Blum Blum Shub Generator

Σχετικά έγγραφα
Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εφαρμοσμένη Κρυπτογραφία Ι

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Εφαρμοσμένη Κρυπτογραφία Ι

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Εφαρμοσμένη Κρυπτογραφία Ι

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Blum Complexity. Αλγόριθμοι και Πολυπλοκότητα ΙΙ. Παναγιώτης Γροντάς. Δεκέμβριος

Παραγωγή μεγάλων πρώτων αριθμών

Αριθμοθεωρητικοί Αλγόριθμοι

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία Δημοσίου Κλειδιού

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Pseudorandomness. Pseudorandom Generators - Derandomisation. Παναγιώτης Γροντάς ,

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Κρυπτογραφικά Πρωτόκολλα

PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS

Κρυπτογραφικά Πρωτόκολλα

Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Κρυπτογραφία και Πολυπλοκότητα Factoring for large r

1 Diffie-Hellman Key Exchange Protocol

Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία. Linux Random Number Generator

Τυχαιότητα (Randomness) I

Pseudorandomness = Μη αληθής + Τυχαιότητα. Combinatorial Constructions = Κατασκευές Συνδυαστικής

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πρόβληµα 2 (12 µονάδες)

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

Αλγεβρικές Δομές και Αριθμοθεωρία

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Υπολογιστικά & Διακριτά Μαθηματικά

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

* * * ( ) mod p = (a p 1. 2 ) mod p.

Υπολογισμός της δύναμης z=x b modn

Πρόβληµα 2 (15 µονάδες)

Τεχνικές Αποδείξεις Κάτω Φραγμάτων

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Στοιχεία Θεωρίας Αριθμών

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Public Key Cryptography. Dimitris Mitropoulos

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

Εθνικό Μετσόβιο Πολυτεχνείο

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

UP class. & DES και AES

Μη γράφετε στο πίσω μέρος της σελίδας

Προσομοίωση Συστημάτων

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ PRIMES P. Από τα αριστερά προς τα δεξία Saxena, Kayal και Agrawal. Επιµέλεια : Γεωργίου Κωνσταντίνος.

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Ασφάλεια Πληροφοριακών Συστημάτων

project RSA και Rabin-Williams

L A P. w L A f(w) L B (10.1) u := f(w)

Chapter 12 Cryptography

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Transcript:

Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012

Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης αρχικοποίηση αλγορίθμων κρυπτογράφησης & υπογραφών Σε άλλες αλγοριθμικές εφαρμογές randomized algorithms (tool-box for economical use of randomness) simulation

Εισαγωγή Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Bits Ορισμοί Ορισμός (Γεννήτρια (Γνησίως) Τυχαίων Bits -True Random Bits Generator) Γεννήτρια Γνησίως Τυχαίων Bits ονομάζεται ένας αλγόριθμος που παράγει ανεξάρτητα και αμερόληπτα bits. Ορισμός (Γεννήτρια Ψευδοτυχαίων Bits - Pseudo-Random Bits Generator) Γεννήτρια Ψευδοτυχαίων Bits (PRBG) λέγεται ένας ντετερμινιστικός αλγόριθμος, ο οποίος με είσοδο μια γνησίως τυχαία δυαδική ακολουθία (seed) μήκους n παράγει μια δυαδική ακολουθία l(n) πολυωνυμικού μήκους ως προς την είσοδο που είναι αδύνατο να διακριθεί αποδοτικά από μια τυχαία ακολουθία.

Εισαγωγή Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Bits Χαρακτηριστικά μιας PRBG 1 Efficiency: Η έξοδος υπολογίζεται σε πολυωνυμικό χρόνο 2 Stretching: Η γεννήτρια επεκτείνει πολυωνυμικά την τυχαία είσοδο 3 Pseudorandomness: Η έξοδος είναι υπολογιστικά μη-διακρινόμενη από την ομοιόμορφη κατανομή από οποιονδήποτε παρατηρητή

Εισαγωγή Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Bits Κρυπτογραφικά ισχυρή PRBG 2 ισοδύναμοι ορισμοί [Yao]: 1 ξεπερνά όλα τα στατιστικά τεστ πολυωνυμικού χρόνου 2 ξεπερνά τον έλεγχο του επόμενου bit Universal Test (Unpredictability): Ελεγχος Επόμενου bit Ελεγχος Προηγούμενου bit

Εισαγωγή Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Bits Ορισμός ( Ελεγχος επόμενου ψηφίου - Next-bit test) Εστω αντίπαλος A και μαντείο O. Το μαντείο γνωρίζει μια ακολουθία bits s και ο A επιτρέπεται να ρωτά το μαντείο για το επόμενο ψηφίο όσες φορές θέλει εφόσον υπάρχει τουλάχιστον 1 bit που δεν του έχει αποκαλυφθεί. Στηριζόμενος στη γνώση των πρώτων l bits ο A πρέπει να μαντέψει το l + 1-o bit. Ορίζουμε ως πλεονέκτημα του A την ποσότητα adv A = 1 2 p A, όπου p A η πιθανότητα επιτυχίας του A.

Εισαγωγή Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Bits Ορισμός (Κρυπτογραφικά ισχυρή PRBG) Θα λέμε ότι μια PRBG είναι κρυπτογραφικά ισχυρή αν είναι ανθεκτική στον έλεγχο επόμενου bit. Αυτό σημαίνει ότι για οποιονδήποτε αντίπαλο πολυωνυμικού χρόνου το πλεονέκτημα adv A είναι αμελητέο. Στις PRBGs με μη-κρυπτογραφική εφαρμογή αρκούμαστε συνήθως σε ασθενέστερες έννοιας αφάλειας (απλούστερα στατιστικά τεστς)

Blum Blum Shub Generator Αλγόριθμος Blum Blum Shub 1: p q, p, q R Primes Blum n := pq 2: s R Z n x 0 := s 2 mod n 3: for i=1,2,... do 4: x i := xi 1 2 mod n 5: z i := parity(x i ) 6: end for

Blum Blum Shub Generator Θεωρία Αριθμών: Τετραγωνικά Υπόλοιπα Ορισμός (Blum Prime) Ενας πρώτος αριθμός R καλείται πρώτος κατά Blum (BP) εάν p 3 (mod 4). Ορισμός (Τετραγωνικό Υπόλοιπο -QR) Ενας ακέραιος x Z n λέγεται τετραγωνικό υπόλοιπο mod n αν υπάρχει κάποιο y Z n : y 2 mod n = x. Διαφορετικά λέγεται μη-τετραγωνικό υπόλοιπο. Συμβολίζουμε το σύνολο των τετραγωνικών υπολοίπων mod n ως QR n και το συμπλήρωμά του ως QNR n.

Blum Blum Shub Generator Θεωρία Αριθμών: Τετραγωνικά Υπόλοιπα Ορισμός (Σύμβολο Legendre) Εστω p περιττός πρώτος. Για a Z p το σύμβολο Legendre ορίζεται ως εξής: 0 p a ( ) a = p 1 a QR p 1 a QNR p Ορισμός (Σύμβολο Jacobi) Εστω n περιττός ακέραιος με παραγοντοποίηση n = i pe i i a Z n το σύμβολο Jacobi ορίζεται ως εξής: ( a ) ( ) a ei n Για = i p i

Απόδειξη Ασφάλειας Θεώρημα Εστω n = pq το γινόμενο δύο διακεκριμένων περιττών πρώτων και Z n(+1) (αντ. Z n( 1)) οι αριθμοί στο Z n με σύμβολο Jacobi +1 (αντ. -1). Τότε ακριβώς τα μισά από τα στοιχεία του Z n ανήκουν στο Z n(+1) και τα υπόλοιπα μισά στο Z n( 1). Τα μισά από τα στοιχεία του Z n(+1) και κανένα από τα στοιχεία του Z n( 1) είναι τετραγωνικά υπόλοιπα - οπότε QR n Z n(+1). διαμέριση του Z n σε δύο ισοπληθικά ξένα υποσύνολα Z n(+1), Z n( 1), εκ των οποίων στο Z n(+1) ένα ομοιόμορφα επιλεγμένα στοιχείο x παρουσιάζει 1/2 πιθανότητα να είναι τετραγωνικό υπόλοιπο.

Απόδειξη Ασφάλειας Η ασφάλεια μιας CPRBG έπεται από την υπολογιστική αδυναμία επίλυσης κάποιου αριθμοθεωρητικού προβλήματος που βρίσκεται στον πυρήνα της Υπόθεση (Υπόθεση Τετραγωνικού Υπολοίπου - QRA ) Κάθε πιθανοτικός αλγόριθμος πολυωνυμικού χρόνου P που αποφασίζει εάν είναι τετραγωνικό υπόλοιπο κάποιο x Z n(+1), με n = pq, p, q περιττούς πρώτους, παρουσιάζει πιθανότητα επιτυχίας το πολύ 1 2 + ɛ, όπου το ɛ είναι αμελητέο ως προς το μήκος του n.

Απόδειξη Ασφάλειας Θεώρημα Εστω n = pq το γινόμενο δύο διακεκριμένων ΒΡ αριθμών. Τότε κάθε τετραγωνικό υπόλοιπο x modulo n έχει τέσσερις διακεκριμένες τετραγωνικές ρίζες. Ακριβώς μία από αυτές είναι επίσης τετραγωνικό υπόλοιπο. Στο εξής θα συμβολίζουμε τη ρίζα αυτήν ως x.

Απόδειξη Ασφάλειας Σχήμα: Η εικόνα του Z n

Απόδειξη Ασφάλειας Η ιδέα της απόδειξης Υποθέτουμε ότι υπάρχει αλγόριθμος A ο οποίος, δεδομένης μιας ακολουθίας εξόδου του BBS z 1, z 2, z 3,..., αποφασίζει το z 0 με κάποια πιθανότητα, δηλαδή προβλέπει ακολουθίες προς τα αριστερά. Δεδομένου τετραγωνικού υπολοίπου x 0, μπορούμε να παραγάγουμε την ακολουθία z 1, z 2, z 3,... και να τη δώσουμε ως είσοδο στον A. Τότε ο A θα αποφασίσει την ισοτιμία του z 0 με την ίδια πιθανότητα με προηγουμένως. Ονομάζουμε το νέο αλγόριθμο A. Θα αποδείξουμε ότι μπορούμε να κατασκευάσουμε ένα νέο αλγόριθμο B που να αποφαίνεται για την ιδιότητα του τετραγωνικού υπολοίπου με την ίδια πιθανότητα επιτυχίας με την οποία ο A αποφασίζει την ισοτιμία, ενώ τρέχει σε πολυωνυμικό χρόνο εάν και ο A είναι πολυωνυμικός.

Απόδειξη Ασφάλειας Λήμμα Αν n = pq το γινόμενο δύο διακεκριμένων περιττών πρώτων, τότε x QR n x mod p QR n x mod q QR n Λήμμα Αν p περιττός πρώτος, τότε p 3 (mod 4) (Blum) 1 QNP p.

Απόδειξη Ασφάλειας Λήμμα Εστω n = pq το γινόμενο δύο διακεκριμένων Blum πρώτων. Τότε τα x και x έχουν το ίδιο σύμβολο Jacobi. Λήμμα Η συνάρτηση x x 2 είναι 2 1 συνάρτηση στο Z n(+1), όπου n = pq το γινόμενο δύο διακεκριμένων Blum πρώτων. Λήμμα Εστω n = pq το γινόμενο δύο διακεκριμένων Blum πρώτων. Τότε για κάθε x Z n(+1) ισχύει ότι. x QR n parity(x) = parity( x 2 )

Απόδειξη Ασφάλειας Θεώρημα (Αναγωγή αλγόριθμου ισοτιμίας σε αλγόριθμο τετραγωνικού υπολοίπου) Δεδομένου αλγόριθμου A που υπολογίζει την ισοτιμία του x μπορούμε να κατασκευάσουμε αλγόριθμο B που αποφασίζει με την ίδια πιθανότητα επιτυχίας για το εάν ο x είναι τετραγωνικό υπόλοιπο. Απόδειξη. Δοθέντος του A ορίζουμε τον B ως εξής: B(n, x) = A(n, x 2 mod n) parity(x) 1. Δείχνουμε ότι οι πιθανότητες επιτυχίας των αλγορίθμων A και B είναι ίσες: Pr[A(n, x) G n, x R QR n, r A {0, 1} t A ] = Pr[B(n, x) G n, x R Z n(+1), r

Απόδειξη Ασφάλειας Εφαρμογές Μετατροπή Monte-Carlo σε σχεδόν πολυωνυμικούς ντετερμινιστικούς Κρυπτογραφία δημόσιου κλειδιού: Ο Bob θέλει να στείλει στην Alice ένα εμπιστευτικό μήνυμα μήκους m = (m 1, m 2,..., m n ) μέσω δημόσιου καναλιού. Η Alice κατασκευάζει και δημοσιεύει έναν αριθμό (δημόσιο κλειδί) n A = p A q A, όπου p A, q A BP (ιδιωτικά κλειδιά), τέτοιο ώστε n = poly( n A ). Κρυπτογράφηση: Χρησιμοποιώντας το δημόσιο κλειδί της Alice, ο Bob κατασκευάζει ένα one-time pad με τον ακόλουθο τρόπο: επιλέγει τυχαία κάποιο x 0 Z n A και το εισάγει σε μια γεννήτρια BBS παράγοντας ένα one-time pad z = (z 1, z 2,..., z n ). O Bob στέλνει τα (m z, x n+1 ). Αποκρυπτογράφηση: Η Alice, χρησιμοποιώντας το ιδιωτικό της κλειδί, υπολογίζει τα x n, x n 1,..., x 1, ανακατασκευάζει το one-time pad και εφαρμόζει XOR.

Απόδειξη Ασφάλειας Εφαρμογές Βιβλιογραφία Lenore Blum, Manuel Blum, and Michael Shub. A Simple Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing, 15(2):364 383, May 1986. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping secret all partial information. In Proc. 14th ACM Symp. on Theory of Computing, pages 365 377, San Francisco, 1982.ACM. Martin Geisler, Mikkel Krøigård, and Andreas Danielsen. About Random Bits. December 2004. Pascal Junod. Cryptographic Secure Pseudo-Random Bits Generation: The Blum-Blum-Shub Generator. August 1999. Douglas Stinson. Cryptography Theory and Practise, 3rd Edition, Chapman and Hall. Umesh V.Vazirani and Vijay V.Vazirani. Efficient and Secure Pseudorandom Generation. In Proceedings of Symposium on the Foundations of Computer Scince. 1984 A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd,