Λογισμός 4 Ενότητα 10

Σχετικά έγγραφα
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 12

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 4: Ιδιότητες του Ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 17

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 15

Λογισμός 4 Ενότητα 16

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 14

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 11

Λογισμός 4 Ενότητα 18

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 19

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Λογισμός 4 Ενότητα 13

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία της μετάφρασης

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 6: Μερικές παράγωγοι. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Παράκτια Τεχνικά Έργα

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία της μετάφρασης

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στους Αλγορίθμους

Μηχανολογικό Σχέδιο Ι

Θεωρία μέτρου και ολοκλήρωσης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γεωργική Εκπαίδευση Ενότητα 9

Εκκλησιαστικό Δίκαιο

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Εισαγωγή στους Αλγορίθμους

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Λογισμός 3. Ενότητα 3: Όρια και συνέχεια συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διοικητική Λογιστική

Διπλωματική Ιστορία Ενότητα 2η:

Λογισμός 3. Ενότητα 15: Τοπικά ακρότατα υπό συνθήκες. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Στρατηγικό Μάρκετινγκ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Φ 619 Προβλήματα Βιοηθικής

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Φ 619 Προβλήματα Βιοηθικής

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Εκκλησιαστικό Δίκαιο

Συμπεριφορά Καταναλωτή

Θέματα Αρμονικής Ανάλυσης

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Δομές Δεδομένων Ενότητα 1

Συγκριτικό Εκκλησιαστικό Δίκαιο

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Θεωρία μέτρου και ολοκλήρωσης

Συνταγματικό Δίκαιο Ενότητα 11:Εκτελεστική Λειτουργία

Εισαγωγή στους Αλγορίθμους

Μοντέρνα Θεωρία Ελέγχου

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος. Μιχ. Γ. Μαριάς

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Διαιρέσεις της μονάδας. 2. Επέκταση του ολοκληρώματος. 4

Σκοποί ενότητας Για την απόδειξη του θεωρήματος της αλλαγής των μεταβλητών, χρησιμοποιούμε τις διαιρέσεις της μονάδος που είναι ένα εργαλείο εξαιρετικά χρήσιμο σε όλη την Μαθηματική Ανάλυση. 5

Διαιρέσεις της μονάδας (1) Ας είναι Α ένα σύνολο του R n και j,j N μια κάλυψη του Α, δηλαδή j j. Υποθέτουμε ότι τα j δεν συναντιούνται πολύ, δηλαδή υπάρχει ένα Ν τέτοιο ώστε κάθε j τέμνει το πολύ Ν σύνολα της κάλυψης. Η διαίρεση της μονάδας φ j, που αντιστοιχεί στη κάλυψη j, δίνεται από τον τύπο: φ j x = 1 j x 1 j x Παρατηρούμε τα εξής: 6

Διαιρέσεις της μονάδας (2) 1. Επειδή τα σύνολα j δεν συναντιούνται πολύ, το τυχαίο x ανήκει πάντα σε πεπερασμένο πλήθος συνόλων j, και συνεπώς το άθροισμα 1 j x έχει πάντα πεπερασμένο αριθμό όρων. 2. Από τον ορισμό έχουμε 0 φ j x 1. 7

Διαιρέσεις της μονάδας (3) 3. Για κάθε x, φ j x = 1 j x 1 j x εξ ου και ο όρος διαίρεση της μονάδας. = 1, 4. Για κάθε x j, φ j x = 0. λέμε ότι ο φορέας της φ j είναι το j, και γράφουμε suppφ j = j. 8

Επέκταση του ολοκληρώματος (1) Σε ότι μας αφορά, η ουσιαστική συνεισφορά της διαίρεσης της μονάδας είναι η ακόλουθη επέκταση της έννοιας του ολοκληρώματος. Ορισμός 1: Ας είναι f R φραγμένη. Λέμε ότι η f είναι ολοκληρώσιμη με την ευρεία έννοια, αν φ j f <, 1 όπου φ j είναι μια διαίρεση της μονάδας που αντιστοιχεί στην κάλυψη j του. 9

Επέκταση του ολοκληρώματος (2) Από την (1) συνάγεται ότι φ j f <. Συνεπώς η σειρά φ j f συγκλίνει απολύτως. 10

Επέκταση του ολοκληρώματος (3) Ορισμός 2: Θέτουμε f = φ j f. 2 Το f το λέμε ολοκλήρωμα της f υπό την ευρεία έννοια. Για να έχει έννοια ο ορισμός του f στην (2) πρέπει: 1. Να είναι ανεξάρτητος της διαίρεσης της μονάδας φ j, και 2. Αν το Α είναι φραγμένο, να συμπίπτει με το ολοκλήρωμα Riemann που ήδη ξέρουμε. Αυτό είναι το περιεχόμενο του επόμενου θεωρήματος. 11

Επέκταση του ολοκληρώματος (4) Θεώρημα: Αν η f R είναι ολοκληρώσιμη με την ευρεία έννοια, τότε: 1. Αν η ψ j είναι διαίρεση της μονάδας, που αντιστοιχεί στην κάλυψη B j του Α, η σειρά συγκλίνει απολύτως και ψ j f ψ j f = φ j f = f Α 2. Αν το Α είναι φραγμένο, τότε το ολοκλήρωμα με την ευρεία έννοια συμπίπτει με το ολοκλήρωμα Riemann.. 12

Επέκταση του ολοκληρώματος (5) Απόδειξη: 1. Αφού η f είναι ολοκληρώσιμη υπό την ευρεία έννοια και έχουμε ψ j x = 1, x, > φ j f = ψ i i N φ j f = ψ i φ j f = ψ ik φ j f, 3 j i N j 1 k N 13

Επέκταση του ολοκληρώματος (6) αφού suppψ i = B i, suppφ j = j και το πλήθος των B i που τέμνουν το j είναι πεπερασμένο. Άρα από την γραμμικότητα έχουμε j 1 k N ψ ik φ j f = ψ ik φ j f j 1 k N = ψ i φ j f i N. 4 14

Επέκταση του ολοκληρώματος (7) Από τις (3) και (4) έχουμε i N ψ i φ j f = φ j f <, δηλαδή η σειρά i N ψ i φ j f συγκλίνει απολύτως. Έτσι λοιπόν 15

Επέκταση του ολοκληρώματος (8) = ψ i φ j f i N = ψ i i N φ j f = φ j f = f, αφού η απόλυτη σύγκλιση δικαιολογεί την εναλλαγή της σειράς στην άθροιση. 16

Επέκταση του ολοκληρώματος (9) Συνάγεται λοιπόν ότι f = ψ i φ j f i N = ψ i φ j f i N = ψ i φ j f B i i N = ψ i φ jk f, i N 1 k N B i αφού πεπερασμένο πλήθος B i τέμνουν το j. 17

Επέκταση του ολοκληρώματος (10) Έτσι f = ψ i φ jk i N B i 1 k N f (γραμμικότητα) = ψ i f B i i N και η απόδειξη του πρώτου μέρους είναι πλήρης. 2. Αφού το Α είναι φραγμένο, περιέχεται σε ένα ορθογώνιο Π και το Π, ως συμπαγές, καλύπτεται από πεπερασμένο πλήθος μπαλών B x j, ε, j N. Αν φ j είναι η διαίρεση της μονάδας που αντιστοιχεί στις ως, 18

Επέκταση του ολοκληρώματος (11) άνω μπάλες, τότε το ολοκλήρωμα Riemann της f επί του Α γράφεται ως εξής f = φ j j N f = φ j f j N, δηλαδή το ολοκλήρωμα f υπό την ευρεία έννοια. 19

Βιβλιογραφία 1. Γ. Γεωργανόπουλος, Ολοκληρωτικός Λογισμός Πολλών Μεταβλητών, Εκδόσεις Αδελφοί Κυριακίδη, Θεσσαλονίκη, 1995. 2. Τ. Χατζηαφράτης, Απειροστικός Λογισμός σε Πολλές Μεταβλητές, Αθήνα, 1996. 3. J. Marsden,. Tromba, Διανυσματικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2000. 4. M. Spivac, Λογισμός σε Πολλαπλότητες, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1994. 20

Σημείωμα Αναφοράς Copyright, Μιχάλης Μαριάς. «. Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs437/

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 2014-2015