n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:

Σχετικά έγγραφα
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

, ( x) = ( f ( x),..., f ( x)

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. (Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος )

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

και αναζητούμε τις λύσεις του:

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΠΑΡΑΔΕΙΓΜΑ 1. Η μονοδιάστατη γραμμική δυναμική. *

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β.

Ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές έχει την

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

Συνήθεις Διαφορικές Εξισώσεις

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι ΓΕΩΜΕΤΡΙΑ ΤΩΝ ΘΕΣΕΟΓΡΑΦΙΚΩΝ ΧΩΡΩΝ

1.1. Διαφορική Εξίσωση και λύση αυτής

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

ẋ = f(x), x = x 0 όταν t = t 0,

Ημερολόγιο μαθήματος

ΜΕΜ251 Αριθμητική Ανάλυση

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

f I X i I f i X, για κάθεi I.

Τροχιές της δισδιάστατης γραμμικής δυναμικής στην περιοχή των υπερβολικών καταστάσεων ισορροπίας. Σάγματα - saddles

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

{ } M =: T a. a M ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΕΠΙΦΑΝΕΙΩΝ ΤΟΥ ΕΥΚΛΕΙΔΕΙΟΥ ΧΩΡΟΥ 3. )} i I. ,φ i. A(M) = {(U i = M. U i i I

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

Περιεχόμενα. Πρόλογος 3

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

website:

ονομάζεται τότε χώρος πηλίκο. διατηρεί τα συμπληρώματα συνόλων, ένα σύνολο F είναι είναι κλειστό στον.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

Τίτλος Μαθήματος: Διαφορική Γεωμετρία

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

6 Συνεκτικοί τοπολογικοί χώροι

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

Μεθοδολογία Παραβολής

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Φυσική Α Λυκείου. Σημειώσεις από τη θεωρία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη)

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΤΟΥΣ ΕΥΚΛΕΙΔΕΙΟΥΣ ΧΩΡΟΥΣ

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

a b b < a > < b > < a >.

Συνήθεις Διαφορικές Εξισώσεις

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Εφαρμοσμένα Μαθηματικά ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος Καθηγητές: Σ. Πνευματικός Α. Μπούντης

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

t : (x, y) x 2 +y 2 y x

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες

= x. = x1. math60.nb

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

1ο τεταρτημόριο x>0,y>0 Ν Β

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Κανόνες παραγώγισης ( )

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

Ευχαριστίες Δύο λόγια από την συγγραφέα... 17

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L.

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

f : U n. a U όταν υπάρχει γραμμική συνάρτηση : d a f : n f (u) + o( u ).

a = a a Z n. a = a mod n.

Εφαρμοσμένα Μαθηματικά ΙΙ

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1

Κλασικη ιαφορικη Γεωµετρια

f(x) = και στην συνέχεια

Υπολογιστικά & Διακριτά Μαθηματικά

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Transcript:

ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται από την αριθμητική τιμή της συγκέντρωσής της, άρα η στιγμιαία κατάσταση του συστήματος των χημικών ουσιών δηλώνεται με ένα σημείο στον ευκλείδειο χώρο : x ( ) ( x( ),..., x( )). 1 Τα πειραματικά δεδομένα οδηγούν στον στατιστικό προσδιορισμό του ρυθμού μεταβολής των συγκεντρώσεων των αλληλεπιδρώντων χημικών ουσιών και στον ορισμό συναρτήσεων σε ένα χωρίο του ευκλείδειου χώρου : f : U, i 1,...,. i Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων: dxi fi( x1,..., x), i 1,...,. d Αν ο ρυθμός μεταβολής των συγκεντρώσεων είναι αρκετά ομαλός, π.χ. αν οι συναρτήσεις που τον εκφράζουν διαθέτουν συνεχείς παραγώγους, με τοπική επίλυση του συστήματος των διαφορικών εξισώσεων προσδιορίζονται οι διαδοχικές καταστάσεις της εξέλιξης του συστήματος των χημικών ουσιών γνωρίζοντας απλά και μόνο την κατάστασή του σε μια δεδομένη χρονική στιγμή. Αυτό ακριβώς δηλώνει η αρχή του ντετερμινισμού που εκφράζεται με το θεώρημα ύπαρξης και μοναδικότητας των λύσεων των διαφορικών εξισώσεων. Συγκεκριμένα, αν τη στιγμή το σύστημα βρίσκεται στην κατάσταση x U, η εξέλιξή του στο χώρο των καταστάσεων, μελλοντική και παρελθούσα, ορίζεται μονοσήμαντα στο χρονικό διάστημα της διάρκειάς της από τη λύση του συστήματος των διαφορικών εξισώσεων: :I x U, x ( ) x. Η εξέλιξη του συστήματος, για κάθε δεδομένη αρχική κατάσταση, αναπαρίσταται με την προσανατολισμένη καμπύλη που ορίζεται από την εικόνα της αντίστοιχης λύσης και καλείται τροχιά της εξέλιξης στο χώρο των καταστάσεων:

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ : 2 () / I x x U, x U. Από γεωμετρική άποψη, τα πειραματικά δεδομένα ορίζουν στο χώρο των καταστάσεων ένα διανυσματικό πεδίο το οποίο προσαρτά σε κάθε κατάσταση το αντίστοιχο διάνυσμα που υποδεικνύει την κατεύθυνση και το ρυθμό μεταβολής των συγκεντρώσεων των χημικών ουσιών: : U, ( x) f ( x),..., f ( x), και έτσι το σύστημα των διαφορικών εξισώσεων εκφράζεται διανυσματικά ως εξής: dx ( x) d, x U. Από κάθε σημείο του καρτεσιανού γινομένου του χρονικού άξονα με το χώρο των καταστάσεων διέρχεται μια μόνο ολοκληρωτική καμπύλη ορισμένη από το γράφημα της αντίστοιχης λύσης και από την προβολή της στο χώρο των καταστάσεων προκύπτει η τροχιά που συναντά εφαπτομενικά τα αντίστοιχα διανύσματα του διανυσματικού πεδίου. Τα σημεία μηδενισμού του διανυσματικού πεδίου ορίζουν τις σημειακές τροχιές, δηλαδή τις καταστάσεις ισορροπίας του δυναμικού συστήματος: ( x) 0 () 1 x x,. Η εξελικτική ροή ενός δυναμικού συστήματος προσαρτά σε κάθε αρχική κατάσταση την κατάσταση στην οποία θα βρεθεί ή βρέθηκε το σύστημα οποιαδήποτε δεδομένη μελλοντική ή παρελθούσα χρονική στιγμή. Συγκεκριμένα, όταν οι λύσεις του συστήματος των διαφορικών εξισώσεων ορίζονται σε όλο το χρονικό άξονα, κάθε δεδομένη χρονική στιγμή, ορίζεται ο μετασχηματισμός ροής: g : U U, g ( x ): ( ),. Η αρχή του ντετερμινισμού εκφράζεται τότε με τη συνθήκη: x + g = g g,,. Η συνθήκη αυτή διασφαλίζει ότι το σύνολο των μετασχηματισμών ροής, εφοδιασμένο με την πράξη της σύνθεσης, αποκτά δομή αντιμεταθετικής ομάδας. Πρόκειται για τη μονοπαραμετρική ομάδα του δυναμικού συστήματος που τα στοιχεία της είναι αμφιδιαφορικοί μετασχηματισμοί του χώρου των καταστάσεων. Έτσι, ορίζεται ένας Ερώτημα 1: Πώς θα σχολιάζατε το ότι η συνθήκη αυτή εκφράζει την αρχή του ντετερμινισμού; Τι είναι αυτό που διασφαλίζει την αμφιδιαφορισιμότητα των μετασχηματισμών ροής;

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ : 3 ομομορφισμός της προσθετικής ομάδας του χρονικού άξονα στην ομάδα των αμφιδιαφορομορφισμών του χώρου των καταστάσεων που σε κάθε χρονική στιγμή προσαρτά τον αντίστοιχο μετασχηματισμό ροής:,, Diff(U). Η εξελικτική ροή του δυναμικού συστήματος ορίζεται στο διευρυμένο χώρο καταστάσεων, δηλαδή στο καρτεσιανό γινόμενο του χρονικού άξονα με το χώρο των καταστάσεων, ως εξής: g: U U, g(, x): g ( x). Πρόκειται για διαφορίσιμη απεικόνιση ως προς το χρόνο που επαληθεύει τη σχέση: g x g x (, ) ( ), x U. Η τροχιά που ορίζεται από κάθε δεδομένη κατάσταση εκφράζεται τώρα ως εξής: x g(,x ) U /, x U, και τα σταθερά σημεία της εξελικτικής ροής ορίζουν τις καταστάσεις ισορροπίας: ( x) 0 g (, x) x,. Μια άποψη δυναμικής εξέλιξης σε δισδιάστατο χώρο καταστάσεων: ( x) x ( x 1)( x 2), si( x x ). 2 2 2 1 2 Αν οι λύσεις του συστήματος των διαφορικών εξισώσεων δεν ορίζονται σε όλο το χρονικό άξονα τότε λέμε ότι η εξελικτική ροή δεν είναι πλήρης και στην περίπτωση αυτή η μονοπαραμετρική ομάδα είναι ψευδομάδα που η δράση της περιορίζεται στα συμπαγή υποσύνολα του χώρου των καταστάσεων.

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ : 4 Το θεώρημα ύπαρξης και μοναδικότητας των λύσεων των διαφορικών εξισώσεων δηλώνει ότι κάθε αρχική συνθήκη ορίζει μονοσήμαντα μια μοναδική τροχιά στο χώρο των καταστάσεων και σε αυτήν προσαρτάται η χρονική ομάδα: Tx / g (, x ) x, x U. Πρόκειται για τοπολογικά κλειστή υποομάδα της προσθετικής ομάδας (, ), άρα έχει μια από τις ακόλουθες τρεις μορφές: x 0 T, x T, T : T / T. x k k T 0 Η φύση κάθε τροχιάς δηλώνεται από τη φύση της χρονικής της ομάδας και ισχύουν τα εξής κριτήρια: T x σημειακή τροχιά, x T T x x x 0 περιοδική τροχιά, T απεριοδική τροχιά. x Η ταξινόμηση των δυναμικών συστημάτων ανάλογα με τη φύση των εξελικτικών τους ροών και των τροχιών τους στους χώρους καταστάσεων αποτελεί σπουδαίο ζητούμενο της μαθηματικής θεωρίας. Για το σκοπό αυτό χρειάζεται να εισαχθεί ένα κριτήριο ταξινόμησης, δηλαδή μια σχέση ισοδυναμίας, που να πληροί τα αξιώματα της ανακλαστικότητας, της συμμετρίας, της μεταβατικότητας, και έτσι προκύπτει ο διαμερισμός τους σε κλάσεις ισοδυναμίας. Λέμε ότι δυο δυναμικά συστήματα έχουν ισοδύναμη δυναμική συμπεριφορά ή ταυτόσημες εξελικτικές ροές στο χώρο των καταστάσεών τους U, όταν υπάρχει αντιστρέψιμος μετασχηματισμός: τέτοιος ώστε: δηλαδή: A B h : U U hg ( x ) g h( x ), x U,, g (, A ) g B, ( ) h x h x, x U,. Η συνθήκη αυτή βασίζεται στη φύση των αντίστοιχων μονοπαραμετρικών ομάδων: g : U U A και g : U U B Ερώτημα 2: Ποιες είναι οι υποομάδες της προσθετικής ομάδας (, ) ; Ποιος είναι ο λόγος που οι χρονικές ομάδες είναι τοπολογικά κλειστές;

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ : 5 και εκφράζεται με τη μεταθετικότητα των ακόλουθων διαγραμμάτων: A g U U h h U U g B. Όταν οι εξελικτικές ροές δυο δυναμικών συστημάτων είναι ισοδύναμες τότε οι τροχιές του ενός μετασχηματίζονται αμφιμονοσήμαντα στις τροχιές του άλλου ως εξής: x h ( x ) h, x U. Διακρίνουμε τρεις περιπτώσεις ισοδυναμίας των εξελικτικών ροών που αφορούν στην τοπολογική, στη διαφορική και στην αλγεβρική φύση τους: Τοπολογική ισοδυναμία: h Hm ( ) Ομάδα ομοιομορφισμών του Διαφορική ισοδυναμία: h Diff ( ) Ομάδα διαφομορφισμών του Γραμμική ισοδυναμία: h GL( ) Ομάδα ισομορφισμών του,., Προφανώς: h GL( ) h Diff ( ) h Hm ( ). Παραδείγματα τροχιών δυναμικών συστημάτων σε δισδιάστατο χώρο καταστάσεων. Ερώτημα 3: Ποιες είναι οι χρονικές ομάδες των τροχιών των προηγούμενων παραδειγμάτων; Ποια πιστεύετε ότι είναι η τοπολογική σχέση των εξελικτικών τους ροών;