Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 2ο) Νίκος Παπασπύου, Κωστής Σαγώνας

Σχετικά έγγραφα
Κεφάλαιο 2: Τυπικές γλώσσες

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

ÌåôáãëùôôéóôÝò. Áðñßëéïò 2011

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Εισαγωγή. Μεταγλωττιστές. Νίκος Παπασπύου, Κωστής Σαγώνας

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

Προέλευση της Pazcal ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λογιστικές Εφαρμογές Εργαστήριο

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 9: ΑΝΕΡΓΙΑ. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Αλγόριθμοι Αναζήτησης

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

Ιστορία της μετάφρασης

Μικροβιολογία & Υγιεινή Τροφίμων

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Ενότητα 10: Το πρόβλημα της ανεργίας. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

Θεωρία Πιθανοτήτων & Στατιστική

¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΧΩΡΟΤΑΞΙΑ ΕΙΣΑΓΩΓΗ ΜΑΘΗΜΑΤΟΣ. Αναστασία Στρατηγέα. Υπεύθυνη Μαθήματος

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εισαγωγή στον Προγραμματισμό με C++

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

Εισαγωγή στους Αλγορίθμους

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Υδραυλικά & Πνευματικά ΣΑΕ

Υπολογιστικά Συστήματα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΕΙΣΑΓΩΓΗ ΜΑΘΗΜΑΤΟΣ ΟΙΚΟΝΟΜΙΚΗ ΓΕΩΓΡΑΦΙΑ. Υπεύθυνη μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις

Εισαγωγή στους Αλγορίθμους

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Αυτοματοποιημένη χαρτογραφία

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομική του περιβάλλοντος

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

3 η ΕΝΟΤΗΤΑ Συναρτήσεις στο MATLAB

Αστικά υδραυλικά έργα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Ψηφιακή Επεξεργασία Εικόνας

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων Μηχανικών ΕΜΠ. Λέκτωρ ΠΔ407/80, Σχολή Αρχιτεκτόνων Μηχανικών ΕΜΠ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Διαδικαστικός Προγραμματισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Λογιστικές Εφαρμογές Εργαστήριο

Μάρκετινγκ Αγροτικών Προϊόντων

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

τατιςτική ςτην Εκπαίδευςη II

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ιστορία της μετάφρασης

Υπολογιστικά & Διακριτά Μαθηματικά

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Διαφωτισμός και διαμόρφωση των πολιτικών ιδεολογιών στην Ελλάδα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

ΗΛΕΚΤΡΟΝΙΚΗ Ι. Ενότητα 8: Ενισχυτές με διπολικά τρανζίστορ. Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ.

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

ΝΟΜΙΣΜΑΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΠΟΛΙΤΙΚΗ. Ενότητα 3: Αγορά Χρήματος και επιτόκια. Γεώργιος Μιχαλόπουλος Τμήμα Λογιστικής-Χρηματοοικονομικής

Θεωρία Πιθανοτήτων & Στατιστική

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

ΟΙΚΟΝΟΜΙΚΗ ΓΕΩΓΡΑΦΙΑ ΠΑΡΑΔΕΙΓΜΑ ΕΦΑΡΜΟΓΗΣ ΛΟΓΙΣΜΙΚΟΥ DEFINITE. Υπεύθυνη Μαθήματος Στρατηγέα Αναστασία Αναπλ. Καθηγ. Ε.Μ.Π. ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεωρία Πιθανοτήτων & Στατιστική

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Transcript:

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Τυπικές Γλώσσες (μέρος 2ο)

Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

Ãëþóóåò ùñßò óõìöñáæüìåíá (i) ÃñáììáôéêÝò ùñßò óõìöñáæüìåíá: A α Óå êüèå ðáñáãùãþ Ýíá ìç ôåñìáôéêü óýìâïëï áíôéêáèßóôáôáé, âüóåé åíüò êáíüíá ÐïëëÝò äéáöïñåôéêýò ðáñáãùãýò äéáöýñïõí ìüíï óôç óåéñü ôùí áíôéêáôáóôüóåùí 3

Ãëþóóåò ùñßò óõìöñáæüìåíá (i) ÃñáììáôéêÝò ùñßò óõìöñáæüìåíá: A α Óå êüèå ðáñáãùãþ Ýíá ìç ôåñìáôéêü óýìâïëï áíôéêáèßóôáôáé, âüóåé åíüò êáíüíá ÐïëëÝò äéáöïñåôéêýò ðáñáãùãýò äéáöýñïõí ìüíï óôç óåéñü ôùí áíôéêáôáóôüóåùí Áñéóôåñüôåñç / äåîéüôåñç ðáñáãùãþ (leftmost / rightmost derivation) 4

Ãëþóóåò ùñßò óõìöñáæüìåíá (i) ÃñáììáôéêÝò ùñßò óõìöñáæüìåíá: A α Óå êüèå ðáñáãùãþ Ýíá ìç ôåñìáôéêü óýìâïëï áíôéêáèßóôáôáé, âüóåé åíüò êáíüíá ÐïëëÝò äéáöïñåôéêýò ðáñáãùãýò äéáöýñïõí ìüíï óôç óåéñü ôùí áíôéêáôáóôüóåùí Áñéóôåñüôåñç / äåîéüôåñç ðáñáãùãþ (leftmost / rightmost derivation) ÓõíôáêôéêÜ äýíôñá (parse trees) 5

Ãëþóóåò ùñßò óõìöñáæüìåíá (ii) S aabc ɛ A csb Ab B bb a 6

Ãëþóóåò ùñßò óõìöñáæüìåíá (ii) Ìßá ðáñáãùãþ S aa B c a A bbc acs B bbc ac S abbc acab B c acabac S aabc ɛ A csb Ab B bb a 7

Ãëþóóåò ùñßò óõìöñáæüìåíá (ii) Ìßá ðáñáãùãþ S aa B c a A bbc acs B bbc ac S abbc acab B c acabac Áñéóôåñüôåñç ðáñáãùãþ S L a A BC L a A bbc L ac S BbBc L ac B bbc L acab B c L acabac S aabc ɛ A csb Ab B bb a 8

Ãëþóóåò ùñßò óõìöñáæüìåíá (ii) Ìßá ðáñáãùãþ S aa B c a A bbc acs B bbc ac S abbc acab B c acabac Áñéóôåñüôåñç ðáñáãùãþ S L a A BC L a A bbc L ac S BbBc L ac B bbc L acab B c L acabac Äåîéüôåñç ðáñáãùãþ S R aa B c R a A ac R a A bac R acs B bac R ac S abac R acabac S aabc ɛ A csb Ab B bb a 9

Ãëþóóåò ùñßò óõìöñáæüìåíá (ii) Ìßá ðáñáãùãþ S aa B c a A bbc acs B bbc ac S abbc acab B c acabac Áñéóôåñüôåñç ðáñáãùãþ S L a A BC L a A bbc L ac S BbBc L ac B bbc L acab B c L acabac Äåîéüôåñç ðáñáãùãþ S R aa B c R a A ac R a A bac R acs B bac R ac S abac R acabac S a A B c c S A S aabc ɛ A csb Ab B bb a B b a 10 ε a

Äéöïñïýìåíåò ãñáììáôéêýò (i) Äýï ãñáììáôéêýò åßíáé éóïäýíáìåò üôáí ðáñüãïõí ôçí ßäéá ãëþóóá. 11

Äéöïñïýìåíåò ãñáììáôéêýò (i) Äýï ãñáììáôéêýò åßíáé éóïäýíáìåò üôáí ðáñüãïõí ôçí ßäéá ãëþóóá. Ìéá ãñáììáôéêþ åßíáé äéöïñïýìåíç (ambiguous) áí õðüñ ïõí äýï Þ ðåñéóóüôåñá óõíôáêôéêü äýíôñá ãéá ôçí ßäéá ðáñáãüìåíç óõìâïëïóåéñü 12

Äéöïñïýìåíåò ãñáììáôéêýò (i) Äýï ãñáììáôéêýò åßíáé éóïäýíáìåò üôáí ðáñüãïõí ôçí ßäéá ãëþóóá. Ìéá ãñáììáôéêþ åßíáé äéöïñïýìåíç (ambiguous) áí õðüñ ïõí äýï Þ ðåñéóóüôåñá óõíôáêôéêü äýíôñá ãéá ôçí ßäéá ðáñáãüìåíç óõìâïëïóåéñü ÃñáììáôéêÝò êáé ãëþóóåò åããåíþò äéöïñïýìåíåò (inherently ambiguous) 13

Äéöïñïýìåíåò ãñáììáôéêýò (i) Äýï ãñáììáôéêýò åßíáé éóïäýíáìåò üôáí ðáñüãïõí ôçí ßäéá ãëþóóá. Ìéá ãñáììáôéêþ åßíáé äéöïñïýìåíç (ambiguous) áí õðüñ ïõí äýï Þ ðåñéóóüôåñá óõíôáêôéêü äýíôñá ãéá ôçí ßäéá ðáñáãüìåíç óõìâïëïóåéñü ÃñáììáôéêÝò êáé ãëþóóåò åããåíþò äéöïñïýìåíåò (inherently ambiguous) ñþóç äéöïñïýìåíùí ãñáììáôéêþí óôçí ðåñéãñáöþ ôçò óýíôáîçò ãëùóóþí ðñïãñáììáôéóìïý 14

Äéöïñïýìåíåò ãñáììáôéêýò ÐáñÜäåéãìá: îåêñýìáóôï if (dangling if) (ii) stmt if cond stmt else stmt if cond stmt s1 s2 cond c1 c2 15

Äéöïñïýìåíåò ãñáììáôéêýò ÐáñÜäåéãìá: îåêñýìáóôï if (dangling if) (ii) stmt if cond stmt else stmt if cond stmt s1 s2 cond c1 c2 Äéöïñïýìåíï: óå ðïéï if áíôéóôïé åß ôï else; if c1 if c2 s1 else s2 16

Äéöïñïýìåíåò ãñáììáôéêýò ÐáñÜäåéãìá: îåêñýìáóôï if (dangling if) (ii) stmt if cond stmt else stmt if cond stmt s1 s2 cond c1 c2 Äéöïñïýìåíï: óå ðïéï if áíôéóôïé åß ôï else; if c1 if c2 s1 else s2 stmt if cond stmt c1 if cond stmt else stmt c2 s1 s2 17 if c1 ( if c2 s1 else s2 )

Äéöïñïýìåíåò ãñáììáôéêýò ÐáñÜäåéãìá: îåêñýìáóôï if (dangling if) (ii) stmt if cond stmt else stmt if cond stmt s1 s2 cond c1 c2 Äéöïñïýìåíï: óå ðïéï if áíôéóôïé åß ôï else; if c1 if c2 s1 else s2 stmt stmt if cond stmt if cond stmt else stmt c1 if cond stmt else stmt c1 if cond stmt s2 c2 s1 s2 c2 s1 18 if c1 ( if c2 s1 else s2 ) if c1 ( if c2 s1 ) else s2

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (i) Backus-Naur Form (BNF) Óýìâïëï ::= óôïõò êáíüíåò Ìç ôåñìáôéêü óýìâïëá óå ãùíéáêýò ðáñåíèýóåéò, ð.. expr Óýìâïëï ãéá äéüæåõîç 19

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (i) Backus-Naur Form (BNF) Óýìâïëï ::= óôïõò êáíüíåò Ìç ôåñìáôéêü óýìâïëá óå ãùíéáêýò ðáñåíèýóåéò, ð.. expr Óýìâïëï ãéá äéüæåõîç 20 unsigned-number ::= integer-part dec-fraction exp-part integer-part dec-fraction exp-part sign ::= digit integer-part digit ::=. integer-part ɛ ::= E sign integer-part e sign integer-part ɛ ::= + ɛ digit ::= 0 1 2 3 4 5 6 7 8 9

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (ii) Extended Backus-Naur Form (EBNF) ÔåñìáôéêÜ óýìâïëá óå åéóáãùãéêü ÐáñåíèÝóåéò ãéá ïìáäïðïßçóç Áãêýëåò ãéá ðñïáéñåôéêü ôìþìáôá Óýìâïëá êáé + ãéá åðáíüëçøç 21

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (ii) Extended Backus-Naur Form (EBNF) ÔåñìáôéêÜ óýìâïëá óå åéóáãùãéêü ÐáñåíèÝóåéò ãéá ïìáäïðïßçóç Áãêýëåò ãéá ðñïáéñåôéêü ôìþìáôá Óýìâïëá êáé + ãéá åðáíüëçøç unsigned-number ::= digit + [ \." digit + ] [ (\E" \e") [ \+" \ " ] digit + ] digit ::= \0" \1" \2" \3" \4" \5" \6" \7" \8" \9" 22

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (iii) ÓõíôáêôéêÜ äéáãñüììáôá ÔåñìáôéêÜ óýìâïëá óå ïâüë Ìç ôåñìáôéêü óýìâïëá óå ïñèïãþíéá Äéáäï Þ óõìâüëùí (ðáñüèåóç) ìå âýëç 23

Ôñüðïé ðáñüóôáóçò ãñáììáôéêþí (iii) ÓõíôáêôéêÜ äéáãñüììáôá ÔåñìáôéêÜ óýìâïëá óå ïâüë Ìç ôåñìáôéêü óýìâïëá óå ïñèïãþíéá Äéáäï Þ óõìâüëùí (ðáñüèåóç) ìå âýëç unsigned-number E + digit. digit digit e 24

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.