PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

Σχετικά έγγραφα
PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

Επίλυση προβλημάτων με αναζήτηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

Τεχνητή Νοημοσύνη. 2η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)

/ / 38

9. Κόκκινα-Μαύρα Δέντρα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης

Αλγόριθµοι και Πολυπλοκότητα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

Μεθοδολογίες παρεµβολής σε DTM.

Ασκήσεις μελέτης της 6 ης διάλεξης

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

5 Γενική µορφή εξίσωσης ευθείας

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Τσάπελη Φανή ΑΜ: Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

3 Αναδροµή και Επαγωγή

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

P = 0 1/2 1/ /2 1/

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη

Θεωρία Λήψης Αποφάσεων

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Άσκηση 2: Λαβύρινθοι και ρομπότ Α. (Σχεδιασμός χώρου καταστάσεων) Ενδεικτική επίλυση

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Επίλυση Προβλημάτων 1

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11:00-14:00

HY118- ιακριτά Μαθηµατικά

Οδηγίες χρήσης του λογισµικού "Πολλαπλασιασµός"

Περιγραφή Προβλημάτων

* τη µήτρα. Κεφάλαιο 1o

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

Λύσεις Σειράς Ασκήσεων 4

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

επανάληψης» υπάρχουν;

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.


Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

Θέμα 1: Robbie και Αναζήτηση

Προγραμματισμός Ι (ΗΥ120)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

ΠΛΗ111. Ανοιξη Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης


3. Παίγνια Αλληλουχίας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

Κύµα µε αρχική φάση. αυτή είναι και η µόνη περίπτωση που περιγράφει το σχολικό βιβλίο και συνεπώς η πλειοψηφία των περιπτώσεων που µελετάµε. max.

Αλγόριθµοι Γραφηµάτων

2. Στοιχεία Πολυδιάστατων Κατανοµών

ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδηµαϊκό Έτος: 2011-2012

ΠΡΟΒΛΗΜΑ 1 Έχουµε στην διάθεσή µας δύο δοχεία, που κάθε ένα έχει χωρητικότητα 3 και 4 λίτρα, και µία βρύση µε νερό.. Πρέπει να βρούµε έναν τρόπο ώστε να υπολογίσουµε ακριβώς 2 λίτρα. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: Και τα δυο δοχεία είναι γεµάτα άρα (3,4) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: ένα δοχείο έχει 2 λίτρα νερό (2,y) ή (x,2) όπου x,y οποιαδήποτε τιµή στο επιτρεπτό εύρος τιµών (β) ΤΕΛΕΣΤΕΣ ΜΕΤΑΒΑΣΗΣ: µπορούµε να εκτελέσουµε 6 ενέργειες - Πλήρες γέµισµα του δοχείου Α - Πλήρες γέµισµα του δοχείου Β - Πλήρες άδειασµα του δοχείου Α στο έδαφος - Πλήρες άδειασµα του δοχείου Β στο έδαφος - Άδειασµα νερού από το Α στο Β - Άδειασµα νερού από το Β στο Α Τελεστές Περιγραφή ενέργειας Προϋποθέσεις Αποτελέσματα Τ1 Γέμισμα του Α x<3 (3,y) Τ2 Γέμισμα του Β y<4 (x,4) Τ3 Άδειασμα του Α x>0 (0,y) Τ4 Άδειασμα του Β y>0 (x,0) Τ5 Άδειασμα του Α στο Β x>0,y<4 (x-(4-y),4) αν x 4-y (0,y+x) αν x<4-y Τ6 Άδειασμα του Β στο Α y>0,x<3 (3,y-(3-x)) αν y 3-x (y+x,0) αν y<3-x

(γ) Γράφος καταστάσεων: εν αναφέρονται οι τελεστές µετάβασης λόγω πολυπλοκότητας του γράφου. Όπως είναι φανερό από τον γράφο καταστάσεων στις καταστάσεις (1, 1),(1,2),(1,3), (2,1), (2,2), (2,3), δεν υπάρχουν εισερχόµενες ακµές. Άρα οι (1, 1),(1,2),(1,3), (2,1), (2,2), (2,3) είναι ανέφικτες καταστάσεις(σηµειωµένες µε κόκκινο χρώµα στο σχήµα). (δ) Χώρος καταστάσεων είναι το σύνολο S όλων των έγκυρων καταστάσεων ενός προβλήματος και οι δυνατές μεταβάσεις μεταξύ τους. Παριστάνεται σαν ένας γράφος. S={ (x,y): x Є {0,1,2,3}, y Є {0,1,2,3,4} } Χώρος αναζήτησης είναι το υποσύνολο SP του χώρου καταστάσεων S που είναι προσβάσιμες από την αρχική SP S. SP=S- { (1, 1),(1,2),(1,3) (2,1), (2,2), (2,3)} Ο χώρος καταστάσεων για το πρόβληµα 1, όταν αρχικά τα δοχεία έχουν περιεκτικότητα ίση µε 2 και 1 λίτρο για το πρώτο και το δεύτερο δοχείο αντίστοιχα δηλαδή (2,1) δεν αλλάζει, αφού η αρχική µας κατάσταση είναι εφικτή. Το µόνο που αλλάζει είναι ο χώρος αναζήτησης.

(ε) Πλήρες δέντρο αναζήτησης: Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου (εναλλακτικά που ήδη έχουν εµφανιστεί προηγουµένως στην ίδια διαδροµή). Αυτές οι καταστάσεις δεν αναπτύσσονται, διότι ουσιαστικά επαναλαµβάνουν το προηγούµενο υποδέντρο. Οι καταστάσεις µε γαλάζιο χρώµα είναι ίδιες καταστάσεις στο ίδιο επίπεδο. Οι παραπάνω είναι συµβάσεις που κάνουµε απλά και µόνο για τον πιο αποδοτικό σχεδιασµό του δέντρου. Οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα.

ΠΡΟΒΛΗΜΑ 2 Αντιµετωπίζουµε το ακόλουθο πρόβληµα εύρεσης µονοπατιού. Κάποιος µπορεί να κινηθεί από ένα µικρό τρίγωνο σε ένα άλλο εάν αυτά µοιράζονται από κοινού έναν κόµβο (π.χ., ο A µπορεί να πάει στον Β ή στον C). Όµως, ο στόχος G µπορεί να προσπελαστεί µόνο από τον F. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: Ξεκινάµε από τον κόµβο Α που βρίσκεται στο επίπεδο 0.(Α,0) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: Φτάνουµε στον κόµβο G που βρίσκεται στο επίπεδο 1 (G,1)

(β) Τελεστές Περιγραφή ενέργειας(κινήσεις) Προϋποθέσεις Αποτελέσματα Τ1 1 επίπεδο κάτω και 1 γράμμα μπροστά y<3 (x+1,y+1) Τ2 1 επίπεδο κάτω και 2 γράμματα μπροστά y<3 (x+2,y+1) Τ3 1 επίπεδο κάτω και 3 γράμματα μπροστά y<3 (x+3,y+1) Τ4 1 επίπεδο κάτω και 4 γράμματα μπροστά y<3 (x+4,y+1) Τ5 παράλληλα και 1 γράμμα μπροστά y=1 ή y=2 (x+1,y) Τ6 παράλληλα και 2 γράμματα μπροστά y=1 ή y=2 (x+2,y) T7 παράλληλα και 3 γράμματα μπροστά y=1 ή y=2 (x-1,y) T8 παράλληλα και 4 γράμματα μπροστά y=1 ή y=2 (x-2,y) T9 1 επίπεδο πάνω και 1 γράμμα μπροστά y>0 (x-1,y-1) T10 1 επίπεδο πάνω και 2 γράμματα μπροστά y>0 (x-2,y-1) T11 1 επίπεδο πάνω και 3 γράμματα μπροστά y>0 (x-3,y-1) T12 1 επίπεδο πάνω και 4 γράμματα μπροστά y>0 (x-4,y-1) T13 1 επίπεδο πάνω και 1 γράμμα μπροστά y>0, x=f (x+1,y-1) Με την έννοια «1 γράµµα µπροστά» εννοούµε ένα γράµµα µε αλφαβητική σειρά µπροστά. ηλαδή από το Α Β κτλ. Με τον τρόπο αυτό ξέρουµε πάντα σε ποιο τρίγωνο θα προχωρήσουµε (αν επιτρέπεται) και ορίζουµε καλύτερα την έννοια του κόµβου µεταξύ των τριγώνων. Η θεώρηση που έχει γίνει για τα επίπεδα απεικονίζεται στο αρχικό σχήµα.

(γ) Γράφος καταστάσεων: Όπως είναι φανερό από τον γράφο καταστάσεων ότι δεν υπάρχουν ανέφικτες καταστάσεις, αφού σε όλες τις καταστάσεις υπάρχουν εισερχόµενες ακµές. (δ) Χώρος καταστάσεων S={ (x,y): x Є {A,B,C,D,E,F,G,H}, y Є {0,1,2,3} } Χώρος αναζήτησης SP = S = (x,y): x Є {A,B,C,D,E,F,G,H}, y Є {0,1,2,3} }

(ε) Πλήρες δέντρο αναζήτησης: Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου (εναλλακτικά που ήδη έχουν εµφανιστεί προηγουµένως στην ίδια διαδροµή). Αυτές οι καταστάσεις δεν αναπτύσσονται, διότι ουσιαστικά επαναλαµβάνουν το προηγούµενο υποδέντρο. Οι καταστάσεις µε γαλάζιο χρώµα είναι ίδιες καταστάσεις στο ίδιο επίπεδο. εν σηµειώσαµε την (F,2) µε γαλάζιο στο 2 ο επίπεδο γιατί σε παρακάτω ερώτηµα ζητείται να βρεθούν δυο λύσεις και έτσι την αναπτύσσουµε και από τα δεξιά.οι παραπάνω είναι συµβάσεις που κάνουµε απλά και µόνο για τον πιο αποδοτικό σχεδιασµό του δέντρου. Οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα. Το πραγµατικό κόστος των λύσεων A-B-F-G και A-C-F-G είναι 1+1+3=5(σύµφωνα µε το κόστος των κινήσεων που έχει οριστεί για το πρόβληµα)

ΠΡΟΒΛΗΜΑ 3 Θεωρούµε το ακόλουθο παιχνίδι όπου ο παίκτης Α κινείται πρώτος. Οι δύο παίκτες παίζουν εναλλάξ. Κάθε παίκτης πρέπει να κινηθεί σε ένα ανοικτό γειτονικό χώρο. Εάν ο αντίπαλος απασχολεί ένα γειτονικό χώρο, τότε ο παίκτης πρέπει να «πηδήξει» πάνω από τον αντίπαλο στο επόµενο ανοικτό χώρο, εάν υπάρχει (για παράδειγµα, εάν ο Α βρίσκεται στο 1 και ο Β στο 2, τότε ο Α πρέπει να πηδήξει στο 3). Το παιχνίδι τερµατίζεται όταν ο Α φτάσει στο 4, ή ο Β φτάσει στο 1. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: παίζει ο παίκτης Α, δηλαδή (1,4) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: ο Α φτάνει στο 4 ή ο Β φτάνει στο 1, δηλαδή (4,y) ή ( x,1) (β) Τελεστές Περιγραφή ενέργειας Προϋποθέσεις Αποτελέσματα Τ1 Μετακίνηση Α 1 θέση δεξιά x<4, y x+1 (x+1,y) Τ2 Μετακίνηση Α 2 θέσεις δεξιά y<3, y = x+1 (x+2,y) Τ3 Μετακίνηση Α 1 θέση αριστερά x>1, y x-1 (x-1,y) Τ4 Μετακίνηση Α 2 θέσεις αριστερά x>2, y = x-1 (x-2,y) Τ5 Μετακίνηση Β 1 θέση δεξιά y<4,x y+1 (x,y+1) Τ6 Μετακίνηση Β 2 θέσεις δεξιά y<3, x = y+1 (x,y+2) T7 Μετακίνηση Β 1 θέση αριστερά y>1, x y-1 (x,y-1) T8 Μετακίνηση Β 2 θέσεις αριστερά y>2, x = y-1 (x,y-2)

(γ) Γράφος καταστάσεων: Όπως είναι φανερό από τον γράφο καταστάσεων ότι δεν υπάρχουν ανέφικτες καταστάσεις, αφού σε όλες τις καταστάσεις υπάρχουν εισερχόµενες ακµές. (δ) Χώρος καταστάσεων S={ (x,y): x Є {1,2,3,4}, y Є {1,2,3,4} } Χώρος αναζήτησης SP = S ={ (x,y): x Є {1,2,3,4}, y Є {1,2,3,4} }

(ε) Πλήρες δέντρο αναζήτησης: Θεωρούµε ότι παίζει πρώτος ο παίκτης Α. Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου.οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα.