ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
|
|
- Ναχώρ Παπαϊωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η απόδοση μαθηματικής υπόστασης στην έννοια της κίνησης στο φυσικό χώρο και της μαθηματικής αναπαράστασής της απαιτεί καταρχάς τη θεώρηση ενός σημειακού γεωμετρικού προτύπου που καλούμε υλικό σημείο Η κίνηση ενός υλικού σημείου εκφράζεται στον ευκλείδειο χώρο ως συνεχής απεικόνιση ορισμένη στο χρονικό άξονα ή σ ένα διάστημά του ως εξής: x :I Κάθε χρονική στιγμή το υλικό σημείο καταλαμβάνει μια συγκεκριμένη θέση στο χώρο η οποία προσδιορίζεται με τις καρτεσιανές συντεταγμένες του ευκλείδειου συστήματος αναφοράς και υποδεικνύεται από το διάνυσμα θέσης: x () t = x (), t x (), t x () t ( ) 1 2 Η τροχιά της κίνησης αναπαρίσταται με την προσανατολισμένη καμπύλη που ορίζεται από την εικόνα αυτής της απεικόνισης στον τρισδιάστατο ευκλείδειο χώρο και το γράφημά της εκφράζει την εξέλιξη της κίνησης στον αριθμητικό χώρο-χρόνο Οι τροχιές στον ευκλείδειο χώρο δεν είναι απαραίτητα λείες, όμως για να οριστεί η ταχύτητα και η επιτάχυνση του υλικού σημείου χρειάζεται οι συνιστώσες συναρτήσεις της θέσης του να είναι τουλάχιστο δυο φορές παραγωγίσιμες με συνεχείς παραγώγους: x :I, i = 1, 2, i
2 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ 29 Στιγμιότυπα της κίνησης στο χώρο και της χωροχρονικής εξέλιξης ενός υλικού σημείου Η ταχύτητα με την οποία το υλικό σημείο διανύει την τροχιά του εκφράζεται, τη χρονική στιγμή t I, με το εφαπτόμενο διάνυσμα στο σημείο xt (): x () t = ( x (), t x (), t x () t ) xt 1 2 () και, την ίδια στιγμή, η επιτάχυνση εκφράζεται με το διάνυσμα: x () t = ( x (), t x (), t x () t ) xt 1 2 () Τα διανύσματα θέσης, ταχύτητας, επιτάχυνσης μιας κίνησης στον ευκλείδειο χώρο Κάθε χρονική στιγμή, το διάνυσμα της επιτάχυνσης αποσυντίθεται στην επιτρόχια και την κεντρομόλο συνιστώσα του: όπου x () t =γ () t +γ () t ε κ γ () t xt ε () και γ () t xt () κ
3 0 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Η κεντρομόλος συνιστώσα της επιτάχυνσης προκαλεί καμπύλωση της τροχιάς, ενώ η επιτρόχια συνιστώσα της επιδρά αποτρεπτικά στην καμπύλωση της τροχιάς Αν η κεντρομόλος συνιστώσα είναι μηδενική: γκ 0, τότε η τροχιά είναι ευθύγραμμη και αν επιπλέον η επιτρόχια συνιστώσα είναι επίσης μηδενική: γε 0, τότε η κίνηση στο χώρο είναι ευθύγραμμη ομαλή: x () t = x + v t = ( x + v t, x + v t, x + v t), x, v Αποσύνθεση της επιτάχυνσης στην επιτρόχια και στην κεντρομόλο συνιστώσα της Η καμπυλότητα της τροχιάς, με την προϋπόθεση μη μηδενισμού της ταχύτητας, προσμετράται κάθε στιγμή από την τιμή της συνάρτησης: + κ :I, x ( t) x( t) κ() t = x ( t) Η στρέψη της τροχιάς, με την προϋπόθεση μη μηδενισμού της καμπυλότητας, προσμετράται κάθε στιγμή από την τιμή της συνάρτησης: τ :I, < x () t x(), t x() t > τ() t = 2 x ( t) x( t) Όσο μεγαλύτερη είναι η τιμή της καμπυλότητας τόσο εντονότερη είναι η καμπύλωση της τροχιάς και η κίνηση είναι ευθύγραμμη μόνο όταν η καμπυλότητα είναι παντού μηδενική Όσο μεγαλύτερη είναι η απόλυτη τιμή της στρέψης τόσο εντονότερη είναι η εκτροπή της τροχιάς από το να είναι επίπεδη και η κίνηση είναι επίπεδη μόνο όταν η στρέψη είναι παντού μηδενική Η καμπυλότητα και η στρέψη είναι ενδογενή γεωμετρικά χαρακτηριστικά κάθε τροχιάς τα οποία δεν εξαρτώνται από την επιλογή της παραμέτρησής της στον ευκλείδειο χώρο Τα χαρακτηριστικά αυτά εμπεριέχονται στο τρίεδρο Frenet της τροχιάς, δηλαδή στο θετικά προσανατολισμένο τρισορθογώνιο σύστημα αξόνων που, κάθε στιγμή, προσαρτάται στο αντίστοιχο σημείο της τροχιάς και, εφόσον εκεί δεν μηδενίζεται η καμπυλότητα, ορίζεται από τα μοναδιαία διανύσματα:
4 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ 1 x () t T( t) =, N() t = B() t T() t, x ( t) x () t x() t B( t)= x ( t ) x ( t ) Τρίεδρο Frenet σε κάποιο σημείο μιας τροχιάς στον τρισδιάστατο ευκλείδειο χώρο Η έκφραση των συναρτήσεων που προσμετρούν την καμπυλότητα και τη στρέψη μιας τροχιάς σε κάθε σημείο της προκύπτει με μεταχρονισμό του χρονικού άξονα, δηλαδή με κατάλληλη αναπαραμέτρηση της αριθμητικής του διαβάθμισης Ο μεταχρονισμός δεν επηρεάζει τα γεωμετρικά χαρακτηριστικά της τροχιάς και ορίζεται από την αμφιμονοσήμαντη απεικόνιση των αντίστοιχων χρονικών διαστημάτων: s :I I, s () t = t, όπου, λαμβάνοντας υπόψη το μήκος του διανυθέντος τμήματος της τροχιάς από μια αρχική στιγμή t έως μια δεδομένη στιγμή t, θέτουμε: t s ( t) = x ( u) du t Η αμφιμονοσήμαντη αυτή απεικόνιση είναι αμφιπαραγωγίσιμη, δηλαδή η ίδια και η αντίστροφή της είναι παραγωγίσιμες, εφόσον δεν μηδενίζεται η ταχύτητα Έτσι, όταν εξετάζουμε μια κίνηση στον ευκλείδειο χώρο: x :I, x() t ( x1(), t x2(), t x() t ) =, ο μεταχρονισμός του χρονικού άξονα οδηγεί στη μεταχρονισμένη κίνηση: όπου x :I, ( ) = ( 1( ), 2( ), ( )) x t x t x t x t, x ( t ) = x ( st ()) = x () t, t I Ο μεταχρονισμός αυτός δεν επηρεάζει τη διεύθυνση της ταχύτητας της κίνησης αλλά αλλοιώνει την αριθμητική τιμή της ως εξής:
5 2 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 1 dx i d( xi s ) dxi ds = = dt dt dt dt 1, i = 1, 2, Συνεπώς, η ταχύτητα της μεταχρονισμένης κίνησης έχει σταθερό μοναδιαίο μέτρο: ds d t = xu ( ) du= xt ( ) dt dt t x ( t ) = x ( t) dt / ds = 1 και η σταθερότητα αυτή επιβάλλει το μηδενισμό της επιτρόχιας επιτάχυνσης, άρα: x ( t ) x ( t ), t I * Μεταχρονισμός του χρονικού άξονα και το τρίεδρο Frenet σε αντίστοιχο σημείο της τροχιάς Ο μεταχρονισμός του χρονικού άξονα προφανώς αλλοιώνει το γραμμικό χαρακτήρα του χρόνου, αλλά διαμορφώνει το κατάλληλο θεωρητικό υπόβαθρο που προσφέρεται για τον ορισμό και τον υπολογισμό της καμπυλότητας και της στρέψης μιας τροχιάς Εξάλλου, ο αμφιμονοσήμαντος και αμφιπαραγωγίσιμος χαρακτήρας του συγκεκριμένου μεταχρονισμού διασφαλίζει την ασφαλή επαναφορά των υπολογιστικών συμπερασμάτων στο φυσικό γραμμικό πλαίσιο του χρόνου Η επιτάχυνση της συγκεκριμένης μεταχρονισμένης κίνησης έχει μηδενική επιτρόχια επιτάχυνση και κατά συνέπεια είναι κάθετη στην ταχύτητα σε κάθε σημείο της τροχιάς Έτσι, αυτή η επιτάχυνση καθίσταται αποκλειστικός παράγοντας που κάθε χρονική στιγμή καθορίζει το μέτρο της καμπύλωσης της τροχιάς Είναι λοιπόν λογικό η καμπυλότητα της τροχιάς να οριστεί με τη συνάρτηση που, κάθε μεταχρονισμένη στιγμή, αποδίδει στο αντίστοιχο σημείο της τροχιάς το μέτρο της επιτάχυνσης της μεταχρονισμένης κίνησης: + κ :I, κ ( t ) = x ( t ) * Η ορθογωνιότητα ταχύτητας και επιτάχυνσης ισχύει μόνο όταν το μέτρο της ταχύτητας είναι σταθερό: < x ( t ), x ( t ) >= 1 d < x ( t ), x ( t dt ) >= 0 < x ( t ), x ( t ) >= 0 x ( t ) x ( t ), t I
6 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Συνακόλουθα, με την προϋπόθεση μη μηδενισμού της καμπυλότητας, ορίζεται το τρίεδρο Frenet της μεταχρονισμένης κίνησης ως το θετικά προσανατολισμένο ορθοκανονικό σύστημα των μοναδιαίων διανυσμάτων: Ας σημειωθεί ότι: T ( t ) = x ( t ), 1 N ( t ) = T ( t ), B( t ) = T ( t ) N ( t ) κ ( t ) B( t ) N ( t ), t I * Η στρέψη της τροχιάς είναι λογικό να οριστεί με τη συνάρτηση που, κάθε μεταχρονισμένη στιγμή, αποδίδει στο αντίστοιχο σημείο της τροχιάς την αριθμητική τιμή: τ :I, τ ( t ) = B( t )/ N ( t ) Οι συναρτήσεις κ και κ, όπως και οι συναρτήσεις τ και τ, δεν ορίζονται απαραίτητα στο ίδιο διάστημα του χρονικού άξονα, όμως λαμβάνουν ίδιες τιμές σε κάθε σημείο της τροχιάς xt () = x ( t ) όταν δώσουμε του ακόλουθους ορισμούς: + κ :I, κ (): t =κ ( st ()) και τ :I, τ (): t =τ ( st ()), T(): t = T( st ()), N(): t = N( st ()), B(): t = B( st ()), t I Το τρίεδρο Frenet που προσαρτάται σε κάθε σημείο της τροχιάς παρέχει σημαντικές πληροφορίες για τη συμπεριφορά της κίνησης στο χώρο, πριν την εκδήλωσή της, οι οποίες δεν είναι ορατές από το ευκλείδειο σύστημα αναφοράς Κάθε χρονική στιγμή, το πρώτο μοναδιαίο διάνυσμά του υποδεικνύει την κατεύθυνση της τροχιάς, το δεύτερο υποδεικνύει την κατεύθυνση εκτροπής της από την ευθύγραμμη πορεία και το τρίτο υποδεικνύει την κατεύθυνση εκτροπής της από την επίπεδη πορεία Μια απλή υπολογιστική διαδικασία υποδεικνύει ότι, στη μεταχρονισμένη διαβάθμιση του χρονικού άξονα, ο ρυθμός μεταβολής της ταχύτητας αλλά και της εκτροπής από την ευθύγραμμη και επίπεδη πορεία μπορεί να αναγνωστεί στον ακόλουθο πίνακα: * Η συγραμμικότητα αυτή που επιτρέπει τον ορισμό της στρέψης προκύπτει από το ότι: B ( t ) B ( t ) και B( t ) T( t ) και οι σχέσεις αυτές προκύπτουν ως εξής: B d ( t ) = 1 < B ( t ), B ( t ) >= 1 < B ( t ), B ( t ) >= 0 < B ( t ), B ( t ) >= 0, t I, dt d < B ( t ),T( t ) >= 0 < B ( t ),T( t ) >= 0 < B ( ),T ( ) >+< B ( ),T t t t ( t ) >= 0 dt < B ( ),T ( ) >= < B ( ),T ( ) >= < B ( ), κ ( ) N t t t t t t ( t ) >= 0, t I
7 4 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Επανερχόμενοι στην κανονική διαβάθμιση του χρονικού άξονα θα διαπιστώσουμε την ανάγκη εισαγωγής ενός διορθωτικού συντελεστή: υ( t) : = xt ( ) Έτσι, στην κανονική γραμμική διαβάθμιση του χρονικού άξονα, ο προηγούμενος πίνακας αναδιατυπώνεται ως εξής: T() t 0 () 0 T() κ t t N() t = υ() t κ() t 0 τ() t N() t B() 0 τ() 0 t t B() t Η πρώτη και τελευταία γραμμή του πίνακα δίνουν αντίστοιχα τον ορισμό της καμπυλότητας και της στρέψης της τροχιάς που με την εισαγωγή του διορθωτικού παράγοντα εκφράζεται ως εξής: T() t =κ() t υ() t N() t και B() t = τ() t υ() t N() t Η ενδιάμεση γραμμή του πίνακα * δίνει μια αξιοσημείωτη πληροφορία η οποία στην κανονική γραμμική διαβάθμιση του χρονικού άξονα εκφράζεται ως εξής: N() t = κ() t υ () t T() t + τ() t υ() t B() t Οι πληροφορίες αυτές υποδεικνύουν την έκφραση που αποκτούν τα διανύσματα της ταχύτητας και της επιτάχυνσης στο σύστημα αξόνων του τριέδρου Frenet: x () t = υ()t() t t και x 2 () t =υ ()T() t t +κ() t υ ()N() t t Η έκφραση της ταχύτητας είναι αναμενόμενη, όμως στην έκφραση της επιτάχυνσης εμφανίζονται δυο όροι, ο πρώτος που υποδεικνύει το ρυθμό μεταβολής του μέτρου της ταχύτητας και ο δεύτερος που υποδεικνύει το ρυθμό εκτροπής της διεύθυνσής της από την ευθύγραμμη πορεία Όταν το μέτρο της ταχύτητας είναι σταθερό τότε ισχύει: x 2 () t =κ() t υ ()N() t t * Η απόδειξη αυτής της σχέσης προκύπτει από την κλασική ορθοκανονική ανάπτυξη ενός διανύσματος σε μια ορθοκανονική βάση του ευκλείδειου χώρου: V =< V,T > T +< V,N > N +< V,B > B
8 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ 5 Από αυτή την ορθοκανονική ανάπτυξη της ταχύτητας και της επιτάχυνσης μιας κίνησης στο τρίεδρο Frenet προκύπτουν οι τύποι της καμπυλότητας και της στρέψης, όπως αυτοί δόθηκαν στην αρχή της ενότητας * Η υπολογιστική διαδικασία μεταχρονισμού του χρονικού άξονα είναι γενικά περίπλοκη και έτσι αναδεικνύεται η πρακτική αξία αυτών των τύπων από τους οποίους, με έναν απλό υπολογισμό, προκύπτουν απευθείας οι τιμές της καμπυλότητα και η στρέψη μιας τροχιάς που εξελίσσεται στο χώρο: xt ( ) xt ( ) κ () t = xt ( ) < xt () xt (), xt () > και τ () t = 2 xt ( ) xt ( ) Αποσύνθεση της επιτάχυνσης στην επιτρόχια και στην κεντρομόλο συνιστώσα της το τρίεδρο Frenet * Η ορθοκανονική ανάπτυξη της ταχύτητας και της επιτάχυνσης στο τρίεδρο Frenet έχει ως εξής: x () t = υ()t() t t και 2 x () t =υ ()T() t t +κ() t υ ()N() t t Αρκεί ένα απλός υπολογισμός ώστε να καταλήξουμε στους κλασικούς τύπους της καμπυλότητας και της στρέψης: x() t x () t = κ() t υ ()B() t t x () t x() t x () t x() t = κ() t υ () t x ( t) x( t) xt ( ) xt ( ) κ () t = xt ( ) d t t t t t t t t t t t t t dt 2 6 < () (), xt xt xt () >=κ () t υ () t τ() t και x () t x () t = κ() t υ () t x ( ) 2 2 () = υ ()T() + κ() υ ()N() = κ() υ ()N() + = κ() υ () τ ()B() + < xt () xt (), xt () > τ () t = xt ( ) xt ( ) 2
9 6 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παραδείγματα υπολογισμού της καμπυλότητας και της στρέψης τροχιών Η τροχιά μιας κυκλικής ελικοειδούς κίνησης στο χώρο διαγράφεται στην επιφάνεια ενός κυλίνδρου κυκλικής βάσης έτσι ώστε ο φορέας της ταχύτητάς της να διατηρεί σταθερή γωνία με τον άξονα του κυλίνδρου Θεωρώντας το σύστημα αναφοράς στον ευκλείδειο χώρο, έτσι ώστε ο κατακόρυφος άξονάς του να συμπίπτει με τον άξονα του κυλίνδρου, η ομαλή κυκλική ελικοειδής κίνηση ορίζεται ως εξής: x :, x( t) ( a cs t, a sin t, bt) Η ταχύτητα αυτής της κίνησης έχει σταθερό μέτρο: =, a > 0, b 0 xt ( ) = ( asin t, acs t, b) xt ( ) = a 2 + b 2 = v, άρα η επιτάχυνσή της έχει μόνο κεντρομόλο συνιστώσα: xt ( ) = ( acs t, asin t, 0) xt ( ) = a Με απευθείας εφαρμογή των τύπων της καμπυλότητας και της στρέψης προκύπτει: και a κ () t = a + b b a + b, τ () t = T( t ) = ( a sin ta, cs tb, ), v 1 N( t ) = ( a cs t, a sin t,0), B( t ) = ( b sin t, b cs ta, ) v τ () t > 0 τ () t < 0 Τρίεδρο Frenet κυκλικών ελικοειδών τροχιών στον ευκλείδειο χώρο * Στην περίπτωση της κυκλικής ελικοειδούς κίνησης ο μεταχρονισμός είναι απλός: t s() t = v dt = v t 0 * Στην περίπτωση b = 0, η στρέψη είναι μηδενική και προκύπτει η καμπυλότητα κ ( t) = 1/ a, άρα πρόκειται για επίπεδη κυκλική τροχιά ακτίνας a και το τρίεδρο Frenet εκφυλίζεται σε δυο ορθογώνιους άξονες
10 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ 7 Θέτοντας t = st () προκύπτει η μεταχρονισμένη κίνηση:, x ( t ) x( t / v) ( acs( t / v), asin t(/ v), bt / v) x : = = Όπως είναι αναμενόμενο η ταχύτητά της έχει σταθερό μοναδιαίο μέτρο: 1 x ( t ) = asin( t / v), acs( t / v), b v ( ) και η επιτάχυνσή της έχει μόνο κεντρομόλο συνιστώσα: 1 x ( t ) = acs( t / v), asin( t / v), 0 v 2 ( ) που το μέτρο της υποδεικνύει την καμπυλότητα της τροχιάς σε κάθε σημείο της: a κ ( t) : =κ ( t ) = x ( t ) = 2 2 a + b Το τρίεδρο Frenet ορίζεται σε κάθε σημείο της τροχιάς από τα μοναδιαία διανύσματα: Από τη σχέση 1 T ( t ) = x ( t ) = ( asin( t / v), acs( t / v), b) v 1 N ( t ) = x ( t ) = ( cs( t / v), sin( t / v), 0) κ ( t ) 1 B( t ) = T( t ) N ( t ) = bsin t(/ v), bcs( t / v), a v, ( ) B( t ) = τ ( t )N ( t ) προκύπτει η στρέψη της τροχιάς σε κάθε σημείο της: b τ ( t): =τ ( t ) = a + b 2 2 Αν η βάση της επιφάνειας του κυλίνδρου στην οποία διαγράφεται η ελικοειδής τροχιά δεν είναι κυκλική αλλά ελλειπτική και ο φορέας της ταχύτητας διατηρεί σταθερή γωνία προς ένα δεδομένο σταθερό άξονα στο χώρο, τότε η καμπυλότητα και η στρέψη δεν είναι σταθερές αλλά έχουν μεταξύ τους σταθερό λόγο Η σταθερότητα της γωνίας που σχηματίζεται από το διάνυσμα της ταχύτητας με ένα δεδομένο άξονα προφανώς δεν επηρεάζεται από το μεταχρονισμό της διαβάθμισης του χρονικού άξονα: t s ( t) = x ( u) du t
11 8 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Θεωρώντας το μοναδιαίο διάνυσμα αυτού του δεδομένου άξονα και το μοναδιαίο διάνυσμα της ταχύτητας της μεταχρονισμένης κίνησης προκύπτει: < x ( t ), ξ>= cs θ, t I Από μια αρχική στιγμή t έως μια στιγμή t του μεταχρονισμένου χρονικού άξονα, η ανύψωση της τροχιάς στην κατεύθυνση του άξονα περιέλιξης προσμετράται ως εξής: h( t ) =< x ( t ) x ( t ), ξ> και προκύπτει: dh ( t ) =< x ( t ), ξ>=< T( t ), ξ>=< T( t ), ξ>= csθ dt Ο ρυθμός ανύψωσης της τροχιάς είναι λοιπόν σταθερός, άρα: ht ( ) = t cs θ και στην κανονική διαβάθμιση του χρόνου προκύπτει: hst (()) = st ()csθ Ο σταθερός άξονας περιέλιξης της τροχιάς είναι ορθογώνιος προς το μοναδιαίο διάνυσμα N( t) του τριέδρου Frenet, άρα περιέχεται στο επίπεδο που ορίζεται κάθε στιγμή από τα δυο άλλα μοναδιαία διανύσματα T( t) και B( t) : < T( t), ξ>= cs θ < T(), t ξ>=<κ() t υ()n(), t t ξ>= 0 Από την ορθοκανονική ανάπτυξη στο σύστημα αναφοράς Frenet προκύπτει: άρα ξ=<ξ,t() t > T() t +<ξ,n() t > N() t +<ξ,b() t > B() t ξ= csθ T() t + sinθ B() t Παραγωγίζοντας και εφαρμόζοντας τους τύπους Frenet προκύπτει: τ()sin t θ =κ()cs t θ άρα ο λόγος της καμπυλότητας προς τη στρέψη είναι σταθερός: κ() t / τ () t = tgθ Αντίστροφα, αν ο λόγος της καμπυλότητας προς τη στρέψη μιας τροχιάς είναι σταθερός τότε η τροχιά είναι ελικοειδής Πράγματι, επιλέγοντας μια γωνία τέτοια ώστε tg θ=κ () t / τ() t, ορίζεται κάθε χρονική στιγμή το διάνυσμα: V() t = csθ T() t + sinθ B() t και προκύπτει:
12 ΜΑΘΗΜΑ 4 ο : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ 9 V() t = κ()cs t θ τ()sin t θ N()=0 t ( ) Το διάνυσμα αυτό διατηρείται λοιπόν σταθερό στην πάροδο του χρόνου και ορίζει ένα σταθερό άξονα στον οποίο περιελίσσεται ελικοειδώς η τροχιά, αφού το διάνυσμα της ταχύτητάς της διατηρεί σταθερή γωνία με το μοναδιαίο διάνυσμα ξ= V/ V αυτού του άξονα: < T( t), ξ>= cs θ Η ανύψωση μιας ελικοειδούς τροχιάς στον ευκλείδειο χώρο Οι ελικοειδείς τροχιές χαρακτηρίζονται λοιπόν από τη σταθερότητα του λόγου της στρέψης προς την καμπυλότητα με την προϋπόθεση μη μηδενισμού τους και στην περίπτωση όπου και η στρέψη και η καμπυλότητα είναι σταθερές τότε πρόκειται για κυκλικές ελικοειδείς τροχιές Χρησιμοποιώντας αυτό το κριτήριο μπορείτε με μια απλή υπολογιστική διαδικασία να αποφανθείτε εύκολα για το ποιές από τις ακόλουθες κινήσεις ορίζουν ελικοειδείς τροχιές στον ευκλείδειο χώρο και να προσδιορίσετε τον άξονα περιέλιξής τους και τα υπόλοιπα γεωμετρικά χαρακτηριστικά τους: xt ( ) = ( 2 t, t 2, t /), () = ( 2 + ) x t t t, t, t t, xt () = ( ch,sh, t t t ), () = ( + 2, 2,1+ 2 ) xt t t t t t
13 40 ΚΕΦΑΛΑΙΟ Α : ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΓΙΑ ΤΙΣ ΤΡΟΧΙΕΣ ΚΑΙ ΤΙΣ ΤΑΧΥΤΗΤΕΣ Ερωτήματα ενός μαθηματικού προς ένα φυσικό: 1 Έχεις πειστεί για το ότι η καμπυλότητα και η στρέψη είναι ενδογενή χαρακτηριστικά κάθε τροχιάς και ότι δεν επηρεάζονται από το μεταχρονισμό της διαβάθμισης του χρονικού άξονα; 2 Έχεις πειστεί για το ότι οι γαλιλαϊκοί μετασχηματισμοί διατηρούν αναλλοίωτη τη στρέψη και την καμπυλότητα των τροχιών; Σχεδίασα στην ακόλουθη εικόνα την τροχιά στο χώρο και την εξέλιξη στο χώρο-χρόνο μιας ευθύγραμμης παλινδρομικής κίνησης και μιας επίπεδης κυκλικής κίνησης Μπορείς να βγάλεις κάποια συμπεράσματα για την ταχύτητα και την επιτάχυνση αυτών των κινήσεων; Ερωτήματα ενός φυσικού προς ένα μαθηματικό: 1 Ο Νεύτωνας, στη νεαρή του ηλικία, προσπαθούσε να εντοπίσει σε κάθε σημείο μιας τροχιάς το αντίστοιχο κέντρο της καμπυλότητάς της ταυτίζοντάς την τοπικά με το τόξο ενός κύκλου Πώς εντοπίζονται σήμερα αυτά τα κέντρα καμπυλότητας και τι σηματοδοτεί ο γεωμετρικός τους τόπος για μια τροχιά; Θα ήθελα να δω μερικά απλά παραδείγματα 2 Έχεις αντιληφθεί ποιες φυσικές πληροφορίες εμπεριέχει το τρίεδρο Frenet μιας τροχιάς; Με το μηχανικό κατασκεύασμα που φαίνεται στο ακόλουθο σχήμα προσπαθώ να αναδείξω την εξέλιξη στο χώρο-χρόνο μιας ταλαντωτικής κίνησης Μπορείς να βγάλεις κάποιο συμπέρασμα για την ταχύτητα και την επιτάχυνσή της;
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
Διαβάστε περισσότεραΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί
Διαβάστε περισσότεραΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε
Διαβάστε περισσότεραΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.
ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε
Διαβάστε περισσότεραΗ ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
Διαβάστε περισσότεραΗ ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 2: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
Διαβάστε περισσότεραΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ : ΟΙ ΓΑΛΙΛΑΪΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Simplici: Αυτό πραγματικά δεν μπορώ να το κατανοήσω Salviati: Θα το κατανοήσεις όταν σου δείξω που βρίσκεται το σφάλμα σου ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Ο Γαλιλαίος,
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΣχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα
Διαβάστε περισσότεραΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική
Διαβάστε περισσότεραΑκτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.
Διαβάστε περισσότερα14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
Διαβάστε περισσότεραΗμερολόγιο μαθήματος
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο
Διαβάστε περισσότεραΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική
Διαβάστε περισσότεραΗ ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η
Διαβάστε περισσότεραΗ επιτάχυνση και ο ρόλος της.
Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:
Διαβάστε περισσότεραΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
Διαβάστε περισσότεραΗ Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)
Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος Καθηγητές: Σ. Πνευματικός Α. Μπούντης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 00- Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης Θέμα Μελέτης 5:η νευτώνεια διατύπωση των νόμων της κίνησης Σχόλια & Απαντήσεις & Προβληματισμοί
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότερα1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Διαβάστε περισσότεραn xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:
ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0- ΜΑΘΗΜΑ: Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β ΠΕΔΙΑ ΔΥΝΑΜΕΩΝ ΣΤΗΝ Μάθημα ο Στην Κλασική Μηχανική, ένα πεδίο δυνάμεων ορίζεται στον τρισδιάστατο ευκλείδειο
Διαβάστε περισσότεραΟμαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Διαβάστε περισσότεραΟ ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας.
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Kαθηγητής Στυλιανός Σταματάκης URL: http://stamata.webpages.auth.gr/geometry/ ΑΣΚΗΣΕΙΣ 1. Να εξεταστεί πώς αλλάζει
Διαβάστε περισσότεραΑσκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΗ μέθοδος του κινουμένου τριάκμου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις
Διαβάστε περισσότεραΜπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια
Διαβάστε περισσότεραΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεωρία Κελυφών Βασικές αρχές (διαφορική γεωµετρία) Καµπύλη στο χώρο Μοναδιαίο Εφαπτοµενικό ιάνυσµα
Διαβάστε περισσότερα1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Διαβάστε περισσότεραds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Διαβάστε περισσότεραv = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Διαβάστε περισσότερα = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z
Οκτώβριος 2017 Ν. Τράκας ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΔΙΑΝΥΣΜΑΤΑ Διάνυσμα: κατεύθυνση (διεύθυνση και ϕορά) και μέτρο. Συμβολισμός: A ή A. Αναπαράσταση μέσω των συνιστωσών του: A = (A x, A y ) σε 2-διαστάσεις και
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 1 Τμήμα Α Ακ.Έτος: 6-7 Διδάσκων Σ.Ε.Π. : Τρύφων Δάρας ΣΗΜΕΙΩΣΕΙΣ 4 ΚΑΜΠΥΛΕΣ ΣΤΟ ΧΩΡΟ Μία συνάρτηση της μορφής r ():[ aβ, ] (αντίστοιχα r ():[, ] aβ ) λέμε ότι παριστάνει
Διαβάστε περισσότεραΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Διαβάστε περισσότεραΠαράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς
Παράρτημα Ι 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Ας θεωρήσουμε μια κυκλική στεφάνη ακτίνας a η οποία κυλίεται, χωρίς να ολισθαίνει, πάνω σε μια ευθεία (για ευκολία υποθέστε ότι η ευθεία είναι ο
Διαβάστε περισσότερακαι αναζητούμε τις λύσεις του:
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 3. ΔΙΣΔΙΑΣΤΑΤΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ Η γραμμική δυναμική που ορίζεται στο ευκλείδειο επίπεδο εκφράζεται με ένα σύστημα γραμμικών διαφορικών εξισώσεων με
Διαβάστε περισσότερα2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
Διαβάστε περισσότεραΚεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές
Διαβάστε περισσότεραΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Προπτυχιακό Μάθημα - Ακαδημαϊκό έτος 2010-11 * Καθηγητές: Σ. Πνευματικός - Α. Μπούντης ΕΙΣΑΓΩΓΗ Ο όρος δυναμικό σύστημα δηλώνει κάθε σύστημα, φυσικό,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις
ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε
Διαβάστε περισσότεραΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Διαβάστε περισσότεραΟΡΜΗ, ΣΤΡΟΦΟΡΜΗ, ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ
ΜΑΘΗΜΑ 7: ΟΡΜΗ, ΣΤΡΟΦΟΡΜΗ, ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ Sagredo: Δεν υπάρχει αμφιβολία ότι η ορμή ενός σώματος σε πτώση διπλασιάζεται όταν αυτό πέφτει από διπλάσιο ύψος Salvat: Είναι πολύ παρήγορο που είχα τέτοιο
Διαβάστε περισσότερα10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Διαβάστε περισσότεραΑσκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Διαβάστε περισσότεραΕΞΕΤΑΣΗ 30 ης ΜΑΪΟΥ 2016
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μάθηµα: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητές: Α Μπούντης - Σ Πνευµατικός ΕΞΕΤΑΣΗ 0 ης ΜΑΪΟΥ 016 ΘΕΜΑ I (5 µονάδες) Στερεό Σώµα Δίνεται ο τελεστής αδράνειας I: οµμογενούς στερεού σώµματος συνεχούς
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ
Διαβάστε περισσότερα2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Διαβάστε περισσότεραΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΕΦΑΛΑΙΟ 1
ΚΕΦΑΛΑΙΟ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ «Η φιλοσοφία της φύσης είναι γραµµένη σε εκείνο το µεγάλο βιβλίο που βρίσκεται συνεχώς µπροστά στα µάτια µας, εννοώ το Σύµπαν εν µπορούµε όµως να το κατανοήσουµε χωρίς να µάθουµε
Διαβάστε περισσότεραΜΑΘΗΜΑ 7: ΟΡΜΗ ΚΑΙ ΣΤΡΟΦΟΡΜΗ
ΜΑΘΗΜΑ 7: ΟΡΜΗ ΚΑΙ ΣΤΡΟΦΟΡΜΗ Sagredo: Δεν υπάρχει αμφιβολία ότι η ορμή ενός σώματος σε πτώση διπλασιάζεται όταν αυτό πέφτει από διπλάσιο ύψος Salvat: Είναι πολύ παρήγορο που είχα τέτοιο σύντροφο στην πλάνη,
Διαβάστε περισσότεραΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT
ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.
Διαβάστε περισσότεραΜηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
Διαβάστε περισσότεραmu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός
Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.
Διαβάστε περισσότεραΤίτλος Μαθήματος: Διαφορική Γεωμετρία
71 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Λσμένα Παραδείγματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 71 72 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
Διαβάστε περισσότερα2 ο Μάθημα Κίνηση στο επίπεδο
ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή
Διαβάστε περισσότεραΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Οι δακτύλιοι του Κρόνου είναι ένα σύστημα πλανητικών δακτυλίων γύρω από αυτόν. Αποτελούνται από αμέτρητα σωματίδια των οποίων το μέγεθος κυμαίνεται από μm μέχρι m, με
Διαβάστε περισσότεραΣφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
Διαβάστε περισσότεραΤίτλος Μαθήματος: Διαφορική Γεωμετρία II
Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας
5 η Εβδομάδα Έργο και κινητική ενέργεια Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας Ομαλή κυκλική κίνηση Κίνηση σωματίου σε κύκλο με ταχύτητα σταθερού μέτρου. Επιτάχυνση
Διαβάστε περισσότεραΤα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
Διαβάστε περισσότεραΓενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Τι είναι το διαφορικό (1 από 2) Η μεταβολή μίας συνάρτησης f(x), όταν το x αυξάνεται κατά Δx γράφεται : Δy AΔx B( Δx ) 2 Αν οι
Διαβάστε περισσότεραΠροτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Διαβάστε περισσότεραΚεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
Διαβάστε περισσότεραΚεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε
Διαβάστε περισσότερα1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
Διαβάστε περισσότερα( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
Διαβάστε περισσότεραΑσκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
Διαβάστε περισσότεραΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
Διαβάστε περισσότεραΜέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Τρίτη Εργασία, 2018-19 Επιφάνειες Εξάσκηση µε ϐασικούς υπολογισµούς κινούµενης
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΚΑΙ ΕΠΙΦΑΝΕΙΕΣ ΕΛΑΧΙΣΤΗΣ ΕΚΤΑΣΗΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΚΑΙ ΕΠΙΦΑΝΕΙΕΣ ΕΛΑΧΙΣΤΗΣ ΕΚΤΑΣΗΣ ΟΝΟΜΑ ΦΟΙΤΗΤΗ ΠΑΤΕΡΑΣ
Διαβάστε περισσότεραΚεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Διαβάστε περισσότεραΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι
Διαβάστε περισσότεραΆσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης
Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου
Διαβάστε περισσότεραΜια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε.
Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. ) Ένα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκείται πάνω του μια οριζόντια σταερή δύναμη F, όπως στο σχήμα. i) Σε ποια διεύυνση α κινηεί το σώμα;
Διαβάστε περισσότεραΣφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
Διαβάστε περισσότεραΚεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΦυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.
ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε
Διαβάστε περισσότερα