate gates with large fan-in are bigger and slower M ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.19 Θεοχαρίδης, ΗΜΥ, 2017

The Ideal Inverter l The ideal gate should have infinite gain in the transition region a gate threshold located in the middle of the logic swing high and low noise margins equal to half the swing input and output impedances of infinity and zero, resp. V out R i = R o = 0 Fanout = NM H = NM L = VDD/2 ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.20 Θεοχαρίδης, ΗΜΥ, 2017 V in

The Ideal Inverter l The ideal gate should have infinite gain in the transition region a gate threshold located in the middle of the logic swing high and low noise margins equal to half the swing input and output impedances of infinity and zero, resp. V out R i = R o = 0 g = - Fanout = NM H = NM L = VDD/2 ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.21 Θεοχαρίδης, ΗΜΥ, 2017 V in

An Old-time Inverter 5.0 4.0 NM L 3.0 (V) V out 2.0 1.0 V M NM H 0.0 1.0 2.0 3.0 4.0 5.0 V in (V) ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.22 Θεοχαρίδης, ΗΜΥ, 2017

Delay Definitions V in V out V in input waveform Propagation delay? t V out output waveform signal slopes? t ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.23 Θεοχαρίδης, ΗΜΥ, 2017

Delay Definitions V in V out input waveform V in 50% Propagation delay t p = (t phl + t plh )/2 t phl t plh t V out output waveform 50% 90% signal slopes t f 10% t r t ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.24 Θεοχαρίδης, ΗΜΥ, 2017

Modeling Propagation Delay l Model circuit as first-order RC network v out (t) = (1 e t/t )V R v out where t = RC v in C Time to reach 50% point is t = ln(2) t = 0.69 t Time to reach 90% point is t = ln(9) t = 2.2 t q Matches the delay of an inverter gate ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.25 Θεοχαρίδης, ΗΜΥ, 2017

A First-Order RC Network R v out v in C t p = ln (2) t = 0.69 RC Important model matches delay of inverter ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.26 Θεοχαρίδης, ΗΜΥ, 2017

A First-Order RC Network (reference!) R v out v in C L E 0 1 T T Vdd = ò Pt ()dt = V i t dd ò supply ()dt = V C dv dd ò = C V 2 L out L dd 0 0 0 E cap T T Vdd = ò P cap ()dt t = ò V out i cap ()dt t = ò C L V out dv = out 0 0 0 1 2 -- C V 2 L dd ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.27 Θεοχαρίδης, ΗΜΥ, 2017

Power and Energy Dissipation l Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates supply line sizing (determined by peak power) P peak = V dd i peak battery lifetime (determined by average power dissipation) p(t) = v(t)i(t) = V dd i(t) P avg = 1/T ò p(t) dt = V dd /T ò i dd (t) dt packaging and cooling requirements l Two important components: static and dynamic E (joules) = C L V dd 2 P 0 1 + t sc V dd I peak P 0 1 + V dd I leakage f 0 1 = P 0 1 * f clock P (watts) = C L V dd2 f 0 1 + t sc V dd I peak f 0 1 + V dd I leakage ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.28 Θεοχαρίδης, ΗΜΥ, 2017

Power and Energy Dissipation l Propagation delay and the power consumption of a gate are related l Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors the faster the energy transfer (higher power dissipation) the faster the gate q For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant Power-delay product (PDP) energy consumed by the gate per switching event q An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is Energy-delay product (EDP) = power-delay 2 ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.29 Θεοχαρίδης, ΗΜΥ, 2017

Summary Today s Lecture l Digital integrated circuits have come a long way and still have quite some potential left for the coming decades l Some interesting challenges ahead Getting a clear perspective on the challenges and potential solutions is the purpose of this course l Understanding the design metrics that govern digital design is crucial Cost, reliability, speed, power and energy dissipation ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.30 Θεοχαρίδης, ΗΜΥ, 2017

Design Abstraction Levels SYSTEM + MODULE GATE CIRCUIT V in V out S n+ G DEVICE D n+ ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.31 Θεοχαρίδης, ΗΜΥ, 2017

Device: The MOS Transistor Gate oxide Source n+ Polysilicon Gate Drain n+ Field-Oxide (SiO 2 ) p substrate p+ stopper Bulk contact CROSS-SECTION of NMOS Transistor ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.32 Θεοχαρίδης, ΗΜΥ, 2017

Circuit: The CMOS Inverter V DD V in V out C L NEXT Lecture! ΗΜΥ307 Δ2 ΕΙΣΑΓΩΓΗ.33 Θεοχαρίδης, ΗΜΥ, 2017