Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Σχετικά έγγραφα
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Στοιχεία Θεωρίας Γραφηµάτων (2)

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (3)

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Αλγόριθµοι και Πολυπλοκότητα

u v 4 w G 2 G 1 u v w x y z 4

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Αναζήτηση Κατά Πλάτος

Αλγόριθµοι Γραφηµάτων

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Αναζήτηση Κατά Πλάτος

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων 4η Διάλεξη

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

d(v) = 3 S. q(g \ S) S

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

q(g \ S ) = q(g \ S) S + d = S.

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

2 ) d i = 2e 28, i=1. a b c

Αναζήτηση Κατά Πλάτος

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Θεωρία Γραφημάτων 6η Διάλεξη

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων 5η Διάλεξη

HY118- ιακριτά Μαθηµατικά

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Θεωρία Γραφημάτων 2η Διάλεξη

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118-Διακριτά Μαθηματικά

Θεωρία Γραφημάτων 8η Διάλεξη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων 2η Διάλεξη

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Θεωρία Γραφημάτων 5η Διάλεξη

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων 1η Διάλεξη

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.

Σχέσεις, Ιδιότητες, Κλειστότητες

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 3η Διάλεξη

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Θεωρία Γραφημάτων 1η Διάλεξη

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.

... a b c d. b d a c

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Θεωρία και Αλγόριθμοι Γράφων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

Κεφάλαιο 3. Γραφήµατα v1.1 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Θεωρία Γραφημάτων 7η Διάλεξη

Συνεκτικότητα Γραφήματος

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων 10η Διάλεξη

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Αλγόριθµοι και Πολυπλοκότητα

HY118-Διακριτά Μαθηματικά

Transcript:

Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς σύνολο κατευθυνόµενων ακµών E 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 διµελής σχέση επί του V Στην κατευθυνόµενη ακµή (, ): είναι αρχική κορυφή (til). είναι τερµατική κορυφή (h). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 2 / 39 Μη κατευθυνόµενα γραφήµατα Υπογραφήµατα Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V σύνολο ακµών E σύνολο δισυνόλων στοιχείων του V Υπογράφηµα H(W, F) του γραφήµατος G(V, E): όταν W V και F E. Το γράφηµα που επάγεται από ένα υποσύνολο κόµβων W V του G: είναι το υπογράφηµα H(W, F), όπου F = { (u, v) u W και v W }. Μια ακµή προσπίπτει / πρόσκειται στους κόµβους που ενώνει. δηλαδή, το F περιέχει ακµές µόνο µεταξύ κόµβων στο W Η (, ) πρόσκειται στους και. Οι και είναι γειτονικοί. Η (, ) ονοµάζεται βρόχος. V = {,,, } E = { {, }, {, }, {, }, {, } } Πλήρες γράφηµα K 5 Υπογράφηµα επαγόµενο από {,,, } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 3 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 4 / 39

Πολυγραφήµατα (Multirphs) Γειτονιά Κόµβου/Κορυφής Πολυγράφηµα G είναι γράφηµα (V, E) όπου το E είναι πολυσύνολο: διατεταγµένων Ϲευγών από το V V, αν G κατευθυνόµενο, µη διατεταγµένων Ϲευγών από το V V, αν G µη κατευθυνόµενο. Σε µη κατευθυνόµενο γράφηµα Γειτονιά του v V: N G (v) = { u V {u, v} E } 4 3 Σε κατευθυνόµενο γράφηµα (µε ή χωρίς ϐρόχους) ύο ειδών γειτονιές για κάθε κόµβο: «Εξερχόµενη» Γειτονιά: N + G (u) = { v V : (u, v) E } 1 2 «Εισερχόµενη» Γειτονιά: N G (u) = { v V : (v, u) E } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 5 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 6 / 39 Βαθµός Κόµβου/Κορυφής Βασικές Σχέσεις Βαθµών Κόµβων Σε µη κατευθυνόµενο γράφηµα: πλήθος προσκείµενων ακµών. απλό χωρίς ϐρόχους: (u) = { {u, v} E : v V } = N G (v) απλό µε ϐρόχο {u, u}: (u) = 2 + { {u, v} E : v V \ {u} } Σε κατευθυνόµενο γράφηµα (µε ή χωρίς ϐρόχους) Βασική Ταυτότητα. Σε κάθε απλό µη κατευθυνόµενο γράφηµα: 2m = v V (v) Σε κάθε απλό κατευθυνόµενο γράφηµα: 2m = ( ) (v) + + (v) m = (v) = + (v) v V v V v V ύο ειδών ϐαθµοί για κάθε κόµβο: «Εξερχόµενος» Βαθµός: + (u) = { (u, v) E : v V} = N + G (v) Θεώρηµα. Κάθε απλό µη κατευθυνόµενο γράφηµα έχει άρτιο πλήθος κόµβων µε περιττό ϐαθµό. «Εισερχόµενος» Βαθµός: (u) = { (v, u) E : v V} = N G (V) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 7 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 8 / 39

Απόδειξη Ειδικές Περιπτώσεις Γραφηµάτων Το πλήθος κόµβων µε περιττό ϐαθµό είναι άρτιο. Πλήρη Γραφήµατα n κόµβων (συµβ.: K n ) Απόδειξη: Εστω V = V 1 V 2, όπου: { (v) περιττός για κάθε v V1, (v) άρτιος για κάθε v V 2. Κύκλοι (Cyls) n κόµβων (συµβ.: C n ): Τότε: 2m = v V (v) = v V 1 (v) + v V 2 (v). Το άθροισµα είναι άρτιο και v V 2 (v) άρτιος. Ρόδες (Whls) n + 1 κόµβων (συµβ.: W n ): Αρα ϑα πρέπει v V 1 (v) άρτιος (ενώ τα (v) εδώ είναι περιττά). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 9 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 10 / 39 ιµερή Γραφήµατα ιµερές Γράφηµα G(V, E) αν: µπορούµε να διαµερίσουµε το V σε µη κενά ξένα υποσύνολα V 1 και V 2, ώστε για κάθε δύο κόµβους v 1, v 2 V 1 ή v 1, v 2 V 2 είναι {v 1, v 2 } E. Παραδείγµατα: Ο C 6 είναι διµερής. Ο C 3 δεν είναι διµερής. Για κάθε n 3, ο K n δεν είναι διµερής. Γιατί; Σε ένα τουλάχιστον από τα δύο µέρη ϑα υπάρχουν ακµές. Εξαίρεση, ο K 2 (µια ακµή µόνη της), όπου κάθε µέρος έχει έναν κόµβο. Ο C n είναι διµερής αν και µόνο αν n είναι άρτιος. Παραδείγµατα (α) Είναι καθένα από αυτά τα γραφήµατα διµερές; Το (α) είναι πράγµατι διµερές: V 1 = {,, }, V 2 = {,,, }. Το (ϐ) δεν είναι διµερές: Ο ϑα πρέπει να αποτελεί µόνος του το ένα από τα δύο µέρη. ιότι συνδέεται µε όλους τους υπόλοιπους κόµβους. Αρα, οι {,,,, } (που έχουν ακµές µεταξύ τους) ϑα αποτελούν το έτερο µέρος της διαµέρισης. (ϐ) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 11 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 12 / 39

Πλήρη ιµερή Γραφήµατα Αναπαράσταση Γραφηµάτων Συµβολίζονται µε K m,n, όπου m = V 1, n = V 2. Ολοι οι κόµβοι του V 1 συνδέονται µε όλους τους κόµβους του V 2. Το πλήθος ακµών του K m,n είναι m n. Μέγιστο πλήθος ακµών διµερούς γραφήµατος µε n συνολικά κόµβους; n 1 στη µία πλευρά της διαµέρισης, n 2 στην άλλη πλευρά: n 1 + n 2 = n. Πλήθος ακµών: n 1 n 2 = n 1 (n n 1 ) = n 1 n n1 2. Μέγιστο n 2 /4, για n 1 = n 2 = n/2. Επειδή n ακέραιος, µέγιστο n n 2 2. Πίνακας Γειτνίασης A = [ ij ]: { 1 αν {i, j} E ij = 0 αν {i, j} E 4 3 1 2 4 3 1 2 A = A = 1 2 3 4 1 0 0 1 1 2 0 0 0 1 3 1 0 0 1 4 1 1 1 0 1 2 3 4 1 0 2 1 2 2 2 1 1 0 3 1 1 0 3 4 2 0 3 0 K 2,3 K 3,3 K 3,5 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 13 / 39 Μη κατευθυνόµενο γράφηµα συµµετρικός πίνακας γειτνίασης. Κατευθυνόµενο γράφηµα όχι πάντα συµµετρικός πίνακας. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 14 / 39 Αναπαράσταση Γραφηµάτων Πίνακας Πρόσπτωσης M = [m ij ]: { 1 αν η j E πρόσκεται στον κόµβο i. m ij = 0 αν η j E δεν πρόσκεται στον κόµβο i Ισόµορφα Γραφήµατα ύο απλά γραφήµατα G 1 (V 1, E 1 ) και G 2 (V 2, E 2 ) είναι ισόµορφα αν: υπάρχει 1-1 και επί συνάρτηση : V 1 V 2, τέτοια ώστε: {x, y} E αν και µόνο αν {(x), (y)} E 2. 4 4 2 3 3 1 1 2 A = 1 2 3 4 1 1 0 1 0 2 0 0 0 1 3 1 1 0 0 4 0 1 1 1 () = 1, () = 3, () = 2, () = 4 1 2 4 3 Χρήσιµο και για πολυγραφήµατα, εφόσον οι ακµές είναι ονοµατισµένες. Ο πίνακας είναι και τότε 0 1 (ακόµα και αν υπάρχουν ϐρόχοι). () = 4, () = 2, () = 3, () = 1 Αλλά όχι: h() = 1, h() = 2, h() = 3, h() = 4. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 15 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 16 / 39

Αναλλοίωτες Ιδιότητες στον Ισοµορφισµό Παράδειγµα (1) Ο έλεγχος ισοµορφισµού είναι αλγοριθµικά δύσκολο προβλήµα. Υπάρχουν n! δυνατές συναρτήσεις (1 1 και επί) προς δοκιµή. Βρίσκοντας αποδεικνύουµε ότι δύο γραφήµατα είναι ισόµορφα. Για Ν Ο δεν είναι, πρέπει να αποκλείσουµε όλες τις n! συναρτήσεις!!! Αναλλοίωτες Ιδιότητες: «επιβιώνουν» του ισοµορφισµού. Αν κάποια δεν ισχύει για οποιαδήποτε, τότε τα γραφήµατα δεν είναι ισόµορφα. Προφανείς Αναλλοίωτες Ιδιότητες: πλήθος κόµβων, πλήθος ακµών. Επίσης, Βαθµός Κόµβων: ϑα πρέπει να ισχύει ((v)) = (v). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 17 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 18 / 39 Παράδειγµα (2) Παράδειγµα (3) s t w x h z y u 2 v 2 v u u 1 v 1 v 3 Τα δύο γραφήµατα δεν είναι ισόµορφα. v 5 v 4 Ο κόµβος (αριστερά) είναι ϐαθµού 2. εποµένως µπορεί να αντιστοιχηθεί µε κάποιον από τους t, u, x, y (δεξιά). Οµως ο έχει µόνο γείτονες ϐαθµού 3 (, ). Καθένας από τους t, u, x, y έχει έναν γείτονα ϐαθµού 2. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 19 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 20 / 39

Παράδειγµα (4) Παράδειγµα (5) u 1 u 2 v 1 u 1 u 2 v 1 v5 v 2 v 5 v 2 v 4 v 3 v 4 v 3 εν είναι ισόµορφα. Το γράφηµα στα δεξιά έχει έναν κόµβο ϐαθµού 4 (τον v 2 ), ενώ όλοι οι κόµβοι στο γράφηµα στα αριστερά έχουν ϐαθµό το πολύ 3. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 21 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 22 / 39 Μονοπάτια, Κυκλώµατα και Κύκλοι Μονοπάτι µήκους n σε (µη κατευθ.) γράφηµα G(V, E) από u V στον v V: ακολουθία ακµών 1, 2,..., n ή κόµβων x 0 = u, x 1,..., x n = v, ώστε: i = { x i 1, x i }, για i = 1,..., n. Κύκλωµα: x 0 = x n (δηλαδή u = v). Απλό Μονοπάτι / Κύκλωµα: δεν διασχίζει την ίδια ακµή > 1 ϕορές. Στοιχειώδες Κύκλωµα (Κύκλος): απλό και δεν περνά από ίδιο κόµβο > 1 ϕορές. Μονοπάτι Κύκλωµα Απλό Κύκλωµα,,,,,,,,,,,,,,,,, Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 23 / 39 Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A ως προς µια διάταξη των κόµβων του, v 1,..., v n. Μπορεί το G να είναι κατευθυνόµενο η µη. Μπορεί να είναι πολυγράφηµα ή να έχει ϐρόχους. Το πλήθος διαφορετικών µονοπατιών µήκους r Z + από τον v i στον v j δίνεται από το στοιχείο (i, j) του πίνακα A r. Παράδειγµα: A = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 A4 = 8 0 0 8 0 8 8 0 0 8 8 0 8 0 0 8 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 24 / 39

Συνδετικότητα (Συνεκτικότητα) Συνδεδεµένο (συνεκτικό) µη κατευθυνόµενο γράφηµα G(V, E): Εχει µονοπάτι µεταξύ οποιωνδήποτε δύο κόµβων u, v V. ιαφορετικά το γράφηµα είναι ασύνδετο / µη συνεκτικό. Ασύνδετο γράφηµα µε τρεις συνδεδεµένες συνιστώσες. Συνδεδεµένη Συνιστώσα: µεγιστικό (mximl) συνδεδεµένο υπογράφηµα. (συµπερίληψη επιπλέον κόµβου η ακµής µε τα άκρα της δίνει ασύνδετο) Θεώρηµα Σε συνδεδεµένο γράφηµα κάθε δύο κόµβοι συνδέονται µε απλό µονοπάτι. h Συνδετικότητα (Συνεκτικότητα) Σε συνδεδεµένο (µη κατευθυνόµενο) γράφηµα G(V, E): Κόµβος Αποκοπής (Cut Vrtx): η διαγραφή του (µε τις προσκείµενες ακµές) αφήνει ασύνδετο υπογράφηµα. Ακµή Αποκοπής / Γέφυρα (Cut E / Bri): η διαγραφή της αφήνει ασύνδετο υπογράφηµα. Ενα πλήρες γράφηµα δεν έχει κόµβους αποκοπής ή γέφυρες. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 25 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 26 / 39 Παράδειγµα Συνδετικότητα Κόµβων και Ακµών Σε (µη κατευθυνόµενο) γράφηµα G(V, E): Υποσύνολο Κόµβων ιαχωρισµού V V: Το G V είναι ασύνδετο. Συνδετικότητα Κόµβων (Vrtx Conntivity) κ(g): η ελάχιστη πληθυκότητα ενός υποσυνόλου κόµβων διαχωρισµού. h κ(g) = min{ V : V V και G V είναι ασύνδετο } Ποιοί είναι οι κόµβοι αποκοπής και οι γέφυρες του γραφήµατος; Υποσύνολο Ακµών ιαχωρισµού E E: Το G E είναι ασύνδετο. Κόµβοι Αποκοπής:,,. Γέφυρες: {, }, {, } Συνδετικότητα Ακµών (E Conntivity) λ(g): η ελάχιστη πληθυκότητα ενός υποσυνόλου ακµών τοµής. λ(g) = min{ E : E E και G E είναι ασύνδετο } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 27 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 28 / 39

Παραδείγµατα Παραδείγµατα h Ο κόµβος είναι κόµβος αποκοπής. Εποµένως, κ(g) = 1. Το γράφηµα δεν έχει γέφυρες. Υποσύνολο ακµών διαχωρισµού: { {, }, {, } }. Εποµένως, λ(g) = 2. Το γράφηµα δεν έχει κόµβους αποκοπής. Οµως το {, } είναι υποσύνολο κόµβων διαχωρισµού. Οµοίως, τα {, } και {, }. Εποµένως, κ(g) = 2. Το γράφηµα δεν έχει γέφυρες. Εχει υποσύνολο ακµών διαχωρισµού: { {, }, {, } }. Εποµένως, λ(g) = 2. Υποσύνολο κόµβων διαχωρισµού: {, } εν έχει κόµβο αποκοπής, άρα, κ(g) = 2. Οχι Ϲεύγος ακµών διαχωρισµού ή γέφυρα, διότι ϐαθµός κάθε κόµβου 3. Εχει υποσύνολο ακµών διαχωρισµού: { {, }, {, }, {, } }. Εποµένως, λ(g) = 3. Υποσύνολο κόµβων διαχωρισµού: {,, } εν έχει Ϲεύγη κόµβων διαχωρισµού. Εποµένως, κ(g) = 3. Οχι γέφυρες ή Ϲεύγη ακµών διαχωρισµού, διότι ϐαθµός κάθε κόµβου 3. Αφαίρεση των {, }, {, }, {, h} το αποσυνδέει. Αρα, λ(g) = 3. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 29 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 30 / 39 Συνδετικότητα Κόµβων κ() Συνδετικότητα Ακµών λ() εν ορίζεται σε πλήρη γραφήµατα: δεν έχουν κόµβους αποκοπής! εν ορίζεται στο K 1 (διότι δεν έχει ακµές). και κάθε υπογράφηµά τους ως προς υποσύνολο κόµβων είναι πλήρες! Ορίζουµε λ(k 1 ) = 0. Ισχύει επίσης λ(g) = 0 αν G ασύνδετος. Ορίζουµε κ(k n ) = n 1 για πλήθος κόµβων n 1. Εποµένως, σε κάθε γράφηµα G µε n κόµβους, 0 κ(g) n 1. Τότε, κ(g) = 0 αν και µόνο αν G = K 1 ή G είναι ασύνδετο. Εποµένως, σε κάθε γράφηµα G µε n κόµβους, 0 λ(g) n 1. Ν Ο λ(g) = n 1 αν και µόνο αν G = K n. κ(g) λ(g) n 1 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 31 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 32 / 39

Απόδειξη (1/2): λ(g) = n 1 G = K n Απόδειξη (2/2): G = K n λ(g) = n 1 Αν G = K n : Αν λ(g) = n 1: Κάθε δυνατό υποσύνολο ακµών διαχωρισµού έχει n 1 ακµές. Αρα, και το σύνολο ακµών που διαχωρίζει κάθε κόµβο u από τους άλλους. Αρα, ο u έχει τουλάχιστον n 1 γείτονες στο G, και, εποµένως, ακριβώς n 1 γείτονες. Εστω αυθαίρετη διαµέριση του V στα σύνολα X και Y. Κάθε κόµβος του X έχει y = Y γείτονες στο Y, διότι το γράφηµα είναι πλήρες Αρα, αν x = X, υπάρχουν xy = x(n x) ακµές διαχωρισµού των X,Y. Για 1 x n, η ποσότητα αυτή είναι τουλάχιστον n 1 λ(g). Εποµένως το G είναι το πλήρες γράφηµα των n κόµβων. xn x 2 παραβολή µε τα κοίλα προς τα κάτω, τα ελάχιστά της συµβαίνουν για x = 1 ή x = n 1. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 33 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 34 / 39 Συνδετικότητα (Κόµβων / Ακµών) Συνδετικότητα Κατευθυνόµενων Γραφηµάτων Ισχυρά Συνδεδεµένο (Συνεκτικό) κατευθυνόµενο γράφηµα G(V, E): Εχει κατευθυνόµενο µονοπάτι µεταξύ οποιωνδήποτε δύο κόµβων u, v V. Να προσδιοριστεί η συνδετικότητα κ (κόµβων) και λ (ακµών) του γραφήµατος ιαφορετικά: είτε ασύνδετο (µη συνεκτικό), είτε ασθενώς συνδεδεµένο. Ασθενώς Συνδεδεµένο κατευθυνόµενο γράφηµα G(V, E): Το «υποκείµενο» µη κατευθυνόµενο γράφηµα είναι συνδεδεµένο. h ιαφορετικά: το γράφηµα G είναι ασύνδετο (µη συνεκτικό). Ισχυρά Συνδεδεµένο Ασθενώς συνδεδεµένο Ασύνδετο Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 35 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 36 / 39

Συνδετικότητα Κατευθυνόµενων Γραφηµάτων Μονοπάτια / Κυκλώµατα και Ισοµορφισµός Σε ένα κατευθυνόµενο γράφηµα, δύο διαφορετικοί κόµβοι ανήκουν: είτε στην ίδια ισχυρά συνδεδεµένη συνιστώσα, ή σε δύο διαφορετικές (ξένες) ισχυρά συνδεδεµένες συνιστώσες. Μονοπάτι ή απλό κύκλωµα συγκεκριµένου µήκους ϑα πρέπει να επιβιώνει του ισοµορφισµού ως αναλλοίωτη ιδιότητα. Αν υφίσταται στο ένα γράφηµα και όχι στο άλλο, δε µπορούν να είναι ισόµορφα. u 1 u 1 u 6 u 2 u 6 u 2 G 1 G 2 Το G 1 είναι ισχυρά συνδεδεµένο. Το G 2 είναι ασθενώς συνδεδεµένο: δεν υπάρχει µονοπάτι από. Τρεις ισχυρά συνδεδεµένες συνιστώσες: {}, {}, {,, }. Μη ισόµορφα: το δεξιό γράφηµα έχει απλό κύκλο µήκους 3 (π.χ., u 1, u 2, u 6, u 1 ), αλλά το αριστερό όχι. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 37 / 39 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 38 / 39 Μονοπάτια / Κυκλώµατα και Ισοµορφισµός u 2 v 1 u 1 v 5 v 2 v 4 v 3 Ελεγχος Αναλλοίωτων: Ιδιο πλήθος κόµβων, ίδιο πλήθος ακµών. 2 κόµβοι ϐαθµού 3 και στα δύο γραφήµατα (u 1, και v 1,v 3 αντίστοιχα). 3 κόµβοι ϐαθµού 2 και στα δύο γραφήµατα. Απλοί κύκλοι µε µήκη 3, 4, 5 και στα δύο γραφήµατα. Ισως να είναι ισόµορφα. Πράγµατι, ένας ισοµορφισµός είναι: (u 1 ) = v 3, ( ) = v 2, ( ) = v 1, (u 2 ) = v 5, ( ) = v 4 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 39 / 39