Σχετικά έγγραφα

S E [S j e j ]= 1 2 θ j(1 e j ) V ar [S j e j ]= 1. A j 2 (1 α jl)θ j (1 e j ) C( ) A 2 j(1 α j L) 2 θj 2 (1 e j ) 2 ] C( )

Japanese municipalities, 1970 present

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

Assessment of otoacoustic emission probe fit at the workfloor




m i N 1 F i = j i F ij + F x

Mantel & Haenzel (1959) Mantel-Haenszel


Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

rs r r â t át r st tíst Ó P ã t r r r â

( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

Alterazioni del sistema cardiovascolare nel volo spaziale

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

Α Ρ Ι Θ Μ Ο Σ : 6.913

MACCHINE A FLUIDO 2 CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH

FORD ST _ST_Range_V2_2015MY.indd FC1-FC3 06/11/ :29:57

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Econometrica Supplementary Material

Parts Manual. Trio Mobile Surgery Platform. Model 1033

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

d 1 d 1

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Multi-GPU numerical simulation of electromagnetic waves

ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 11. Η ΘΕΩΡΙΑ ΤΗΣ ΕΤΕΡΩΣΗΣ

Déformation et quantification par groupoïde des variétés toriques

Ηλεκτρονικοί Υπολογιστές IV

! "#$ %#&'()* ## # '$ $ +, -# * +./ 0$ # " )"1.0229:3682:;;8)< &.= A = D"# '$ $ A 6 A BE C A >? D

Asymptotic distribution of MLE

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM


Note: Please use the actual date you accessed this material in your citation.

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

%78 (!*+$&%,+$&*+$&%,-. /0$12*343556

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

2. ARMA 1. 1 This part is based on H and BD.

Jeux d inondation dans les graphes

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

A 1 A 2 A 3 B 1 B 2 B 3

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

Hartree-Fock Theory. Solving electronic structure problem on computers

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Συστήματα αλουμινίου νέας γενιάς Ευφυΐα υψηλής ενεργειακής απόδοσης

META CRÈME. Ημερομηνία Έκδοσης: 1-Σεπτέμβριος-2008 CD 2009/1. Τμήμα 1 - ΧΗΜΙΚΟ ΠΡΟΪΟΝ ΚΑΙ ΤΑΥΤΟΠΟΙΗΣΗ ΕΤΑΙΡΙΑΣ. Τμήμα 2 - ΤΑΥΤΟΠΟΙΗΣΗ ΚΙΝΔΥΝΩΝ


Supplementary figures

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ




B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b)

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain


Š Œ Š, ƒˆ ƒ ˆ ˆ Œ.. Œμ μ μ

Μέθοδος Newton-Raphson

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

Module 5. February 14, h 0min

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)


Περιεχόμενα. A(x 1, x 2 )

arxiv: v1 [math.dg] 3 Sep 2007

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

K r i t i k i P u b l i s h i n g - d r a f t


Απεικόνιση δεδομένων

March 14, ( ) March 14, / 52

On the Galois Group of Linear Difference-Differential Equations


Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

αριθμός δοχείου #1# control (-)

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Solution Series 9. i=1 x i and i=1 x i.

Ax = b. 7x = 21. x = 21 7 = 3.

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

3.5 - Boundary Conditions for Potential Flow

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Κεφάλαιο q = C V => q = 48(HiC. e και. I = -3- => I = 24mA. At. 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ

Transcript:

n n 1 2 n+1 2

i N j j A j D j U [0,θ j (1 e j )] θ j (0, 1] e j [0, 1] LD j L<1 α j {0, 1} α =(α j ) N j=1 =(e j ) N j=1 Π(α, ) = j {A j ((1 D j )+α j LD j )} C( )

C E [U(Π)] = E [Π] ρv ar(π) D E [D j e j ] = 1 2 θ j(1 e j ) V ar [D j e j ] = 1 12 θ2 j (1 e j ) 2 E [Π (α, )] = N j=1 A ( j 1 1 (1 α 2 jl)θ j (1 e j ) ) C( ) V ar [Π (α, )] = 1 12 N j=1 A2 j(1 α j L) 2 θ 2 j (1 e j ) 2 α, N j=1 ( [A j 1 1 ) 2 (1 α jl)θ j (1 e j ) ρ 1 ] 12 A2 j(1 α j L) 2 θj 2 (1 e j ) 2 C( ) N j=1 α j =1 α j {0, 1} e j [0, 1] (α) = ρ 1 12 N j=1 [ A j (1 1 ) 2 (1 α jl)θ j (1 e j ) N A 2 j(1 α j L) 2 θj 2 (1 e j ) 2 ] C( ) j=1

[ ] C (1 e j ) = W j 1+ρW j e j 3 W j = A j w j w j = 1 2 (1 α jl)θ j j c(e j )=ψ j e j ψ j C( ) = N A j ψ j e j. j=1 α ψ j ρ A j w j 0 ψ j w j + 2ρA 3 jwj 2 ê j (α j,ψ j, ρ, A j,w j )= 1 3 ψ j w j 2 ρa j w wj 2 j <ψ j <w j + 2ρA 3 jwj 2 1 ψ j w j ê θ j ê ψ j > 0 < 0 ê ρ > 0 ê w j ê A j > 0 > 0 ρ W 2 j 6 < 0 ψ ψ ψ ψ

ê (optimal effort) Insured Not insured w 1 w 0 ŵ 1 ŵ 0 ψ (cost of effort) ê w 1 w 0 w j w 1 = 1 2 θ j(1 L) w 0 = 1 2 θ j ŵ 1 = w 1 + 2 3 ρa j(w 1 ) 2 ŵ 0 = w 0 + 2 3 ρa j(w 0 ) 2 w 1 <ψ<ŵ 0 ψ F ψ j = 3W j+2ρwj 2 3A j p j = Prob(ê j > 0) = Prob(ψ j < ψ j )=F( ψ j ) p j θ j > 0 p j > 0 p j ρ w j > 0 > 0 ê j =1 p j A j θ j w j ρ A j ψ ψ (w 1, ŵ 0 ))

ê j (α j,ψ j, ρ, A j,w j ) j u j (α j,ψ j, ρ, A j,w j )=A j 1 2 A jw j (1 ê(α j,ψ j, ρ, A j,w j )) ρ 12 A2 jw 2 j (1 ê(α j,ψ j, ρ, A j,w j )) 2 A j ψ j ê(α j,ψ j, ρ, A j,w j ) α V (α) = N u j (α j,ψ j, ρ, A j,w j ). j=1 α V (α) α j {0, 1} N j=1 α j =1 α j =1 A j {}}{ 1 2 θ j(1 ê j (0,ψ j, ρ, A j,w j )) A j 1 2 θ j (1 ê j (0,ψ j, ρ, A j,w j )) j {1,..,N}.

P P = LA j E [D j θ j,ψ j,α j =1]= 1 2 LA jθ j (1 ê(θ j,ψ j,α j =1)) C C = ψ j A j (ê(θ j,ψ j,α j =0) ê(θ j,ψ j,α j =1)) ψ

= + AG AGD D D = AGD AG = AGD AGD+AG(1 D) = +

D ij = β 0 + β 1 α ij + β 2 C ij + β 3 C ij α ij + β 4 A ij + λ i + ɛ ij α C A θ ij ψ ij A j θ A j θ j (1 ê(θ j,ψ j,α j =0)) β 2 (A 1,θ 1,ψ 1 ) β 1 β 1 +β 3

(A 1,θ 1,ψ 1 ) β 2 E [D 1 (A 1,θ 1,ψ 1 ),α 1 =0] E [D 1 (A 1,θ 1,ψ 1 ),α 1 =0] = 1 2 θ 1(1 ê(θ 1,ψ 1,α 1 =0)) 1 }{{} 2 θ 1(1 ê(θ 1,ψ 1,α 1 =0)) }{{} β 3 β 3 = (E [D 1 (A 1,θ 1,ψ 1 ),α 1 =1] E [D 1 (A 1,θ 1,ψ 1 ),α 1 =0]) (E [D 1 (A 1,θ 1,ψ 1 ),α 1 =1] E [D 1 (A 1,θ 1,ψ 1 ),α 1 =0]) {}}{ 1 2 θ 1 [(1 ê(θ 1,ψ 1,α 1 =1)) (1 ê(θ 1,ψ 1,α 1 =0))] 1 2 θ 1 [(1 ê(θ 1,ψ 1,α 1 =1)) (1 ê(θ 1,ψ 1,α 1 =0))] }{{} = 1 2 θ 1 {}}{ [ê(θ 1,ψ 1,α 1 =0) ê(θ 1,ψ 1,α 1 =1)] 1 2 θ 1 [ê(θ 1,ψ 1,α 1 =0) ê(θ 1,ψ 1,α 1 =1)] }{{} ψ j ψ j [ê(θ j,ψ j,α j =1) ê(θ j,ψ j,α j =0)] D U [0,θ(1 e)] θ e E [D θ, e] = 1 2θ(1 e)

β 3 D ij = β 0 + β 1α ij + β 2C ij + β 3A ij + λ i + ɛ ij. β 1 β 2 β 2 = β 2 + 1β 2 3 β 2

θ j θ j ψ j

θ

= α 0 + α 1 ij + α 2 ij i + α 3 ij i + λ i +ɛ }{{} ij α 3 α 3 > 0

D ij = β 0 + β 1 C ij + β 2 X ij + β 3 X ij 1( )+λ i + η ij. β 2 β 3

1A 2 jθ j A j θ j j v j = u j (α j =1) u j (α j =0)=cA j θ j c = 1 2 L θ = 1 N N j=1 θ j v j = ca j θ + caj (θ j θ) E [D j θ j ]= 1 2 A jθ j θj obs û j = A j Ê [ ] D j θj obs Λ(C ij )=α 0 + α 1 A ij Ê [D X, I =1]+α 2 A ij Ê [D I =1]+ɛ ij C ij =1 i j α 1 > 0

ê I j j ê 0 j j {}}{ vj 1 = u j (α j =1) u j (α j =0)= 2 A jθ j (1 ê 0 j)l ρ [ (1 L) 2 1 ] A 2 12 jθj 2 (1 ê 0 j) 2 + ρ 12 A2 jθj 2 (1 L) [ 2 (1 ê 0 j) 2 (1 ê 1 j) 2] + 1 2 A jθ j (ê 0 j ê 1 j)l }{{} }{{} + A j ψ j (ê 0 j ê 1 j) }{{} v b = 1 2 A jθ j (1 ê 0 j)l v m = 1 2 A jθ j (ê 0 j ê 1 j)l ˆv b = A ij Ê [D X, I =0] ˆv m = A ij (Ê [D X, I =1] Ê [D X, I =0]). v b v m Λ(C ij )=α 0 + α 1ˆv b + α 2ˆv m + α 3 A ij + α 4ˆv b + α 5ˆv m + ɛ ij = α 0 + α 1 A ij Ê [D X, I =0] + α 2 A ij (Ê [D X, I =1] Ê [D X, I =0]) + α 3 A ij Ê [D I =1]+α 4 Ê [D X, I =0] + α 5 (Ê [D X, I =1] Ê [D X, I =0])+ɛ ij. α 1 > 0 1θ 2 j(1 ê 0 j)=e [D I =0] α 2 > 0 ψ>0 α 2 > 0

Ê [D X, I =0] Ê [D X, I =1] D ij = β 0 + β 1 X ij + β 2 X ij 1( )+η ij X θ(1 ê 0 ) α 3 A j ψ j (ê 0 j ê 1 j)

4.7 4.4 2.6 2.6 1.8 1.7 6.8 (1.4) (2.4) (1.1) (2.0) (1.0) (1.8) (3.9) 1.3 1.1 0.3 0.4 1.9 1.9 (1.2) (1.9) (1.0) (1.6) (0.9) (1.4) 2.3 2.3 0.6 0.6 1.6 1.6 2.7 (2.2) (2.2) (1.8) (1.8) (1.6) (1.6) (5.6) 0.5 0.2 0.2 (4.0) (3.3) (2.9) +

2.0 1.8 1.9 1.6 (0.9) (0.9) (0.9) (0.9) 1.0 0.8 (0.6) (0.6) 0.6 0.4 (2.8) (2.8) 1.0 1.8 (1.6) (1.6) 1.7 0.7 (1.9) (1.9) 2.0 1.9 1.5 1.4 (1.5) (1.6) (1.5) (1.6) + +

4.7 4.8 5.7 (1.4) (1.4) (2.2) 2.5 2.2 (1.3) (1.3) 1.9 0.2 2.0 0.5 2.8 (0.9) (1.6) (0.9) (1.0) (1.2) 2.4 (1.9) 1.1 1.2 2.0 (0.9) (1.0) (1.2) 1.4 1.0 2.3 (0.9) (1.2) (1.2)

1.9 2.1 9.3 17.7 1.8 1.8 0.02 0.02 0.8 2.4 (0.9) (1.2) (17.4) (24.3) (1.2) (1.6) (0.010) (0.01) (0.8) (1.0) 0.2 0.2 3.4 5.4 0.7 0.5 0.6 2.0 (1.1) (1.5) (33.6) (55.1) (1.9) (3.0) (0.7) (1.1) 2.6 3.2 12.1 23.8 2.2 2.3 0.02 0.02 1.0 2.6 (1.1) (1.5) (20.1) (24.6) (1.5) (2.0) (0.010) (0.01) (1.1) (1.4)

1.93 2.15 0.22 0.15 0.43 0.30 (0.86) (1.18) (0.13) (0.17) (0.25) (0.33) 0.23 0.21 0.10 0.19 0.20 0.37 (1.08) (1.54) (0.22) (0.33) (0.44) (0.65) 2.64 3.16 0.46 0.39 0.90 0.77 (1.14) (1.55) (0.15) (0.17) (0.30) (0.34) log(fertilizer + fertilizer 2 + 1)

5.5 3.8 (1.4) (1.5) 2.3 3.6 (2.2) (2.4)

4.0 6.9 (2.1) (2.1) 5.2 4.3 (4.2) (4.2) 5.5 0.5 (5.2) (4.9) 7.9 1.0 (4.5) (4.2) 13.1 3.4 (5.7) (6.0) 0.2 4.8 (2.7) (2.5) 6.2 7.0 (4.6) (4.6) 8.6 9.1 (6.0) (5.8) 0.1 3.1 (5.4) (4.9) 7.1 2.5 (7.0) (7.2) 21.5 26.3 (2.9) (2.6)

β β Ê(D X, I =1) 1.12 0.025 (0.044) (0.0078) Ê(D X, I =0) 1.13 0.026 (0.052) (0.0090) (Ê(D X, I =1) Ê(D X, I =0)) 1.10 0.023 (0.061) (0.012) Ê(D X, I =1) 1.01 0.0045 (0.024) (0.0052) Ê(D X, I =0) 1.01 0.0066 (0.028) (0.0062) (Ê(D X, I =1) Ê(D X, I =0)) 0.99 0.0018 (0.032) (0.0080) Ê(D I =1) 0.96 0.95 0.0073 0.0084 (0.035) (0.040) (0.0081) (0.0089)

31.7 (26.3) 21.2 (26.8) 25.6 (25.4) 12.0 (21.5) 6.0 (13.5) 9.4 (19.9) 22.9 (52.9) 11.8 (36.9) +

1.72 1.57 0.15 1.71 1.57 0.14 (0.09) (0.14) 2.88 2.84 0.04 2.88 2.82 0.06 (0.69) (0.61) 10.20 10.45 0.26 10.11 10.40 0.29 (0.41) (0.39) 53.82 52.93 0.90 53.76 53.17 0.59 (0.37) (0.59) 0.17 0.16 0.00 0.16 0.15 0.01 (0.91) (0.68) 0.33 0.33 0.00 0.34 0.34 0.01 (0.84) (0.73) 0.59 0.60 0.02 0.59 0.60 0.01 (0.39) (0.62) 0.23 0.25 0.02 0.20 0.22 0.02 (0.36) (0.51) 0.02 0.02 0.04 0.01 0.04 0.03 (0.40) (0.59) 0.19 0.21 0.02 0.20 0.22 0.02 (0.23) (0.42) 0.15 0.14 0.01 0.16 0.15 0.01 (0.63) (0.60) 0.04 0.04 0.00 0.05 0.05 0.00 (1.00) (0.87)

Farmers in Random Insurance Group Insured plot Control plot 1st Choice Plots Non-1st Choice Plots Adverse Selection Moral Hazard

Farmers in Random Insurance Group Insured Plots Control Plots 1st Choice Plots (a) Adverse Selection (c) Moral Hazard on 1st choice (b) Selection On Baseline Risk Non-1st Choice Plots (d) Moral Hazard on non-1st choice

Density 0.005.01.015 Full harvest per hectare (all seasons) 0 100 200 300 400 Potential harvest per hectare

E [Π(α, )] = E [ N ] j=1 (A j(1 D j )+α j A j LD j ) C( ) = N j=1 A j(1 (1 α j L)E [D j e j ]) C( ) = N j=1 A j(1 (1 α j L) θ j(1 e j ) 2 ) C( ) V ar(π(α, )) [ N = V ar j=1 A j ] N j=1 A j(1 α j L)D j = N j=1 A2 j(1 α j L) 2 V ar(d j ) = N j=1 A2 j(1 α j L) 2 θ2 j (1 e j) 2 12 [ ] C (1 αj L)θ j = A j ρa j (1 α j L) 2 θ 2 2(1 e j ) j e j 2 12 [ ] 1 = A j (1 α j L)θ j 2 + ρa 1 e j j(1 α j L)θ j 6 [ ] 2(1 e j ) = W j 1+ρW j 3

W j = 1 2 A j(1 α j L)θ j ρw j 2(1 e j ) 3 [ ] 2(1 e j ) A j ψ j = W j 1+ρW j 3 = A jψ j W j 1 1 e j = 3A jψ j 2ρW 2 j e j =1 3A jψ j 2ρW 2 j 3 2ρW j + 3 2ρW j e j =1 3 ψ j w j 2 ρa j wj 2 e j (0, 1) e j > 0 ψ j <w j + 2 3 ρa2 jwj 2 e j < 1 w j <ψ j. e = 3A j < 0 ψ j 2ρWj 2 e ρ = 3(A jψ j W j ) > 0 4ρ 2 Wj 2 e θ j = = e W j W j θ j [ ( 2) 3A jψ j 2ρWj 2 3 ] ( 1 2ρWj 2 2 A j(1 α j L)) = 6A jψ j 3W j ( 1 2ρWj 3 2 A j(1 α j L)) > 0 ψ F ψ = 3W j+2ρw 2 j 3A j p = Prob(ê >

0) = Prob(ψ < ψ) =F ( ψ) p w = F w = F 3+4ρW ( ψ) 3A > 0 p θ = F 3+4ρW 1 ( ψ) A(1 αl) > 0 3A 2 p ρ = F 2 2W ( ψ) 3A > 0 p A = F ( ψ) 1 6 ρθ2 (1 αl) 2 > 0 ψ F ˆψ = w j q = Prob(ê =1)=Prob(ψ < ˆψ) =F ( ˆψ) q w = F ( ˆψ) > 0 q θ = F ( ˆψ) 1 A(1 αl) > 0 2 q ρ =0 q A =0 Λ(α j,ψ j, ρ, A j,w j )= N j=1 1 2 A jw j (1 ê(α j,ψ j, ρ, A j,w j )) + ρ 12 A2 jw 2 j (1 ê(α j,ψ j, ρ, A j,w j )) 2 + A j ψ j (ê(α j,ψ j, ρ, A j,w j )) Π(α, ψ j,,ρ,, = N j=1 Λ(α, ψ j,,ρ,, ) ˆα = α Λ(α, ψ j,,ρ,, )

ê(0,ψ j, ρ, A j,w j ) j ê j 0 ê(0,ψ j, ρ, A j,w j ) Λ(α, ψ j, ρ,, ) = N { 1 2 A jw j (1 ê j 0)+ ρ 12 A2 jwj 2 (1 ê j 0) 2 j=1 } + 1 2 A jψ j ê j 0 N N λ(a j θ j, (1 α j L)) A j ψ j ê j 0 j=1 j=1 λ λ(y, x) = 1 4 yx+ ρ 48 y2 x 2 N j=1 A jψ j ê j 0 λ h l A h θ h (1 ê h 0) >A l θ l (1 ê l 0) h l Λ((α h =1,α h =0)) Λ((α l =1,α l =0)) = λ(a h θ h (1 ê h 0), (1 L)) + λ(a l θ l (1 ê l 0), 1) λ(a l θ l (1 ê l 0), 1 L) λ(a h θ h (1 ê h 0), 1) = λ(a h θ h (1 ê h 0), (1 L)) λ(a l θ l (1 ê l 0), 1 L)+λ(A l θ l (1 ê l 0), 1) λ(a h θ h (1 ê h 0), 1) M(A h θ h (1 ê h 0)) h M(A h θ h (1 ê h 0) < 0 λ(aθ(1 ê 0 ), (1 αl)) = 1 Aθ(1 ê 0 ) 4 (1 αl)+ ρ 24 Aθ(1 ê 0)(1 αl) 2 > 0 λ(aθ, (1 αl)) = 1 (1 αl) 4 Aθ(1 ê 0)+ ρ 24 (Aθ(1 ê 0)) 2 (1 αl) > 0 λ(aθ, (1 αl)) = 1 Aθ (1 αl) 4 + ρ 12 (Aθ(1 ê 0))(1 αl) > 0

M(A l θ l (1 ê 0 )) = 0 M(A h θ h (1 ê h 0)) = M(A h θ h (1 ê h 0)) M(A l θ l (1 ê l 0)) Ah θ h (1 ê h 0 ) A l θ l (1 ê l 0 ) Ah θ h (1 ê h 0 ) A l θ l (1 ê l 0 ) Ah θ h (1 ê h 0 ) < 0 A l θ l (1 ê l 0 ) Ah θ h (1 ê h 0 ) 1 A l θ l (1 ê l 0 ) M(s) Aθ(1 ê 0 ) ds ( (s, 1 L) Aθ(1 ê 0 ) ( (s, 1 L) Aθ(1 ê 0 ) 1 L λ(s, m) dmds } s m {{} >0 ) (s, 1 L) ds Aθ(1 ê 0 ) (s, 1 L) Aθ(1 ê 0 ) ) ds Aθ(1 ê 0 ) 1 2 θ(1 ê 0)