Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας
|
|
- Δήλια Μακρή
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας
2 Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ + α) + + Lsi λ
3 φ = ( θ + 2k (2θ )) = (4k π + 1) 4 φ = ( θ + (2k + 1) (2θ )) π = (4k + 3) 4 P2 k +1 P 2k P 1 θ θ P P4 1 Θ = 2θ = θ = π 4 π 2 cos( φ) = ( 1) k 1 2 T ( r, φ) k cos( φ ) = ( 1) T ( r, φ )
4 R : r > R ( 1) k T r 2 Ar 1 L > ( 1) k+ 1 T r 2 Ar 1 L > τουλάχιστον 2 ρίζες f (z) ζ = ta(φ / 2) T p 2 = ( ) 2 2 ζ (1 + ζ ( ζ ) ) p βαθμού 2
5 2 ρίζες Q ϑ, Q1,, Q2 1, ϑ1,, ϑ2 1 η περιφέρεια ενός κύκλου r > R θα αποτελείται από τόξα, εντός των οποίων το αρνητικές τιμές T λαμβάνει εναλλακτικώς θετικές και P2 k +1 P 2k P 1 P Q P4 1
6 Λήμμα 2.2: Το p(z) λαμβάνει ελάχιστη τιμή σε κάποιο z Λήμμα 2.3 : Αν p(z) μη σταθερό τότε p( z ) = 1η απόδειξη Το ελάχιστο επί ενός συμπαγούς συνόλου θα βρίσκεται στο εσωτερικό του Αρχή Ελαχίστου p(z) Το είναι σταθερό σε κάποια ανοικτή περιοχή Άτοπο 4η απόδειξη
7 κοινό βήμα p(z) f ( z) = δεν έχει ρίζες στο 1 p( z) αναλυτική στο 2η απόδειξη 3η απόδειξη 5η απόδειξη 12η απόδειξη Θ.Cauchy - Goursat + Λήμμα της Αύξησης Ολοκληρωτικός Τύπος Cauchy Θ.Liouville Τύπος του Ito + Iδιότητες Κίνησης Βrow φράσσουμε την f και καταλήγουμε σε άτοπο
8 Το Θεώρημα Liouville: (1) Εάν η f (z) είναι μια ακέραια συνάρτηση και η f ( z) z φραγμένη για όλες τις τιμές του, τότε η f (z) είναι σταθερή. ( ) (2) Γενικότερα, εάν η f ( z) είναι φραγμένη σε όλο το, τότε η f (z) είναι πολυώνυμο βαθμού + 1.
9 5η Απόδειξη του Θ.Θ.Α. P( z) z a, όταν z = ε a 2 > > P( z) a z 2 r : ( z : z > r) ( a < ) r 2 a < P( z)
10 1 f ( z) = αναλυτική στο P( z) Για z > r f ( z) = 1 P( z) < r 2 a Για z r f συνεχής στο f f (z) φραγμένη στο K φραγμένη στο K K = { z : z r} = { z : z r} = { z : z r} f (z) φραγμένη στο Θ. Liouville f σταθερή
11 Θεώρημα 4.1: Κάθε πραγματικό πολυώνυμο περιττού βαθμού έχει μία τουλάχιστον πραγματική ρίζα. Λήμμα 4.11: Κάθε μιγαδικό πολυώνυμο δευτέρου βαθμού διαθέτει μία μιγαδική ρίζα. Λήμμα 4.12: Εάν ισχύει ότι κάθε μη σταθερό πραγματικό πολυώνυμο έχει μία μιγαδική ρίζα, τότε ισχύει και ότι κάθε μη σταθερό μιγαδικό πολυώνυμο έχει μία μιγαδική ρίζα.
12 Λήμμα 4.13: Κάθε μη σταθερό πραγματικό πολυώνυμο έχει μία μιγαδική ρίζα Απόδειξη : Με επαγωγή ως προς τον βαθμό του f ( x ) = a + a x + + a x [x] 1
13 E Ορισμός 4.59: Ένα σώμα λέγεται επέκταση ενός σώματος F E αν το είναι υπόσωμα του. F F E (Συμβολ. ) Θεώρημα(Κroecker) : Έστω ένα σώμα και f (x) ένα μη σταθερό F[x] πολυώνυμο στον. F Τότε υπάρχει μια επέκταση σώματος του και κάποιο f ( α ) = τέτοιο, ώστε. E F α E
14 α αλγεβρικό πάνω από το F α E αν f f ( α ) = ( x) F[ x] για κάποιο μη μηδενικό ( υπερβατικό ) F F[x]! ανάγωγο πολυώνυμο p( x) F[ x] τέτοιο ώστε p( α ) = irr( α, F ) deg( α, F) Συμβολίζουμε = deg( irr( α, F))
15 E απλή επέκταση του F E = F(α ) : το μικρότερο σώμα που περιέχει το F α E και το α ( αλγεβρικό ή υπερβατικό F πάνω από το ) Κάθε στοιχείο β E = F(α ) γράφεται μονοσήμαντα στη μορφή β = b + b α b 1 α 1 : b i F όπου, = deg( α, F) [ E : F ] = ο βαθμός του E ως διανυσματικός χώρος πάνω από το F
16 [ E : F] = ο βαθμός του E ως διανυσματικός χώρος πάνω από το F Αν F E K ισχύει : [ K : F] = [ K : E][ E : F]
17 E αλγεβρική επέκταση του F αν κάθε στοιχείο του είναι αλγεβρικό πάνω από το F αλγεβρική θήκη του F στο E F E = { α E το α είναι αλγεβρικό πάνω από το F } F Ένα σώμα λέγεται αλγεβρικά κλειστό αν F[x] κάθε μη σταθερό πολυώνυμο στον έχει μία ρίζα στο. F.
18 Ένα σώμα E F λέγεται το σώμα ριζών του { f i ( x) i I} πάνω από τοf αν το E είναι και όλες τις ρίζες στην Σώμα Ριζών που περιέχει το F καθενός από τα f i ( x), i I το μικρότερο υπόσωμα τηςf F Για E σώμα ριζών F[x] Κάθε ανάγωγο πολυώνυμο στον που έχει μία ρίζα στο E αναλύεται σε γινόμενο πρώτων παραγόντων στο E[x]
19 G( E F) : ομάδα αυτομορφισμών του E που αφήνουν το F σταθερό ομάδα αυτομορφισμών του E { E : F} : τo πλήθος των ισομορφισμών του E επί ενός υποσώματος της F που αφήνουν το F σταθερό Αν F E K ισχύει : { K : F} = { K : E}{ E : F}
20 α, β E συζυγή πάνω από το F αν irr( α, F) = irr( β, F) Θεώρημα F (α ) ψ Ισομορφισμός που αφήνει το σταθερό F F ψ ( α ) = β, όπου β συζυγές του α πάνω από το F β συζυγές του πάνω από το α F! ψ : F (α ) ψ Ισομορφισμός που αφήνει το F σταθερό F και ψ ( α ) = β
21 Μία πεπερασμένη επέκταση του λέγεται διαχωρίσιμη επέκταση του αν [ E : F] = { E : F} E F F α F F F (α ) διαχωρίσιμο πάνω από το αν διαχωρίσιμη επέκταση του { F( α ) : F} = [ F( α ) : F] F F(α ) Το πλήθος των ισομορφισμών του επί ενός υποσώματος της F F F που αφήνουν το σταθερό deg( α, F) Το πλήθος των συζυγών στοιχείων του α πάνω από το F
22 α Άρα, το είναι διαχωρίσιμο πάνω από το F όλες οι ρίζες του irr( α, F) έχουν πολλαπλότητα 1 Θεώρημα : Κάθε πεπερασμένη διαχωρίσιμη επέκταση ενός σώματος είναι απλή επέκταση
23 Ένα σώμα λέγεται τέλειο αν κάθε πεπερασμένη επέκτασή του είναι διαχωρίσιμη επέκταση. Θεώρημα 5.29: Κάθε σώμα χαρακτηριστικής μηδέν είναι τέλειο. : a = a + a + + a = a F π.χ., Πόρισμα 5.33: Κάθε πεπερασμένη επέκταση ενός σώματος χαρακτηριστικής μηδέν είναι απλή επέκταση
24 Ορισμός 5.34: Μία πεπερασμένη επέκταση του λέγεται πεπερασμένη κανονική επέκταση του αν το είναι διαχωρίσιμο σώμα ριζών πάνω από το. F K K F F
25 G( K F ): ομάδα αυτομορφισμών του K που αφήνουν το F σταθερό ομάδα αυτομορφισμών του E Αν K πεπερασμένη κανονική επέκταση του F, G ( K F) : ομάδα Galois του K πάνω από το F
26 Το Βασικό Θεώρημα της Θεωρίας Galois K κανονική επέκταση ενός σώματος F E K F [ K : E] = G( K E) [ E : F] = ( G( K F) : G( K : E))
27 Τα Θεωρήματα Sylow G p-ομάδα : κάθε στοιχείο της G έχει τάξη κάποια δύναμη του πρώτου αριθμού p 1ο Θεώρημα Sylow : G G ομάδα p m =, ( p, m) = 1 1 } Η G περιέχει μια υποομάδα τάξης i p 1 i
28 7η Απόδειξη του Θ.Θ.Α. Το σώμα των μιγαδικών αριθμών είναι αλγεβρικά κλειστό σώμα. Έστω K m K ] 2 q [ : = ( 2, q) = 1 K ( τέλειο K διαχωρίσιμη K απλή = α)
29 m = irr( α,) = q K = m > Βασικό Θεώρημα της Θεωρίας Galois G(K ) = [ K : ] m = 2 q 1ο Θ.Sylow G( K E) G(K : ) τ.ω. G( K E) = 2 m Τότε για το ενδιάμεσο σώμα E έχουμε : [ K : E] = 2 [ : E ] = q m q = 1 E =
30 G( K )= [K : ] = 2 m [: ]=2 [K : 1 ] = 2 m 1ο Θ.Sylow G( K E) G(K : ) τ.ω. G( K E) 2 = 2 m Τότε για το ενδιάμεσο σώμα E έχουμε : [ K : E] 2 = 2 m [ E : ] = 2 E = (α ) deg irr( α, ) = 2 άτοπο K =
31 Aλγεβρική Τοπολογία Θεωρία Ομοτοπίας 9η απόδειξη Θεωρία Ομολογίας 1η απόδειξη 11η απόδειξη
32 δρόμος σε έναν τοπολογικό χώρο είναι μία συνεχής απεικόνιση X α :[,1] X Ένας βρόχος βασισμένος στο x X είναι ένας δρόμος α με α( ) = α(1) = x, δηλαδή ένας δρόμος με αρχικό και τελικό σημείο το. x f g βρόχοι βασισμένοι στο x f g( x) f (2x) = g(2x 1),, t 1/ 2 1/ 2 t 1
33 Θεωρία Ομοτοπίας X, Y τοπολογικοί χώροι f : X Y g X Y : συνεχείς f ομοτοπική της g f g όταν H X I Y : συνεχής τ.ω. H ( x,) = f ( x) H ( x,1) = g( x) x X σχέση ισοδυναμίας ομοτοπία [ f ] : κλάση ομοτοπίας της f
34 X, Y τ.χ. ομοτοπικοί f : X Y g : X Y, συνεχείς τ.ω. g f id : X X f g id : Y Y συσταλτός τ.χ. ομοτοπικός με ένα σημείο
35 π ( X, x ) 1 θεμελιώδης ομάδα του X που βασίζεται στο x ( Το σύνολο των κλάσεων ομοτοπίας των, με πράξη την ) βρόχων που βασίζονται στο x X [ f ][ g] = [ f g]
36 Θεώρημα : Φ : π ( 1 1 S ) ισομορφισμός [ ω ] ω ( s) = (cos 2π s, si 2π s) βρόχος με βάση το (1,)
37 9η απόδειξη του Θ.Θ.Α. f r ( s) p( re p( re 2π is 2π is ) / ) / p( r) = ομοτοπία βρόχων βασισμένων στο (1,) p( r) f ο τετριμμένος βρόχος π ( 1 ) [ ] = 1 S f r
38 Για z = r > max{ a 1 ++ a, 1 } 1 z a z + + a 1 1 p t ( z) = z + t( a1z + + a ) z = r t 1
39 f r ( s) = p( re p( re 2π is 2π is ) / ) / p( r) p( r) p p t p p t t ( re ( re 2π is 2π is ) / ) / p p t t ( r) ( r) t = t = 1 ω (s) (s) ομοτοπία [ r f r ω ] = [ f ] = =
40 Θεωρία Ομολογίας v, v, 1, v k E παράγουν ένα υπερεπίπεδο είναι σε γενική θέση : κάθε υποσύνολό τους παράγει ένα μικρότερο υπερεπίπεδο v 1 v v2 v,,, v v γραμμικά k ανεξάρτητα k -διάστατο μονόπλοκο : το μικρότερο κυρτό σύνολο που τα περιέχει
41 προσανατολισμένο k-διάστατο μονόπλοκο π.χ. προσανατολισμένο 3-διάστατο μονόπλοκο
42 v v 1 v q προσανατολισμένο q- μονόπλοκο i στή έδρα i =,, q είναι το προσανατολισμένο (q 1) μονόπλοκο : ( 1) i v v1 v i v q απαλοιφή του σημείου vi
43 σύνορο του προσανατολισμένου μονοπλόκου q q v v v 1 π.χ. = = q i q i i q v v v v v v 1 ) 1 ( ) ( 1 1 ) ( v v v v = ) ( = v ) ( v v v v v v v v v + =
44 Μία πεπερασμένη συλλογή προσανατολισμένων μονοπλόκων σε κάποιον Ευκλείδιο χώρο αν ισχύει ότι : E ονομάζεται μονοπλεκτικό σύμπλεγμα όταν ένα μονόπλοκο ανήκει στη συλλογή αυτή τότε και κάθε του έδρα ανήκει σ αυτή τη συλλογή όταν δύο μονόπλοκα έχουν μή κενή τομή, τέμνονται σε μία κοινή έδρα.
45 Μία τριγωνοποίηση ενός τοπολογικού χώρου K αποτελείται από ένα μονοπλεκτικό σύμπλεγμα και έναν ομοιομορφισμό. X h : K X π.χ. τριγωνοποίηση του τόρου
46 X μονοπλεκτικό σύμπλεγμα τ.ω. : σε κάθε διάσταση υπάρχουν μόνο πεπερασμένου πλήθους q μονόπλοκα q Η ελεύθερη αβελιανή ομάδα με βάση τα μονόπλοκα στο X C (X ) διάστατη ομάδα αλυσίδων ο ομομορφισμός που προκύπτει με επέκταση του συνοριακού τελεστή επί των μονοπλόκων : C ( X ) C 1( X ) συνοριακός ομομορφισμός
47 : C ( X ) C 1( X ) ker Z (X ) διάστατη ομάδα κυκλημάτων Im +1 B (X ) διάστατη ομάδα συνόρων Z ( X ) / B ( X ) := H (X ) διάστατη ομάδα ομολογίας
48 Λήμμα : Η σύνθεση C C C 1 είναι ο μηδενικός ομομορφισμός
49 C C C 1 Z = ker B = Im +1 Z / B = H
50 Θεώρημα της ιδιότητας του αναλλοιώτου : Έστω X τ.χ. με μία τριγωνοποίηση. Οι ομάδες ομολογιών που καθορίζονται από αυτήν την συγκεκριμένη τριγωνοποίηση είναι ισόμορφες με τις αντίστοιχες ομάδες που καθορίζονται από οποιαδήποτε άλλη τριγωνοποίηση του X
51 Θεώρημα 7.29: Έστω X,Y τ.χ. με τριγωνοποιήσεις * h : X Y συνεχής επάγεται h : H ( X ) H ( Y ) ομομορφισμός h : X Y ομοιομορφισμός επάγεται * h : H ( X ) H ( Y ) ισομορφισμός + X, Y ομοτοπικοί οι ομολογικές τους ομάδες είναι ισόμορφες
52 Θεώρημα : X H ( ) = Έστω συσταλτός χώρος X H ( X ) = Απόδειξη : X συσταλτός χώρος X ομοτοπικός ενός σημείου H ( v) = Z ( v) / B ( v) Η ομολογία ενός συσταλτού χώρου ταυτίζεται Με την ομολογία ενός σημείου
53 Θεώρημα 7.31: X Έστω μονοπλεκτικό σύμπλεγμα με συνεκτικές συνιστώσες. H ( X ) = μία ελεύθερη αβελιανή ομάδα τάξης Απόδειξη : Σε κάθε συνιστώσα του κάθε κορυφή v, v1,, v k X v Z X ) = ker ( ) Έστω οι κορυφές μιας συνιστώσας v k = v k + ( v1 v ) + + ( vk v 1) ( X B + ( X ) = Im 1( X )
54 Κάθε κορυφή της συνιστώσας ανήκει στο ίδιο σύμπλοκο της Z ( ) ως προς την B ( X ) X H ( X ) = Z ( X ) / B ( X ) ελεύθερη αβελιανή ομάδα τάξης ένα, που έχει ως βάση μία και μόνον κορυφή Τα ίδια ισχύουν και για κάθε άλλη συνεκτική συνιστώσα.
55 Θεώρημα 7.32: X Εάν το είναι ένα δρομοσυνεκτικό μονοπλεκτικό σύμπλεγμα, τότε:. H X ) = ( X ) 1( π 1 ab
56 Παράδειγμα Τριγωνοποίηση της σφαίρας S 2 2 S συνεκτική H ( S 2 ) = 2 2 H1 ( S ) = π 1( S ) = H 2 ( S 2 ) = H ( ) =, 2 S
57 Θεώρημα 7.33: Έστω S 1 H ( S ) = H ( S ) = H q ( S ) = q
58 Βαθμός Brouwer f : S Σ επάγει * f : H ( ) ( S H Σ ) συνεχής < α > < β > ομομορφισμός f * ( α) = mβ m βαθμός Brouwer m = deg f
59 Λήμμα 7.34: Ο βαθμός μιας απεικόνισης δεν εξαρτάται από τις μονοπλεκτικές αναλύσεις των S και Σ Λήμμα 7.35: δύο ομοτοπικές απεικονίσεις έχουν τον ίδιο βαθμό f : S Σ g : S Σ αν δύο συνεχείς απεικονίσεις f : S Σ g : S Σ έχουν τον ίδιο βαθμό είναι ομοτοπικές f : S Σ deg( ) f f Θεώρημα 7.36: Αν συνεχής, με η είναι επί
60 Λήμμα 7.38: Η P ( z ) = a + a z a z είναι ομοτοπική της f ( z) = z (Aπόδειξη : 1 H ( z, t) = z + (1 t)( a + a z + + a z ) ) 1 1 Λήμμα 7.39: Ο βαθμός Brouwer της f ( z) = z ισούται με Επομένως, για τα μιγαδικά πολυώνυμα, ο βαθμός Brouwer και ο πολυωνυμικός βαθμός ταυτίζονται.
61 1η απόδειξη του Θ.Θ.Α. Λήμμα 7.38 P(z) ομοτοπική της f ( z) = z Λήμμα 7.39 deg( P( z)) = Θεώρημα 7.36 Κάθε σημείο της S 2 ανήκει στην εικόνα του P(z) 2 z S : P( z ) = στερεογραφική προβολή z
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί
6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται
Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )
Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις
a pn 1 = 1 a pn = a a pn a = 0,
Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60
irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,
Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες
Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.
Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό
π B = B και άρα η π είναι ανοικτή απεικόνιση.
3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι
ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο
Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2
ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.
6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται
Το Θεώρημα CHEVALLEY-WARNING
Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με
4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.
8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα
Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα
33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.
Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.
Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1
Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *
3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.
7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός
G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.
Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.
s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.
Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα
Ε Μέχρι 18 Μαΐου 2015.
Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα
4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).
Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από
,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.
Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι
4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (
= s 2m 1 + s 1 m 2 s 1 s 2
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.
Απλές επεκτάσεις και Αλγεβρικές Θήκες
Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις
Κ X κυρτό σύνολο. Ένα σημείο x Κ
8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος
Ε Μέχρι 31 Μαρτίου 2015.
Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες
ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)
ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια
a = a a Z n. a = a mod n.
Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση
Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας
Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας Εργασία στο πλαίσιο τού µαθήµατος Αλγεβρική Τοπολογία - Οµολογία µε κωδ. αρ. Γ 21 Χειµερινό Εξάµηνο 2007-2008 Μιχαήλ Γκίκας Περίληψη Σκοπός αυτής
g (v + W ) = gv + W gv = 0.
Ασκήσεις #1 Σε ότι ακολουθεί, G είναι πεπερασμένη ομάδα και V είναι C-διανυσματικός χώρος πεπερασμένης διάστασης. 1. Δείξτε ότι η απεικόνιση G G G που ορίζεται θέτοντας g x = gxg 1 για g, x G αποτελεί
Εισαγωγή στο Πρόγραμμα Langlands Γεώργιος Παπάς Μεταπτυχιακή Εργασία Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών Αθήνα, Αύγουστος 2016 Εισηγητής: Αριστείδης Κοντογεώργης Επιτροπή Ιωάννης
Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν
3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2
Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 11 Νοεμβρίου 2014 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων
ονομάζεται τότε χώρος πηλίκο. διατηρεί τα συμπληρώματα συνόλων, ένα σύνολο F είναι είναι κλειστό στον.
67 2.3 Χώροι πηλίκο και τοπολογία πηλίκο Στην παρούσα παράγραφο θα δείξουμε πως μπορούμε μέσω μιας απεικόνισης ενός δεδομένου τοπολογικού χώρου επί ενός συνόλου να εισαγάγουμε τοπολογία στο σύνολο, την
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου
L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε
ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη
Βασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΛΓΕΒΡΙΚΗ ΤΟΠΟΛΟΓΙΑ ΠΕΡΙΕΧΟΜΕΝΑ
ΠΕΡΙΕΧΟΜΕΝΑ 0. Εισαγωγή 3 1. Βασικές έννοιες από τη Γενική Τοπολογία 10 Συμπαγής Ανοικτή Τοπολογία 15 Η GL(n) σαν ομάδα Lie 18 Cell complexes 20 Πραγματικός προβολικός χώρος 22 Μιγαδικός προβολικός χώρος
ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα
ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που
a b b < a > < b > < a >.
Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε
R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος
73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b
(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό
81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα
Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1
Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ιάκωβος Ανδρουλιδάκης users.uoa.gr/ iandroul iandroul@math.uoa.gr Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών, Τομέας Άλγεβρας-Γεωμετρίας Περίληψη Στη διάλεξη
Αλγεβρικές Δομές Ι. 1 Ομάδα I
Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση
Séminaire Grothendieck
Séminaire Grothendieck in memoriam 28 March 928 3 November 204 Αριστείδης Κοντογεώργης 7 Φεβρουαρίου 205 Συνιστώμενη βιβλιογραφία. J.S Milne, Étale Cohomology 2. P. Deligne, SGA 4 2 Cohomologie étale Εισαγωγή
Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].
3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Βασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7
Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).
4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης
3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
0 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω E διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A E. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει
f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )
302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας
a 11 a 1n b 1 a m1 a mn b n
Γραμμική Άλγεβρα ΙΙ Διάλεξη 13 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 28/4/2014 ΧΚουρουνιώτης (ΠανΚρήτης) Διάλεξη 13 28/4/2014 1 / 14 Πίνακες πάνω από σώμα K Πίνακες πάνω από σώμα K Το σύνολο των m n
V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}
1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *
βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των
Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας
Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F
Η ομάδα Galois τής F(t)/F και το Υπόσωμα σταθερών Στοιχείων τής F(t)/F Νίκος Μαρμαρίδης 23 Ιανουαρίου 2017 Π Έστω ότι F είναι ένα σώμα, ότι F [t] είναι ο πολυωνυμικός δακτύλιος στη μεταβλητή t και ότι
Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα
Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 3 1.1 Μάθημα 1..................................... 3 1.1.1 Στοιχεία αλγεβρικής θεωρίας....................... 4 1.2 Μάθημα 2.....................................
Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα
Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
A, και εξετάστε αν είναι διαγωνίσιμη.
Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων
1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον
Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.
i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),
Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο
Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο
Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.
Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών
8 Ιουλίου 2015 1 τοπολογικές οµάδες 2 3 4 τοπολογικές οµάδες Ορισµός Μια οµάδα G λέγεται τοπολογική οµάδα αν είναι εφοδιασµένη µε µια τοπολογία τ.ω. οι (x, y) xy και x x 1 να είναι συνεχείς. Παραδείγµατα
ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius
ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenus Στο κεφάλαιο αυτό εισάγουµε τους επαγόµενους αρακτήρες µε τη βοήθεια των οποίων αποδεικνύουµε το θεώρηµα των συµπληρωµάτων του Frobenus Οι
ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.
93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός
Το φασματικό Θεώρημα
Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή
f I X i I f i X, για κάθεi I.
47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα
Modular καµπύλες. Αριστείδης Κοντογεώργης. 1 εκεµβρίου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/26
Modular καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 1 εκεµβρίου 2014, 1/26 Το υπερβολικό επίπεδο H = {z : I(z) > 0} Το Θεώρηµα σύµµορφης απεικόνισης του Riemann (Riemann mapping
Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν
Το Θεώρημα Stone - Weierstrass
Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα
v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς
Εισαγωγή στην Τοπολογία
Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή
Ελλειπτικές Καµπύλες υπέρ του σώµατος C
Ελλειπτικές Καµπύλες υπέρ του σώµατος C Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 11 Νοεµβρίου 2014, 1/18 ιακριτές υποοµάδες του C Ορισµός Εστω ω 1, ω 2 δύο µιγαδικοί αριθµοί µε Im(ω
Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών
Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Παναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών
f x 0 για κάθε x και f 1
06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.
Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:
Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση