Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Σχετικά έγγραφα
e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

d(v) = 3 S. q(g \ S) S

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

u v 4 w G 2 G 1 u v w x y z 4

q(g \ S ) = q(g \ S) S + d = S.

S A : N G (S) N G (S) + d S d + d = S

Θεωρία Γραφημάτων 4η Διάλεξη

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

E(G) 2(k 1) = 2k 3.

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Θεωρία Γραφημάτων 5η Διάλεξη

m = 18 και m = G 2

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

X i, i I Y j, j J. X i. Z j P = (J, B) G T = (I, J) 1 2 i i + 1 n. 1 i V

Θεωρία Γραφημάτων 8η Διάλεξη

2 ) d i = 2e 28, i=1. a b c

Συνεκτικότητα Γραφήματος

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

χ(k n ) = n χ(c 5 ) = 3

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

2. dim(p ) = n rank(a = )

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Στοιχεία Θεωρίας Γραφηµάτων (2)

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Θεωρία Γραφημάτων 2η Διάλεξη

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων 3η Διάλεξη

( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Μαθηματικά Πληροφορικής

Επίπεδα Γραφήματα (planar graphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Στοιχεία Θεωρίας Γραφηµάτων (1)

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Διμερή γραφήματα και ταιριάσματα

Μαθηματικά Πληροφορικής

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

x 3 = 0 x 6 = 0 x 4 = 0 x 5 = 0 x 2 = 0 x 1 = 0 aff(p )

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Εισαγωγή στους Αλγορίθμους

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία και Αλγόριθμοι Γράφων

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)

6 Συνεκτικοί τοπολογικοί χώροι

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

HY118-Διακριτά Μαθηματικά

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Αναζήτηση Κατά Πλάτος

Θεωρι α Γραφημα των 5η Δια λεξη

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

f(t) = (1 t)a + tb. f(n) =

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Transcript:

Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E) καλείται ένα σύνολο F E των ακμών του G τέτοιο ώστε το γράφημα G \ F έχει περισσότερες από μία συνεκτικές συνιστώσες. Εστω δύο σύνολα κορυφών, V. Ορίζουμε ως [, ] = {e E e = e = 1} το σύνολο των ακμών από το στο. Σχήμα 3.1: Το σύνολο των ακμών από το στο. Εάν := V \, τότε το [, ] καλείται τομή (cut). Κάθε τομή είναι ακμοδιαχωριστής. cut V \ Σχήμα 3.2: Τομή σε ένα γράφημα G. Το αντίστροφο δεν ισχύει. Για παράδειγμα: Ενα σύνολο F (ακμών ή κορυφών) του G καλείται ελαχιστικό (minimal) ως προς μία ιδιότητα P εάν για κάθε F F, το F δεν έχει την ιδιότητα P. Αντίστοιχα, το F καλείται μεγιστικό (maximal) εάν για κάθε F F, το F δεν έχει την ιδότητα P. Πρόταση 3.1 Εστω γράφημα G. Εάν G > 1, τότε κάθε ελαχιστικός ακμοδιαχωριστής F είναι και τομή. 3-1

Διάλεξη 3: 19.10.2016 3-2 1 2 3 Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Απόδειξη: Διακρίνουμε δύο περιπτώσεις: Εάν το G \ F έχει ακριβώς 2 συνεκτικές συνιστώσες τότε είναι προφανές ότι η πρόταση ισχύει. Εάν το G\F έχει πάνω από 2 συνεκτικές συνιστώσες τότε για κάποια από αυτές, έστω την H, όλες οι ακμές που φεύγουν από το H είναι υποσύνολο του F ( (H) F ). Άρα F [V (H), V (H)]. Τότε όμως ο F δεν είναι ελαχιστικός ακμοδιαχωριστής, εκτός εάν F = [V (H), V (H)]. Εστω το G: 1 b a 2 c Σχήμα 3.4: Τομή μεταξύ των,. Το F = {1, 2} είναι τομή αλλά όχι ελαχιστική, αφού το F = {1} είναι τομή για = {a, c}, = {b}, η οποία είναι ελαχιστική. Ορισμός 3.2 Δεσμός (bond) καλείται μία ελαχιστική μη κενή τομή. Πρόταση 3.2 Εστω γράφημα G. Εάν το G είναι συνεκτικό, τότε μία τομή F είναι δεσμός ανν G\F έχει ακριβώς δύο συνεκτικές συνιστώσες.

Διάλεξη 3: 19.10.2016 3-3 a 1 b c Σχήμα 3.5: Ελαχιστική τομή μεταξύ των,. Απόδειξη: Εστω F = [, ]. Αν το G \ F έχει ακριβώς δύο συνεκτικές συνιστώσες, τότε έστω F F. Το G \ F περιέχει τις δύο συνιστώσες του G \ F συν τουλάχιστον μία ακμή ανάμεσά τους. Επομενως, το G \ F έχει μία συνιστώσα. Άρα το F είναι δεσμός. Αντιστρόφως, έστω ότι το G \ F έχει τουλάχιστον τρεις συνιστώσες. Άρα, τουλάχιστον ένα εκ των G[] και G[] έχει τουλάχιστον δύο συνιστώσες. Χωρίς βλάβη της γενικότητας, έστω ότι το G[] έχει τουλάχιστον δύο συνιστώσες, τις A και B ( = A B). A B Σχήμα 3.6: Οι τρεις συνιστώσες του G \ F. Τότε, οι τομές [A, A] και [B, B] είναι γνήσια υποσύνολα του [, ], αλλιώς το G δεν θα ήταν συνεκτικό. (Για παράδειγμα, έστω ότι [, ] = [B, B]. Τότε το A ήταν ήδη αποκομμένο από το B στο G, άρα το G δεν είναι συνεκτικό.) Συνεπώς, το [, ] δεν είναι δεσμός. Επομένως, εάν το F = [, ] είναι δεσμός, τότε το γράφημα G \ F έχει ακριβώς δύο συνιστώσες.

Διάλεξη 3: 19.10.2016 3-4 A B Σχήμα 3.7: Το δεν είναι συνεκτικό, επομένως ούτε και το G. 3.2 Ακμοσυνεκτικότητα Ορισμός 3.3 Ενα γράφημα G λέγεται κ-ακμοσυνεκτικό (κ-edge-connected) εάν κάθε ακμοδιαχωριστής έχει τουλάχιστον κ ακμές. Ορισμός 3.4 Σε ένα γράφημα G, το ελάχιστο μέγεθος ακμοδιαχωριστή ονομάζεται ακμοσυνεκτικότητα (edge-connectivity), και συμβολίζεται με κ (G). Ορισμός 3.5 Μία ακμή που αποσυνδέει το G ονομάζεται γέφυρα (bridge). e Σχήμα 3.8: Η ακμή e είναι γέφυρα στο παραπάνω γράφημα. Παράδειγμα 3.1 Η κλίκα μεγέθους n, G = K n, έχει κ (G) = n 1 = κ(g) = δ(g). Παράδειγμα 3.2 Εστω το G: Εχουμε ότι:

Διάλεξη 3: 19.10.2016 3-5 Σχήμα 3.9: Ο ακμοδιαχωριστής και ο κορυφοδιαχωριστής σημειώνονται με κόκκινο χρώμα. κ(g) = 2 κ (G) = 3 δ(g) = 3 Παράδειγμα 3.3 Εστω το G: Σχήμα 3.10: Ο ακμοδιαχωριστής και ο κορυφοδιαχωριστής σημειώνονται με κόκκινο χρώμα. Εχουμε ότι: κ(g) = 1 κ (G) = 2 δ(g) = 3 Θεώρημα 3.1 (Whitney, 1932) Σε κάθε γράφημα G = (V, E) ισχύει: κ(g) κ (G) δ(g). Απόδειξη: Είναι προφανές ότι για κάθε γράφημα G ισχύει κ (G) δ(g). Εστω μία κορυφή v V (G) τέτοια ώστε d G (v) = δ(g). Τότε, αφαιρώντας όλες τις ακμές που προσπίπτουν στη v, καθιστούμε το γράφημα μη συνεκτικό, επομένως κ (G) δ(g). Θα δείξουμε τώρα ότι κ(g) κ (G). Εστω G > 1 και [, ] μία ελάχιστη τομή. Τότε, κ (G) = [, ]. Διακρίνουμε δύο περιπτώσεις: Περίπτωση 1: Κάθε κορυφή u γειτονεύει με κάθε κορυφή v, οπότε κ (G) = ( G ). Τότε το κ (G) ελαχιστοποιείται για = 1. Επομένως κ (G) G 1, όμως κ(g) G 1, άρα και κ(g) κ (G).

Διάλεξη 3: 19.10.2016 3-6 x y Σχήμα 3.11: Το σύνολο των ακμών που επιλέγουμε σημειώνεται με κόκκινο χρώμα. Περίπτωση 2: Υπάρχουν δύο κορυφές x και y τέτοιες ώστε {x, y} / E(G). Εστω το σύνολο των κορυφών του που γειτονεύουν με το x και των κορυφών του \{x} που γειτονεύουν με το. Σβήνοντας το από το G, σβήνουμε και όλες τις ακμές του [, ]. Ομως, x, y /. Άρα το σύνολο είναι κορυφοδιαχωριστής. Επομένως, κ(g). Επιλέγουμε τις ακμές από την κορυφή x προς το σύνολο κορυφών. Επίσης, από κάθε κορυφή u, επιλέγουμε μία ακμή. Παρατηρούμε πως έχουμε επιλέξει ακριβώς ακμές που είναι υποσύνολο του [, ]. Επομένως, κ(g) [, ] = κ (G). Παράδειγμα 3.4 Εστω το γράφημα G = K m,n, με m n. Τότε κ(g) = m και δ(g) = m. Επομένως, κατευθείαν γνωρίζουμε ότι κ (G) = m. Αξίζει να σημειωθεί πως για ένα γράφημα G, οι τιμές των κ(g), κ (G) και δ(g) δεν είναι απαραίτητο να είναι κοντά μεταξύ τους. Παράδειγμα 3.5 Εστω το παρακάτω γράφημα G που αποτελείται από δύο συνεκτικές συνιστώσες, η κάθε μία ισόμορφη με το K m : K m K m G Σχήμα 3.12: Στο γράφημα G έχουμε κ(g) = κ (G) = 0, όμως δ(g) = m 1. Παράδειγμα 3.6 Εστω το παρακάτω γράφημα G:

Διάλεξη 3: 19.10.2016 3-7 u K m K m G Σχήμα 3.13: Στο γράφημα G έχουμε κ(g) = 1, αφού η κορυφή u είναι αρθρικό σημείο. Ομως, κ (G) = δ(g) = m 1. 3.3 2-Συνεκτικά Γραφήματα Ορισμός 3.6 Μπλοκ (block) ή τεμάχιο ενός γραφήματος G ονομάζεται ένα μεγιστικό συνεκτικό υπογράφημα του G που δεν έχει αρθρικό σημείο. Παράδειγμα 3.7 Εστω το παρακάτω γράφημα G: B D E A C G F Σχήμα 3.14: Τα σύνολα κορυφών A, C, D, E και F είναι μπλοκ, ενώ το σύνολο B δεν είναι μεγιστικό υπογράφημα χωρίς αρθρικό σημείο, επομένως δεν είναι μπλοκ. Παρατήρηση 3.1 Για ένα γράφημα G ισχύουν τα παρακάτω: Ενα μπλοκ του G είναι δισυνεκτικό εάν έχει τουλάχιστον τρεις κορυφές. Εάν ένα μπλοκ του G έχει ακριβώς δύο κορυφές, δηλαδή είναι το u e v Σχήμα 3.15: Μπλοκ που αποτελείται από ακριβώς δύο κορυφές. και το γράφημα G είναι συνεκτικό, τότε η ακμή e είναι γέφυρα στο G. Απόδειξη: Εστω ότι η e δεν είναι γέφυρα. Τότε υπάρχει μία ακμή e που συνδέει τις συνιστώσες των άκρων της e. Ομως τότε οι e, e ανήκουν σε κύκλο, άρα το G[{u, v}] δεν είναι μεγιστικό υπογράφημα χωρίς αρθρικό σημείο, επομένως δεν είναι μπλοκ. Εάν ένα μπλοκ του G αποτελείται μόνο από μία κορυφή u, τότε η u είναι απομονωμένη στο G (δηλαδή d G (u) = 0).

Διάλεξη 3: 19.10.2016 3-8 Απόδειξη: Εστω ότι η u δεν είναι απομονωμένη κορυφή στο G. Τότε υπάρχει μία ακμή e = {u, v} E(G), οπότε το G[{u, v}] δεν έχει αρθρικό σημείο, άρα η κορυφή u δεν είναι μεγιστικό υπογράφημα, οπότε δεν είναι μπλοκ, επομένως καταλήγουμε σε άτοπο.