2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.
|
|
- Βενέδικτος Καλαμογδάρτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε, θα περιέχει την πραγµατική τιµή της άγνωστης παραµέτρου. Τα όρια ανοχής διαφέρουν από τα διαστήµατα εµπιστοσύνης κατά το ότι τα όρια ανοχής παρέχουν ένα διάστηµα µέσα στο οποίο περιλαµβάνεται ένα ποσοστό των τιµών του πληθυσµού τουλάχιστον ίσο µε 100 % µε πιθανότητα τουλάχιστον ίση µε 1 α. Μία τυπική εφαρµογή των ορίων ανοχής αποτελεί η περίπτωση όπου, προκειµένου να επιλέξουµε ένα τυχαίο δείγµα n παρατηρήσεων Χ 1, Χ 2,, Χ n πάνω σε µία τυχαία µεταβλητή Χ, θέλουµε να ξέρουµε πόσο µεγάλο θα πρέπει να είναι ώστε να µπορούµε να είµαστε τουλάχιστον 95% βέβαιοι ότι τουλάχιστον το 90% του πληθυσµού θα περιλαµβάνεται µεταξύ της µικρότερης και της µεγαλύτερης παρατήρησης του δείγµατος. Γενικεύοντας, θα µπορούσαµε να θεωρήσουµε περιπτώσεις όπου επιθυµούµε να προσδιορίσουµε το µέγεθος n ενός τυχαίου δείγµατος ώστε, µε πιθανότητα τουλάχιστον ίση µε 1 α, το τυχαίο διάστηµα [X (s), X ] να περιέχει ένα ποσοστό του πληθυσµού τουλάχιστον ίσο µε 100 %. Συνήθως, το s εκφράζεται µέσω του n µε την µορφή n+1 m, όπου m γνωστή σταθερή τιµή, οπότε ενδιαφερόµαστε το διάστηµα [X (n-m+, X ] να περιέχει τουλάχιστον 100 % των τιµών του πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. (n-m X + ονοµάζεται 1
2 Οι τιµές των r και m ορίζονται έτσι ώστε 0 r n + 1, 0 m n + 1. Αν m = 0, ως πάνω όριο ανοχής ορίζεται το +, (n+ δηλαδή, X = X = +. Αν m = n+1 ή r = 0, ως κάτω όριο ανοχής ορίζεται το, δηλαδή, (0) X =. Ο συµβατικός αυτός ορισµός επιτρέπει τον προσδιορισµό µονόπλευρων ορίων ανοχής. Αυτά είναι της µορφής «τουλάχιστον 100% των τιµών του πληθυσµού είναι τουλάχιστον ίσες µε την τιµή X, µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%» ή της µορφής «τουλάχιστον 100% των τιµών του πληθυσµού είναι το πολύ ίσες µε την τιµή τουλάχιστον ίση µε 100(1 α)%». (n-1-m) X, µε πιθανότητα Τα µονόπλευρα όρια ανοχής ταυτίζονται µε τα µονόπλευρα διαστήµατα εµπιστοσύνης για τα ποσοστιαία σηµεία του πληθυσµού, όπως φαίνεται στα επόµενα. Η µέθοδος προσδιορισµού των ορίων ανοχής, η οποία περιγράφεται στην συνέχεια, βασίζεται σε δείγµατα που έχουν ληφθεί από άπειρους πληθυσµούς µε ή χωρίς επανάθεση, ή σε δείγµατα από πεπερασµένους πληθυσµούς που έχουν ληφθεί µε επανάθεση, ώστε να υπάρχει ανεξαρτησία µεταξύ των Χ 1, Χ 2,, Χ n. Στην περίπτωση δειγµάτων που έχουν ληφθεί µε επανάθεση από πεπερασµένο πληθυσµό και των οποίων το µέγεθος είναι µικρό σε σύγκριση µε αυτό του πληθυσµού, τα όρια ανοχής που προσδιορίζονται µε την µέθοδο αυτή δεν είναι ακριβή, αλλά ισχύουν κατά προσέγγιση. Η κλίµακα µέτρησης είναι τουλάχιστον κλίµακα διάταξης. Προσδιορισµός του Πάνω Ορίου Ανοχής: Ο προσδιορισµός του άνω ορίου ανοχής συνίσταται στον προσδιορισµό του µεγέθους n του (n-m+ δείγµατος, το οποίο απαιτείται ώστε το διάστηµα (, X ] να 2
3 περιέχει τουλάχιστον 100% των τιµών του πληθυσµού µε πιθανότητα 100(1 α)%, δηλαδή, P (τουλάχιστον 100% των τιµών της X είναι X (n m + ) 1 α. Εδώ η τυχαία µεταβλητή Χ συµβολίζει την µεταβλητή, η οποία περιγράφει τον πληθυσµό. Είναι, όµως, γνωστό από τον ορισµό του ποσοστιαίου σηµείου x µίας κατανοµής, ότι τουλάχιστον 100% των τιµών του πληθυσµού είναι. ηλαδή, x ). x X είναι Εποµένως, το ενδεχόµενο {τουλάχιστον 100% των τιµών της X } είναι ισοδύναµο µε το ενδεχόµενο { x X < }. Κατά συνέπεια, το µέγεθος n του δείγµατος µπορεί να προσδιορισθεί έτσι ώστε P(x X ) 1 α. Όπως, όµως, αποδείχθηκε στην προηγούµενη ενότητα, για το - ποσοστιαίο σηµείο µιας κατανοµής, ισχύει ότι x ) n m n, ), όπου X παριστάνει µία διωνυµική µεταβλητή µε παραµέτρους n και. Εποµένως, η τιµή του n µπορεί να προσδιορισθεί έτσι ώστε n m n, ) x ) 1 α, δηλαδή, έτσι ώστε n m n, ) 1 α ή, ισοδύναµα, έτσι ώστε m 1 ) α. Η ισοδυναµία των δύο τελευταίων συνθηκών είναι αποτέλεσµα της ισοδυναµίας του ενδεχοµένου «το πολύ n m επιτυχίες» µε το 3
4 ενδεχόµενο «τουλάχιστον n αποτυχίες» το οποίο είναι συµπληρωµατικό του ενδεχοµένου «το πολύ n 1 αποτυχίες». Πράγµατι, από την ισότητα n m n, p) = n m r= 0 = r n, p) = 1 n r= n m+ 1 θεωρώντας την αλλαγή δεικτών n r j, προκύπτει ότι n m) = 1 m 1 j= 0 n n j p Εποµένως, η τιµή του n προσδιορίζεται έτσι ώστε ή, ισοδύναµα, έτσι ώστε = r n,p), n j j (1 p) = 1 m 1 p). 1 m 1 p) 1 α m 1 p) α. Προσδιορισµός Κάτω Ορίου Ανοχής: Ενδιαφερόµαστε να προσδιορίσουµε το µέγεθος του δείγµατος, το οποίο απαιτείται ώστε P (τουλάχιστον 100% των τιµών της X είναι X ) 1 α. Από τον ορισµό του ποσοστιαίου σηµείου x, ισχύει ότι < x ). Εποµένως, x ) 1 ή, ισοδύναµα, x ). Αρα, για τον προσδιορισµό του κάτω ορίου ανοχής, 1 αρκεί να προσδιορισθεί η τιµή r, έτσι ώστε x ) 1 α ή, ισοδύναµα, > x ) α. Επειδή, όµως, 1 1- όπως αποδείχθηκε στην προηγούµενη ενότητα, > x ) r 1 ), 1 η τιµή r µπορεί να προσδιορισθεί έτσι ώστε r 1 ) α. 4
5 Παρατήρηση: Είναι προφανές, ότι για τον προσδιορισµό των ορίων ανοχής, µπορεί να χρησιµοποιηθεί ο πίνακας της διωνυµικής κατανοµής. Στην περίπτωση που r + m = 1, δηλαδή είτε το r = 0 είτε το m = 0, όπως στην περίπτωση µονόπλευρου ορίου ανοχής, το µέγεθος n του δείγµατος µπορεί να προσδιορισθεί απ ευθείας από τον πίνακα 5 του παραρτήµατος για τις κατάλληλες τιµές των α και. Αν r + m = 2, η τιµή του n µπορεί να προσδιορισθεί απ ευθείας από τον πίνακα 6 του παραρτήµατος για τις κατάλληλες τιµές των α και. Στην περίπτωση που κανένας από τους πίνακες αυτούς δεν προσφέρεται, µπορεί να χρησιµοποιηθεί η προσέγγιση n 1 4 χ m),1 α + (r + m, (r όπου χ 2 2(r m),1 α + συµβολίζει το (1 α)-ποσοστιαίο σηµείο της κατανοµής χ 2 µε 2(r+m) βαθµούς ελευθερίας. Η τιµή που προκύπτει από την παραπάνω σχέση, στρογγυλεύεται στον πλησιέστερο µεγαλύτερο ακέραιο. Παράδειγµα 2.6.1: Ποιο πρέπει να είναι το µέγεθος n ενός τυχαίου δείγµατος ώστε µε πιθανότητα τουλάχιστον ίση µε 90% η παρατήρηση (n) X να είναι µεγαλύτερη ή ίση από ένα ποσοστό τιµών του πληθυσµού τουλάχιστον ίσο µε 85%; (n) Λύση: Πρέπει να κατασκευασθεί ένα διάστηµα της µορφής (, X )] τέτοιο ώστε (n) P (το(, X ] να περιέχει τουλάχιστον 85% των τιµών της X) Προφανώς, 1 α = 0.90, = 0.85, m = 1. Εποµένως, α = n, p = 1 = 0.15). 5
6 Από τον πίνακα της διωνυµικής κατανοµής, προκύπτει ότι, για n = 15, 0 n = 15, p = 0.15) = Εποµένως, η προσδιοριζόµενη τιµή του n είναι n = 15. Η τιµή του n µπορεί, επίσης, να προσδιορισθεί από τον πίνακα 5 του παραρτήµατος για 1 α = 0.90 και = Η προκύπτουσα τιµή είναι n = 15. Η τιµή του n µπορεί, εναλλακτικά, να προσδιορισθεί µε την χρήση του προσεγγιστικού τύπου ως εξής: n χ 2, (0 + 1 = , όπου, από τον πίνακα της κατανοµής χ 2, χ 2 2,0.90 = Παράδειγµα 2.6.2: Ποιο πρέπει να είναι το µέγεθος n ενός τυχαίου δείγµατος, ώστε µε πιθανότητα τουλάχιστον ίση µε 90%, ένα ποσοστό τιµών του πληθυσµού τουλάχιστον ίσο µε 95% να περιέχεται µεταξύ της µικρότερης και µεγαλύτερης παρατήρησης του δείγµατος; Λύση: Ζητείται να προσδιορισθεί η τιµή του n, για την οποία ισχύει ( P[X τουλάχιστον 0.95 του πληθυσµού X (n) ] Εδώ, προφανώς, r = 1, m = 1, 1 α = 0.90, = Εποµένως, η τιµή του n, µπορεί να προσδιορισθεί από την σχέση 1 n, p = 1 = 0.05) 0.1 µε χρήση του πίνακα της διωνυµικής κατανοµής. Επισκόπηση, όµως, του πίνακα αυτού δείχνει ότι η τιµή του n βρίσκεται πέρα από τις τιµές στις οποίες αναφέρεται ο πίνακας (n>20). Πράγµατι, κάνοντας χρήση του πίνακα 6 του παραρτήµατος, για τις τιµές των 1 α και, όπως προσδιορίσθηκαν παραπάνω, έχουµε ότι n = 77. Εναλλακτικά, χρησιµοποιώντας τον προσεγγιστικό τύπο έχουµε 6
7 n χ 4, (1+ 1 = όπου, από τον πίνακα της κατανοµής χ 2, χ 2 4,0.90 = Παρατήρηση: Μπορεί ν αποδειχθεί ότι, τόσο για τα αµφίπλευρα όσο και για τα µονόπλευρα όρια ανοχής, η τιµή n του µεγέθους του δείγµατος προσδιορίζεται από την σχέση r + m 1 n,1 ) α. Η τιµή, δηλαδή, του n εξαρτάται µόνο από το άθροισµα r + m και δεν επηρεάζεται από το εάν επιθυµούµε να επιλέξουµε ως διάστηµα όλες (r m) τις τιµές δεξιά από την τιµή της X + ή όλες τις τιµές αριστερά από (n 1-r-m) την τιµή της X + ή όλες τις τιµές µεταξύ των τιµών των X και (n 1-m) X + (i) ή, ακόµη, όλες τις τιµές µεταξύ των τιµών των για οποιαδήποτε ζεύγη (i, j), i<j µε j i = n + 1 m r. (j) X και X Παράδειγµα 2.6.3: Ποιο πρέπει να είναι το n, ώστε µε πιθανότητα 95%, ένα ποσοστό τιµών του πληθυσµού τουλάχιστον ίσο µε 90% να είναι ( X ; Λύση: Επιθυµούµε το διάστηµα [X (, + ), δηλαδή το διάστηµα [X, X ( (n+ ) να περιέχει το 90% τουλάχιστον των τιµών του πληθυσµού µε πιθανότητα 95%. Σύµφωνα µε την τελευταία παρατήρηση, για οποιοδήποτε τύπο ορίου ανοχής, µπορούµε να προσδιορίσουµε την τιµή του n έτσι ώστε r + m 1 ) α. Τότε, κάνοντας χρήση του προσεγγιστικού τύπου, έχουµε 7
8 n χ 2(r+ m),1 α + (r + m = Εδώ r=1, m=0. Εποµένως, n = χ 2, ( =
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)
MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα
2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)
.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην
5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV
5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι
3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)
3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ
6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου
200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη
Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon
ΠΙΝΑΚΕΣ Π Α Ρ Α Ρ Τ Η Μ Α Πίνακας 1. Διωνυμική Κατανομή Πίνακας 2. Τυποποιημένη Κανονική Κατανομή Πίνακας 3. Oρια Εμπιστοσύνης για την Πιθανότητα p της Διωνυμικής Κατανομής Πίνακας 4. Ποσοστιαία Σημεία
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ
6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο έλεγχος της ενότητας αυτής αποτελεί μία επέκταση του μονόπλευρου ελέγχου Smirnov στην περίπτωση περισσοτέρων από δύο δειγμάτων. Ο έλεγχος αυτός
στατιστική θεωρεία της δειγµατοληψίας
στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα
2. Στοιχεία Πολυδιάστατων Κατανοµών
Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε
ΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon
ΠΑΡΑΡΤΗΜΑ ΠΙΝΑΚΕΣ Πίνακας. Διωνυμική Κατανομή Πίνακας. Τυποποιημένη Κανονική Κατανομή Πίνακας. Ποσοστιαία Σημεία της Κατανομή t Πίνακας. Ποσοστιαία Σημεία της Κατανομής X Πίνακας 5. Ποσοστιαία Σημεία της
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ Όπως έχει αποδειχθεί (βλέπε π.χ. Ε. Ξεκαλάκη και Ι. Πανάρετο 993) οι αναµενόµενες τιµές E( ) και E( m ) παρέχουν σηµαντικές πληροφορίες σχετικά µε την κατανοµή µιας πραγµατικής
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:
Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας
2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ
.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)
(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας
5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος
Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)
5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο
επ. Κωνσταντίνος Π. Χρήστου
1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G
Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη
3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall
3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα
Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού
Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:
Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει
Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4 Άδειες Χρήσης Το παρόν
Περιεχόµενα. Πρόλογος Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13
Περιεχόµενα Πρόλογος... 11 Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13 1.1 Εισαγωγή...13 1.2 ειγµατοχώρος και γεγονότα...18 1.3 Τεχνικές απαρίθµησης...20 1.4 Μεταθέσεις στοιχείων διαφορετικών ειδών
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
3.4.1 Ο Συντελεστής ρ του Spearman
3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ
2. ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Random Sampling)
. ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Radom Samplig) Η στοιχειωδέστερη μορφή δειγματοληψίας κατά πιθανότητα είναι η απλή τυχαία δειγματοληψία. Το σχήμα αυτό χρησιμοποιείται ευρύτατα, κυρίως λόγω της απλότητάς
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Προσδιορισµός της φασµατικής ισχύος ενός σήµατος
Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες
Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού
ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)
ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
II. Τυχαίες Μεταβλητές
II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο
Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία Γεώργιος Κ. Τσιώτας Τµήµα Οικονοµικών Επιστηµών Περιεχόµενα ειγµατοληψία Κατανοµές ειγµατοληψίας Κεντρικό Οριακό Θεώρηµα Τι
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ
1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν
Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:
Ένας Πληθυσμός, μεγάλο δείγμα, άγνωστη κατανομή Έλεγχος για την μέση τιμή, με άγνωστη διασπορά Δίνονται ομαδοποιημένες οι ημερήσιες καταναλώσεις ηλεκτρικής ενέργειας (σε 100-άδες κιλοβατώρες) μιας χημικής
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)
07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την
Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές
Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής
x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας
5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.
Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο
Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)
Στατιστική ΙΙ- Ι (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 Δ.Ε.γιατονμέσο µ Δ.Ε. για την αναλογία Τί είναι τα
Μεταθέσεις και πίνακες μεταθέσεων
Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή
4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε
(365)(364)(363)...(365 n + 1) (365) k
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :
Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης
Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης 1 Οι Δείκτες Κεντρικής Τάσης Είναι αριθμητικές τιμές που δείχνουν το ΚΕΝΤΡΟ της κατανομής Η Δεσπόζουσα Τιμή (Δσπ) Η Διάμεσος (Δμ ή δ) Ο Μέσος Όρος (Μ.Ο) 2 Η Δεσπόζουσα
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ
ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή