Kul Models for beam, plate and shell structures, 10/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, MT

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Laplace s Equation in Spherical Polar Coördinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Analytical Expression for Hessian

Fundamental Equations of Fluid Mechanics

Curvilinear Systems of Coordinates

Matrix Hartree-Fock Equations for a Closed Shell System

r = x 2 + y 2 and h = z y = r sin sin ϕ

ANTENNAS and WAVE PROPAGATION. Solution Manual

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Srednicki Chapter 55

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

The Laplacian in Spherical Polar Coordinates

Problems in curvilinear coordinates

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Chapter 7a. Elements of Elasticity, Thermal Stresses

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

4.2 Differential Equations in Polar Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Spherical Coordinates

6.3 Forecasting ARMA processes

Matrices and Determinants

Answer sheet: Third Midterm for Math 2339

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Tutorial Note - Week 09 - Solution

Example 1: THE ELECTRIC DIPOLE

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Strain and stress tensors in spherical coordinates

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Geodesic Equations for the Wormhole Metric

Math221: HW# 1 solutions

1 String with massive end-points

MÉTHODES ET EXERCICES

PARTIAL NOTES for 6.1 Trigonometric Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Concrete Mathematics Exercises from 30 September 2016

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Derivation of Optical-Bloch Equations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Orbital angular momentum and the spherical harmonics

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to Exercise Sheet 5

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CRASH COURSE IN PRECALCULUS

Approximation of distance between locations on earth given by latitude and longitude

Every set of first-order formulas is equivalent to an independent set

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?


If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Uniform Convergence of Fourier Series Michael Taylor

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Numerical Analysis FMN011

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Module 5. February 14, h 0min

Tridiagonal matrices. Gérard MEURANT. October, 2008

If we restrict the domain of y = sin x to [ π 2, π 2

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Parametrized Surfaces

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Solutions Ph 236a Week 2

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Tutorial problem set 6,

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Homework 3 Solutions

( y) Partial Differential Equations

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Course Reader for CHEN 7100/7106. Transport Phenomena I

Lifting Entry (continued)

Areas and Lengths in Polar Coordinates

Περισσότερα+για+τις+στροφές+

D Alembert s Solution to the Wave Equation

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Second Order RLC Filters

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Transcript:

Kul-49.45 Models fo beam, plate and shell stuctues, /6 Demo poblems. Conside mapping (, φ, n) = [ cos( φ) i + sin( φ) j] + nen. Compute the expession of the basis vecto deivatives, gadient opeato, and Chistoffel symbols Γ i, jk, {, φ, n}. Is the suface defined by the mapping flat o cuved? ijk Answe e, φ = eφ e φφ, = e = e + eφ + e n n Γ φφ =. Deive the equilibium equations of the plate/shell model in tems of the stess esultants in φn coodinates of poblem. The component foms of the equilibium equation ae given by (indices take values i, jk, {, φ, n} and αβ, {, φ} ) dαfαi +Γ jα jfαi +Γ jkifjk + bi = and dβ Mβα +Γ iβimβα +Γijα Mij Fnα + cα =. Answe ( F, + Fφ, φ + F Fφφ ) + b ( Fφ, + Fφφ, φ + Fφ + Fφ ) + bφ ( Fn, + Fφn, φ + Fn ) + bn = ( M, + Mφ, φ + M Mφφ ) Fn + c ( Mφ, + Mφφ, φ + Mφ + Mφ ) Fnφ + cφ 3. The invaiant fom of the equilibium equations of shell ae given by F ( κ : I)( en F) + b = [ M ( κ : I)( e M) e F + c] e = n n n Deive the component foms in tems of diected deivatives and Chistoffel symbols. Answe If n is excluded fom the index sets of α and β dαfαi +Γ jα jfαi +Γ jkifjk + bi = dβ Mβα +Γ iβimβα +Γijα Mij Fnα + cα =. The demo poblems ae published in the couse homepage on Fidays. The poblems ae elated to the topic of the next weeks lectue (Wed.5-. hall K3 8). Solutions to the poblems ae

explained in the weekly execise sessions (Thu.5-4. hall K3 8) and will also be available in the home page of the couse. Please, notice that the poblems of the midtems and the final exam ae of this type.

Conside mapping (, φ, n) = [ cos( φ) i + sin( φ) j] + nen. Compute the expession of the basis vecto deivatives, gadient opeato, and Chistoffel symbols Γ i, jk, {, φ, n} at n = Is the suface defined by the mapping flat o cuved? Solution In tems of the basis vectos of the Catesian system, expessions of the basis vectos of the φn coodinate system ae ( = cos( φ) i + sin( φ ) j ) eh = = cos( φ) i+ sin( φ ) j h = and e = cos( φ) i + sin( φ) j, eh φ φ= = sin( φ) i+ cos( φ) j ijk hφ = and e sin( ) i φ = φ + cos( φ) j, e = e e = [cos( ) i + sin( ) j] [ sin( ) i + cos( ) j] = k φ φ φ φ φ h =. n In a moe compact fom n e cos( φ) sin( φ) i i eφ = sin( φ) cos( φ ) j= [ F] j in which en k k T [ F] = [ F]. Diect use of the definition gives (just take the deivatives on both sides of the elationship above and use invese of the same elationship to eplace the basis vectos of the Catesian system by the basis vectos of the φn system) e cos( φ) sin( φ) e eφ= sin( φ) cos( φ ) eφ=, en en e sin( φ) cos( φ) cos( φ) sin( φ) e e eφ= cos( φ) sin( φ) sin( φ) cos( φ) eφ= eφ, en en en e cos( φ) sin( φ) e eφ= sin( φ) cos( φ ) eφ=. n en en Gadient of the φn system follows fom the mapping = cos( φ) i + sin( φ) j + nk and the geneic fomula in tems of [ F ] and [ H ]. In an othonomal system

x, α y, α z, α hα [ H] = x, β y, β z, β = hβ F = h F x y z h, γ, γ, γ γ [ ] [ ][ ] T T T eα α eα α eα α T T eβ [ F] [ H] β eβ ([ H][ F] ) β eβ [ h] β = = =. eγ γ eγ γ eγ γ The simplified expession fo an othonomal system gives in this case (at n = if the scaling coefficients given by ae used) T e = eφ φ= e + eφ + e n n e n n. Chistoffel symbols ae the components of the basis vecto gadients e e e e = e + e + e = e e n φ n φ φ e e e e = e + e + e = e e n φ φ φ φ φ n φ en en e κ n c = en = e + eφ + e n =. n Γ = e e e φφ φ φ =, Γ φφ = eφ eφ e =, As cuvatue vanishes, mid-suface is flat.

Deive the equilibium equations of the plate/shell model in tems of the stess esultants in φn coodinates of poblem. The component foms of the equilibium equation ae given by (indices take values i, jk, {, φ, n} and αβ, {, φ} ) dαfαi +Γ jα jfαi +Γ jkifjk + bi = and dα Mαβ + Mαβ Γ jα j + M jkγjkβ Fn β + cβ =. Solution The diected deivatives and non-zeo Chistoffel symbols ae d =, dφ =, dn =, and n Γ = Γ = φφ φφ. By consideing each foce equilibium equation at a time i = : dαfα +Γ jα jfα +Γ jkfjk + b = df + df φ φ +Γ φφ F +Γ φφfφφ + b = F,, ( ) + Fφ φ + F Fφφ + b =. i = φ : d F +Γ F +Γ F + b = α αφ jα j αφ jkφ jk φ df φ+ df φ φφ+γ φφf φ+γ φφfφ + bφ = F,, ( ) φ + Fφφ φ + F φ + Fφ + bφ =. i = n: dαfαn +Γ jα jfα n +Γ jknfjk + bn = df n + df φ φn +Γ φφ Fn + bn = F,, n + Fφ n φ + F n + b n =. By continuing with the moment equilibium equations (just two) β = : dαmα + MαΓ jα j + M jkγjk Fn + c = M M M M F c, + φ, φ + Γ φφ + φφγφφ n + = M,, ( ) + Mφ φ + Mφ Mφφ F n + c =.

β = φ : dα Mαφ + MαφΓ α + M Γ φ F φ + cφ = j j jk jk n M + M + M Γ + M Γ F + c = φ, φφφ, φ φφ φ φφ nφ φ M,, ( ) φ + Mφφ φ + M φ + Mφ F n φ + cφ =.

The invaiant fom of the equilibium equations of shell ae given by F ( κ : I)( en F) + b =, [ M ( κ : I)( e M) e F + c] e =. n n n Deive the component foms in tems of diected deivatives and Chistoffel symbols. Solution The diected deivatives, Chistoffel symbols, and cuvatue can be expessed in tems of the gadient opeato and basis vectos. At n =, =, e j = e iγijke k, and κ = e j Γ inj e i. ed i i Let us use notation αβ,, fo the indices not including n and i, j, fo the indices including n. Hence F ( κ : I)( e F) + b = n (summation convention) e d F ee Γ ( e F ee ) + be = k k ij i j knk n ij i j i i (Chistoffel symbols) dfe +Γ Fe + FΓ e Γ F e + be = i ij j kik ij j ij ijk k knk nj j i i (index swapping) dαfαiei+γ jα jfα iei+ FjkΓ jkiei+ be i i= ( dαfαi +Γ jα jfα i + FjkΓ jki + bi ) ei =. The last fom takes into account the fact that the foce esultants do not depend on n. The same steps with the othe equation give [ M ( κ : I)( e M) e F + c] e = n n n (summation convention) [ e d M ee Γ ( e M ee ) e F ee + ce ] e = k k ij i j knk n ij i j n ij i j i i n (Chistoffel symbols) [ djfjiei+γ jα jfα iei+ FjkΓjkiei Fniei+ ce i i] en= (index swapping) [ d jfji +Γ jα jfα i + FjkΓjki Fni + ci ] ei en = dβ Fβα +Γ iβifβα + FijΓijα Fnα + cα =.

Kul-49.45 Models fo beam, plate and shell stuctues INDEX NOTATION (Othonomal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENERAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDRICAL φ z SYSTEM = cosφi + sinφ j + zk e cφ sφ i e e eφ = sφ cφ j eφ= eφ ez k ez ez = e + eφ + ez z SPHERICAL θφ SYSTEM ( θφ,, ) = (s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j e sθφ c sθφ s cθ k eθ cθ eφ eφ= sθe cθeθ e sθeφ eθ e eφ =, θ e eθ = eθ + eφ + e θ sinθ THIN BODY snb SYSTEM FOR PLANAR BEAMS (, s n) = () s + ne () s es, s /, s, s = = e n ess, / ess, ess, R R = es + en R n s n n es en / R = s en es / R ORTHONORMAL CURVILINEAR COORDINATES eα i α x, α y, α z, α x x eβ = [ F] j β = x, β y, β z, β y= [ H] y en k x, y, z γ γ γ, γ z z eα eα eα i eβ= ( i[ F])[ F] eβ= [ D] () i eβ i e j = D ijk e k en en en T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n COMPONENT REPRESENTATIONS Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s s jl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i PLATE GEOMETRY ( φ n) (, φ, n) = [ i cosφ+ j sin φ ] + nen Γ ijk = D i D jk

e cosφ sinφ i eφ = sinφ cosφ j en k e eφ eφ = e e n d = d = d = φ φ n n Γ = Γ = φφ φφ dv = dndω BEAM GEOMETRY ( snb ) ( s, n, b) = [ ( s)] + ne n + be b es, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDRICAL SHELL GEOMETRY ( zφ n) ( z, φ, n) = [ ir cosφ+ jrsin φ + kz] + nen ez i ez eφ = sinφ cosφ j eφ = en en cos φ sinφ k en eφ d = z z φ = ( ) d n = n d R n Γ φφn = Γ φnφ = ( R n) dv = ( nr ) dn( Rdφ ) dz = ( nr ) dndω LINEAR ISOTROPIC ELASTICITY σ = E: ε = E: u (mino and majo symmeties of the elasticity dyad assumed) ε = [ u + ( u )] c

T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stess) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E Et G = D = ( +ν ) ( ν ) PRINCIPLE OF VIRTUAL WORK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A 3 BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ TIMOSHENKO BEAM ( xyz ) E = Eii + Gjj + Gkk N + bx Q y + by= Qz + bz T + cx M y Qz + cy= Mz + Qy + cz

N EAu ESzψ + ES yθ Qy= GA( v ψ) GS yφ Q z GA( w + θ) + GSzφ TIMOSHENKO BEAM ( snb ) T GS y( v ψ) + GSz( w + θ) + GIφ M y = ES yu EIzyψ + EI yyθ M z ESzu + EIzzψ EI yzθ N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb T Mnκb + cs Mn + Tκb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) T GSb( w + vκ s + θ ) + GI( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ dz = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) R + ( kj + jk ) R xx xy yx yy x y REISSNER-MINDLIN PLATE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + bz Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q o w w n Nnn Nn o un un = M ns M s o θn θn = N ns Ns o us u s M nn M n o θs θs KIRCHHOFF PLATE ( xyz )

Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + bz ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn o un un = N ns Ns o us us REISSNER-MINDLIN PLATE ( φ z) Q + M Q M o w w M nn M n o w, n + θ s n nss, ss, = [( N ) + N N ] / + b [( Nφ ), + Nφφ, φ + Nφ] / + bφ, φ, φ φφ = N u, + ν ( u + uφφ, )/ Et Nφφ = u ν, + ( u+ uφ, φ )/ ν N ( ν )[( u u ) / + u ] / φ, φ φ φ, [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c = [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/ M ( ν)[( θ + θ ) / θ ] / φ φφ,, Q w, + θφ = Gt Qφ w, φ / θ ROTATION SYMMETRIC KIRCHHOFF PLATE D w+ b z = d d = ( ) d d 4 ( ) b ( ) z w = + a ln + b + cln + d D 64 4 4 MEMBRANE EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) Nφz, φ + Nzz, z R bz Nzφ, z + Nφφ, φ + bφ = R b n Nφφ R te [ u zz, + ν ( u φφ, u n)] R Nzz ν te Nφφ = [ ( u φ, φ un) + νuzz, ] ν R Nzφ tg( uz, φ + uφ, z) R MEMBRANE EQUATIONS IN SPHERICAL GEOMETRY ( φθ n )

cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = R Nφφ + Nθθ b n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] R ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) κ Nφz, φ + Nzz, z + bz Nzφ, z + κnφφ, φ κqφ + bφ = κqφ, φ + Qzz, + κnφφ + bn Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) ν Nzφ ( ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) M zφ D ( ν )( ωφ, z κωz, φ κuφ, z) / = + Mφz ( ν)( ωφ, z + κωz, φ + κ uz, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz