Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
|
|
- Μυρίνη Παπανικολάου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο Μακεδονίας 1
2 Γενική μορφή μοντέλου κινητού μέσου Υ t = μ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q Η τάξη q αναφέρεται στο μήκος της υστέρησης της μεταβλητής ε για την οποία υποθέτουμε ότι είναι λευκός θόρυβος. Ο όρος κινητός μέσος αναφέρεται στο γεγονός ότι η Υ t εμφανίζεται ως ένα σταθμισμένο άθροισμα των τιμών της ε t. Θα εξετάσουμε πρώτα την περίπτωση μιας MA(1) διαδικασίας. 2
3 Μοντέλο κινητού μέσου πρώτης τάξης ΜΑ(1) Για q = 1: Υ t = μ + ε t + θ 1 ε t 1 ή Υ t μ = ε t + θ 1 ε t 1 ή με τον συμβολισμό του τελεστή υστερήσεως L: y t = ε t + θ 1 ε t 1 y t = (1 + θ 1 L)ε t 3
4 Για θ 1 < 1 η σχέση y t = (1 + θ 1 L)ε t μπορεί να μετασχηματιστεί ως εξής: 1 + θ 1 L 1 y t = ε t (1 θ 1 L + θ 1 2 L 2 θ 1 3 L 3 + )y t = ε t Η σχέση αυτή μπορεί να θεωρηθεί ως μια AR( ) διαδικασία που προέκυψε από μια MA(1) διαδικασία αντιστρέφοντας τον όρο (1 + θ 1 L). Όταν αυτό είναι δυνατό, τότε η ΜΑ(1) διαδικασία είναι αντιστρέψιμη. Δηλαδή, μια ΜΑ(1) διαδικασία είναι αντιστρέψιμη αν μπορεί να διατυπωθεί ως μια AR ( ) διαδικασία. 4
5 Για μια ΜΑ(1) διαδικασία ισχύουν τα παρακάτω: Ε(Υ t ) = μ γ 0 = Var Y t = (1 + θ 1 2 )σ 2 γ 1 = Cov Y t, Y t 1 = θ 1 σ 2 γ s = 0 για s > 1 ρ 1 = θ 1 1+θ 1 2 γ s = 0 για s > 1 Μόνο η αυτοσυνδιασπορά και η αυτοσυσχέτιση πρώτης τάξης είναι διάφορες του μηδενός. Αυτό σημαίνει ότι η «μνήμη» της διαδικασίας δεν υπερβαίνει τη μια περίοδο. Δηλαδή, μια οποιαδήποτε παρατήρηση της μεταβλητής Υ, συσχετίζεται μόνο με τις διαδοχικές παρατηρήσεις. 5
6 Μοντέλο κινητού μέσου δεύτερης τάξης ΜΑ(2) Για μια ΜΑ(2) διαδικασία ισχύουν τα παρακάτω: Ε(Υ t ) = μ γ 0 = Var Y t = (1 + θ θ 2 2 )σ 2 γ 1 = Cov Y t, Y t 1 = (θ 1 + θ 2 θ 1 )σ 2 γ 2 = Cov Y t, Y t 2 = θ 2 σ 2 γ s = 0 για s > 2 ρ 1 = θ 1+θ 2 θ 1 1+θ 1 2 +θ 2 2 ρ 2 = θ 2 1+θ 1 2 +θ 2 2 ρ s = 0 για s > 2 6
7 Για να είναι αντιστρέψιμη μια ΜΑ(2) διαδικασία θα πρέπει να ισχύουν τα παρακάτω: θ 1 + θ 2 < 1 θ 1 + θ 2 < 1 1 < θ 2 < 1 Δηλαδή πρέπει να ισχύουν συνθήκες ανάλογες με αυτές που συνεπάγεται η στασιμότητα μιας AR(2) διαδικασίας. 7
8 Μοντέλο κινητού μέσου q τάξης, ΜΑ(q) Για μια ΜΑ(q) διαδικασία ισχύουν τα παρακάτω: Ε(Υ t ) = μ Υ t = μ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q γ 0 = Var Y t = (1 + θ θ q 2 )σ 2 γ s = Cov Y t, Y t s = (θ s + θ s+1 θ θ q θ q s )σ 2 για s = 1,2, q γ s = 0 για s > q ρ s = θ s+θ s+1 θ 1 + +θ q θ q s 1+θ θ q 2 για s = 1,2, q ρ s = 0 για s > q 8
9 ΜΑ(q) Χαρακτηριστικό πολυώνυμο του μοντέλου ΜΑ(q) 1 θ 1 λ θ 2 λ 2 θ q λ q = 0 Αντιστρεψιμότητα Πρέπει οι ρίζες του χαρακτηριστικού πολυωνύμου να είναι εκτός του μοναδιαίου κύκλου. Στασιμότητα Πάντα στάσιμο. 9
10 Γενικά, οι αυτοσυνδιακυμάνσεις και επομένως η συνάρτηση αυτοσυσχέτισης και μερικής αυτοσυσχέτισης μιας ΜΑ διαδικασίας προσομοιάζουν με αυτές μιας AR διαδικασίας. Ενώ η συνάρτηση αυτοσυσχέτισης μιας AR διαδικασίας μπορεί να εκτείνεται στο άπειρο, η συνάρτηση αυτοσυσχέτισης μιας ΜΑ διαδικασίας τερματίζεται (μηδενίζεται) μετά από q υστερήσεις. Δηλαδή η «μνήμη» της εξαντλείται μετά από q περιόδους. Αντίθετα, η συνάρτηση μερικής αυτοσυσχέτισης μιας AR(p) διαδικασίας τερματίζεται μετά από p υστερήσεις, ενώ η συνάρτηση μερικής αυτοσυσχέτισης μιας ΜΑ(q) διαδικασίας επεκτείνεται στο άπειρο. 10
11 Οι μερικές αυτοσυσχετίσεις (ρ ss ) μιας ΜΑ διαδικασίας μπορούν να εκφραστούν ως συναρτήσεις των αυτοσυσχετίσεων (ρ s ) με τον ίδιο τρόπο όπως και για τις AR διαδικασίες, με βάση τη σχέση R ss = Π 1 R ή ρ ss = 1 ρ 1.. ρ 1 ρ ρ. 2. ρ s 1 ρ s 2.. ρ s 1 ρ 1.. ρ s 1 ρ ρ s 2.. ρ s 1 ρ s
12 Για την ΜΑ(1) διαδικασία ισχύουν τα παρακάτω: ρ 1 = θ θ 1 2 ρ 2 = 0 ρ 11 = ρ 1 = θ θ 1 2 ρ 22 = 1 ρ 1 ρ 1 ρ 2 1 ρ 1 ρ 1 1 = ρ ρ = θ θ θ 1 ρ 33 = ρ ρ 1 2 κ.ο.κ. 12
13 Παράδειγμα Έστω μια ΜΑ(1) διαδικασίας Y t = 5 + ε t 0.9ε t 1, ε t ~Ν(0,1) Με απευθείας αντικατάσταση στους τύπους έχουμε: γ 0 = Var Y t = 1 + θ 2 1 σ 2 = = 1.81 γ 1 = Cov Y t, Y t 1 = θ 1 σ 2 = 0.9 γ s = 0 για s > 1 ρ 1 = ρ 11 = θ 1 1+θ 1 2 = = 0.5, ρ 2 = 0 ρ 22 = ρ ρ 1 2 = 0.33 ρ 33 = ρ ρ2 = κ.ο.κ 13
14 Παράδειγμα Έστω μια ΜΑ(2) διαδικασίας Y t = 10 + ε t 0.7ε t ε t 2, ε t ~Ν(0,1). Είναι: γ 0 = Var Y t = 1 + θ θ 2 2 σ 2 = = 1.53 γ 1 = Cov Y t, Y t 1 = θ 1 + θ 2 θ 1 σ 2 = 0.84 γ 2 = Cov Y t, Y t 2 = θ 2 σ 2 = 0.2 γ s = 0 για s > 2 ρ 1 = θ 1+θ 2 θ 1 1+θ 1 2 +θ 2 2 = 0.55 ρ 11 = ρ 1 = 0.55 ρ 2 = θ 2 1+θ 2 1 +θ2 = 0.13 ρ 22 = ρ 2 2 ρ ρ2 = ρ s = 0, για s > 2 ρ 22 = ρ 1 3 2ρ 1 ρ 2 ρ 1 ρ ρ 1 2 ρ 2 2 = 0.39 κ.ο.κ 14
15 Παράδειγμα Μια πραγματοποίηση της ΜΑ(1) διαδικασίας Y t = 10 + ε t + 0.9ε t 1 >> model=arima('constant',10,'ma',{0.9},'malags',[1],'variance',1); >> [Y,E] = simulate(model,100); >> plot(y) >> autocorr(y) >> parcorr(y) 15
16 Εκτίμηση υποδειγμάτων ΜΑ Όπως και στις αυτοπαλίνδρομες διαδικασίες, έτσι και για διαδικασίες κινητού μέσου, η τάξη του υποδείγματος (q) μπορεί να καθοριστεί από την συμπεριφορά της δειγματικής συνάρτησης αυτοσυσχέτισης. Η συνάρτηση αυτοσυσχέτιση μιας ΜΑ(q) διαδικασίας μηδενίζεται μετά από q υστερήσεις. Αυτό σημαίνει ότι οι αυτοσυσχετίσεις για s q θα είναι σημαντικές, ενώ για s > q δεν θα είναι σημαντικές. Ο έλεγχος σημαντικότητας των αυτοσυσχετίσεων μπορεί να γίνει ακριβώς με τον ίδιο τρόπο που εξηγήσαμε προηγουμένως για διαδικασίες AR. Όταν έχει καθοριστεί η τάξη της ΜΑ διαδικασίας, οι παράμετροι του υποδείγματος μπορούν να καθοριστούν από τις σχέσεις Yule-Walker (R = ΠA), οι οποίες συνδέουν τις αυτοσυσχετίσεις με τους συντελεστές αυτοπαλινδρομήσεως. Στην θέση των συντελεστών αυτοσυσχέτισης, αντικαθιστώνται οι εκτιμήσεις τους από το δείγμα. 16
17 Παρατήρηση Η χρησιμοποίηση της μεθόδου των ελαχίστων τετραγώνων δεν είναι εφικτή, όπως στην περίπτωση των αυτοπαλίνδρομων διαδικασιών, γιατί η προς ελαχιστοποίηση συνάρτηση: Τ t=1 ε t 2 = Τ t=1 δεν είναι γραμμική ως προς τις παραμέτρους. (Υ t μ θ 1 ε t 1 θ q ε t q ) 2 Για παράδειγμα, για q = 1, η MA(1) διαδικασία μπορεί να γραφεί ως μια AR( ) διαδικασία: οπότε η παραπάνω σχέση γίνεται: Τ t=1 ε t 2 = Τ t=1 ε t = y t θ 1 y t 1 + θ 1 2 y t 2 θ 1 3 y t 3 + (y t θ 1 ε t 1 ) 2 = Τ t=1 (y t θ 1 y t 1 + θ 1 2 y t 2 θ 1 3 y t ) 2 17
18 Άρα δεν είναι γραμμική ως προς τις παραμέτρους και δεν μπορεί να χρησιμοποιηθεί η μέθοδος ελαχίστων τετραγώνων. Σε αυτήν την περίπτωση, για την εκτίμηση της παραμέτρου θ 1 απαιτείται η χρήση μη γραμμικών μεθόδων. 18
19 Παράδειγμα Θέλουμε να εκτιμήσουμε ένα ΜΑ(1) μοντέλο με βάση ένα δοσμένο δείγμα 100 παρατηρήσεων. Τα δεδομένα κατασκευάστηκαν με βάση το μοντέλο Y t = ε t 0.7ε t 1. >> load c:\bin\yvlec8.dat >> yv = yvlec8; >> plot(yv) 19
20 >> autocorr(yv) >> parcorr(yv) Bounds for autocorrelation [ , ] Bounds for partial autocorrelation [ , ] Lag autocorrelation Significant Yes No No Lag autocorrelation Significant Yes Yes No 20
21 Μια σημαντική αυτοσυσχέτιση άρα η τάξη του ΜΑ μοντέλου είναι 1. >> [nrmsev,~,thetav,sdz,~,~,armamodel]=fitarma(xv,0,1,1) nrmsev = thetav = SDz = armamodel = Discrete-time MA model: y(t) = C(z)e(t) C(z) = z^-1 Parameterization: Polynomial orders: nc=1 Number of free coefficients: 1 Fit to estimation data: 22.92% (prediction focus) FPE: 1.106, MSE:
22 Άσκηση 1 Έστω η ακόλουθη στοχαστική διαδικασία Y t = ε t 0.6ε t 1, όπου ε t λευκός θόρυβος με διακύμανση 1. α) Να διατυπωθεί το μοντέλο με τον συμβολισμό του τελεστή υστερήσεως. β) Είναι η διαδικασία στάσιμη; γ) Είναι η διαδικασία αντιστρέψιμη; δ) Να βρεθούν ο μέσος, η διακύμανση και οι αυτοσυσχετίσεις ρ 1, ρ 2 και ρ 22. ε) Να γίνει το διάγραμμα αυτοσυσχετίσεων. Λύση 22
23 α) Η διαδικασία Y t = ε t 0.6ε t 1 είναι μια διαδικασία κινούμενου μέσου τάξης 1, ΜΑ(1), και μπορεί να διατυπωθεί ως Y t = ε t 0.6ε t 1 (Θέτω y t = Y t μ) y t = ε t 0.6ε t 1 y t = (1 0.6L)ε t β) Για να είναι στάσιμη μια στοχαστική διαδικασία που έχει διατυπωθεί ως γραμμικό φίλτρο πρέπει να ισχύει i=0 Y t μ = ε t + ψ 1 ε t 1 + ψ 2 ε t 2 + ψ i <, όπου ψ i οι συντελεστές στάθμισης. Εφόσον η συνθήκη αυτή ικανοποιείται για την δοσμένη διαδικασία, άρα είναι στάσιμη. 23
24 γ) Μια MA(1) είναι αντιστρέψιμη αν μπορεί να διατυπωθεί ως μια AR( ) διαδικασία. Για να συμβεί αυτό, πρέπει ο συντελεστής του ε t 1, δηλαδή το θ 1 πρέπει να είναι κατά απόλυτη τιμή μικρότερος του 1. Επειδή θ 1 = 0.6 < 1, άρα η διαδικασία είναι αντιστρέψιμη. Ως AR( ) διαδικασία διατυπώνεται ως εξής: Θέτω y t = Y t μ y t = θ 1 y t 1 θ 1 2 y t 2 + θ 1 3 y t 3 + ε t y t = 0.6y t 1 ( 0.6) 2 y t 2 + ( 0.6) 3 y t 3 + ε t y t = 0.6y t y t y t 3 + ε t 24
25 δ) Μέσος: μ = EY t = E ε t 0.6ε t 1 = 4.8 Διακύμανση: Var Y t = 1 + θ 1 2 σ 2 = 1.36 Αυτοσυσχετίσεις: ρ 1 = θ 1 1+θ 1 2 = 0.44 Οι υπόλοιπες αυτοσυσχετίσεις είναι μηδέν. Μερικές αυτοσυσχετίσεις: ρ 11 = ρ 1 = 0.44 ρ 22 = θ θ θ 1 4 = 0.25 ε) Διάγραμμα αυτοσυσχέτισης 25
26 Άσκηση 2 Έστω η ακόλουθη στοχαστική διαδικασία Y t = 2 + ε t 0.5ε t ε t 2, όπου ε t λευκός θόρυβος με διακύμανση 4. α) Να διατυπωθεί με τον συμβολισμό του τελεστή υστερήσεως. β) Είναι η διαδικασία στάσιμη; γ) Είναι η διαδικασία αντιστρέψιμη; δ) Να βρεθούν ο μέσος, η διακύμανση και οι αυτοσυσχετίσεις ρ 1, ρ 2 και ρ 22. Λύση 26
27 α) Η στοχαστική διαδικασία Y t = 2 + ε t 0.5ε t ε t 2 μπορεί να διατυπωθεί με τον συμβολισμό του τελεστή υστερήσεως ως εξής: Y t = 2 + ε t 0.5ε t ε t 2 (y t = Y t μ) y t = ε t 0.5ε t ε t 2 y t = (1 0.5L + 0.2L 2 )ε t β) H διαδικασία είναι στάσιμη αφού το άθροισμα των συντελεστών στάθμισης είναι μικρότερο του άπειρο ( i=0 ψ i < ). γ) Μια MA(2) διαδικασία είναι αντιστρέψιμη αν οι ρίζες της χαρακτηριστικής εξίσωσης λ 0.2λ 2 = 0 είναι κατά απόλυτη τιμή μεγαλύτερες από την μονάδα. 27
28 λ 0.2λ 2 = 0 0.2λ 2 0.5λ 1 = 0 Δ = 1.05, λ = 20,5 ή 4,5 Εφόσον οι ρίζες της χαρακτηριστικής εξίσωσης είναι κατά απόλυτη τιμή μεγαλύτερες από την μονάδα, άρα η διαδικασία είναι αντιστρέψιμη. δ) Μέσος: ΕY t = Ε 2 + ε t 0.5ε t ε t 2 = 2 Διακύμανση: Var Y t = γ 0 = 1 + θ θ 2 2 σ 2 = 5.16 Αυτοσυνδιακυμάνσεις: γ 1 = Cov Y t, Y t 1 = θ 1 + θ 2 θ 1 σ 2 = 2.4 γ 2 = Cov Y t, Y t 2 = θ 2 σ 2 = 0.8 γ s = 0 για s > 2 28
29 Αυτοσυσχετίσεις: ρ 1 = γ 1 γ 0 = 0.46 ρ 2 = γ 2 γ 0 = 0.16 ρ s = 0 για s > 2 Μερικές αυτοσυσχετίσεις: ρ 11 = ρ 1 = 0.46 ρ 22 = ρ 2 ρ ρ 1 2 = 0.05 ρ 33 = ρ ρ 1 ρ 2 ρ 1 ρ ρ 1 2 ρ 2 2 =
30 Άσκηση 3 Να αποδειχθούν οι παρακάτω σχέσεις που ισχύουν : α) Ε Y t = μ β) Var Y t = γ 0 = 1 + θ θ θ q 2 σ 2 γ) γ s = θ s + θ s+1 θ 1 + θ s+2 θ θ q θ q s σ 2 για s = 1,, q 0 για s > q Λύση 30
31 Έστω μια διαδικασία κινούμενου μέσου τάξης q όπου ε t λευκός θόρυβος. Υ t = μ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q α) Ε Υ t = Ε μ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q = μ β) Var Υ t = γ 0 = Ε(Υ t ΕΥ t ) 2 = = Ε(ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q ) 2 = = Ε[ε 2 t + θ ε t θ 2 2 q ε t q +2ε t θ 1 ε t 1 + θ 2 ε t θ q ε t q + + 2ε t q 1 ε t q ] = = Ε(ε 2 t + θ ε t θ 2 2 q ε t q ) = (οι υπόλοιποι όροι είναι μηδέν) = σ 2 + θ 1 2 σ θ q 2 σ 2 = (θ θ q 2 )σ 2 31
32 γ) γ s = Cov Υ t, Υ t s = E Υ t EΥ t Υ t s EΥ t s = = Ε ε t + θ 1 ε t θ q ε t q ε t s + θ 1 ε t 1 s + + θ q ε t q s = = Εε t ε t s + θ 1 ε t s θ q ε t q s + Για s = 1: Eθ 1 ε t 1 ε t s + θ 1 ε t 1 s + + θ q ε t q s + + Eθ q ε t q s ε t s + θ 1 ε t 1 s + + θ q ε t q s γ 1 = Εε t ε t 1 + θ 1 ε t θ q ε t q 1 + Eθ 1 ε t 1 ε t s + θ 1 ε t θ q ε t q Eθ q ε t q 1 ε t 1 + θ 1 ε t θ q ε t q 1 = = θ 1 Εε t 1 + θ 1 θ 2 Εε t θ q θ q 1 Εε t q (οι υπόλοιποι όροι είναι μηδέν) = (θ 1 + θ 1 θ θ q θ q 1 )σ 2 Ομοίως προκύπτει το γ s για s = 2,.., q. 32
33 Άσκηση 4 Από 100 παρατηρήσεις μιας χρονικής σειράς βρήκαμε τις 10 πρώτες αυτοσυσχετίσεις και είναι: ρ 1 =0.61, ρ 2 =0.47, ρ 3 =-0.05, ρ 4 =0.06, ρ 5 =-0.21, ρ 6 =0.11, ρ 7 =0.08, ρ 8 =0.05, ρ 9 =0.12, ρ 10 =-0.01 Θέλουμε να εξετάσουμε από ποια διαδικασία προέκυψε. Λύση Πρέπει να ελέξγουμε την συνάρτηση αυτοσυσχέτισης. Δηλαδή να βρούμε ποιες είναι οι σημαντικές αυτοσυσχετίσεις, δηλαδή ελέγχουμε την υπόθεση H 0 : ρ s = 0, H 1 : ρ s 0 Είναι: ρ s ~N(0, 1 T ), δηλαδή η Η 0 απορρίπτεται αν ρ s > 2 1 Τ = 0.2 Εφόσον υπάρχουν μόνο δύο σημαντικές αυτοσυσχετίσεις (> 0.2), άρα μπορούμε να υποθέσουμε ότι προέρχεται από διαδικασία MA(2). 33
34 Άσκηση 5 Να ελέξγετε ως προς την στατικότητα την σειρά (ΜΑ( )) Υ t = ε t + c(ε t 1 + ε t 2 + ) όπου c: σταθερά και ε t λευκός θόρυβος με διακύμανση σ 2. Λύση Για να ελέξγουμε την στατικότητα (ή στασιμότητα) της παραπάνω διαδικασίας, πρέπει να ελέγξουμε αν είναι σταθερά τα παρακάτω: ΕΥ t = Ε(ε t + c ε t 1 + ε t 2 + = Ε ε t + ce ε t 1 + = 0 Var Υ t = Ε Υ t ΕΥ t 2 = Ε Υ t 2 = Ε Υ t Υ t = = E ε t + c ε t 1 + ε t 2 + ε t + c ε t 1 + ε t 2 + = E ε 2 t + c 2 2 ε t 1 + c 2 2 ε t 2 + = σ 2 (1 + c 2 + c 2 + ) Μη πεπερασμένη διακύμανση, άρα η σειρά δεν είναι στάσιμη. 34
35 Άσκηση 6 Να ελέξγετε ως προς την στατικότητα την σειρά των πρώτων διαφορών της (ΜΑ( )): Υ t = ε t + c(ε t 1 + ε t 2 + ) όπου c: σταθερά και ε t λευκός θόρυβος με διακύμανση σ 2. Λύση Έστω η σειρά των πρώτων διαφορών: X t = Υ t Υ t 1 = ε t + c ε t 1 + ε t 2 + ε t 1 + c ε t 2 + ε t 3 + = ε t + cε t 1 + cε t 2 + ε t 1 + cε t 2 + cε t 3 + = ε t + cε t 1 ε t 1 = ε t + (c 1)ε t 1 Η σειρά που προκύπτει X t = ε t + (c 1)ε t 1 είναι μια ΜΑ(1) διαδικασία με θ 1 = c 1. Επομένως η X t είναι στάσιμη, αφου το άθροισμα των συντελεστών στάθμισης είναι μικρότερο του άπειρο. 35
36 Βιβλιογραφία 1. Ε. Μπόρα Σέντα, Χ. Μωυσιάδης. Εφαρμοσμένη στατιστική, Β έκδοση, Εκδόσεις Ζήτη, Γ. Κ. Χρήστου. Εισαγωγή στην Οικονομετρία, Β τόμος (Γ έκδοση), Εκδόσεις Gutenberg, Δ. Κουγιουμτζής. Σημειώσεις μαθήματος Χρονοσειρών. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, ΑΠΘ. 4. Γ.Ε. Κοκολάκης. Σημειώσεις ανάλυσης Χρονοσειρών. Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών, Αθήνα. 36
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Διαβάστε περισσότεραΧρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Διαβάστε περισσότεραΧρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΧρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Διαβάστε περισσότεραΣτασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Διαβάστε περισσότεραΧρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
Διαβάστε περισσότεραΧρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib
Διαβάστε περισσότεραΧρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Διαβάστε περισσότεραΧρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότερα1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);
Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Διαβάστε περισσότεραΧρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.
Διαβάστε περισσότεραΜάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές
Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής
Διαβάστε περισσότεραΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ
Διαβάστε περισσότεραΧρονικές σειρές 11 Ο μάθημα: Προβλέψεις
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΧρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS
ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS 5. Η γενική μορφή στάσιμης γραμμικής στοχαστικής διαδικασίας διακριτού χρόνου 5. Υποδείγματα ARIMA
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Διαβάστε περισσότεραΧρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Ανάλυση και εφαρμογές της μεθοδολογίας BOX JENKINS Πτυχιακή Εργασία των Φωστηρόπουλος
Διαβάστε περισσότεραΑν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Διαβάστε περισσότεραΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
Διαβάστε περισσότεραΣυνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
Διαβάστε περισσότεραΤεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο
Διαβάστε περισσότεραΟικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα
Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Διαβάστε περισσότεραΕπαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Διαβάστε περισσότεραΣυνολοκλήρωση και VAR υποδείγματα
ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Διαβάστε περισσότεραΠαράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες
Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων
Διαβάστε περισσότεραΤίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος
Διαβάστε περισσότεραΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότεραΧρονικές σειρές 1 o μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 1 o μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Διαβάστε περισσότεραΜάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας
close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας
Διαβάστε περισσότεραΟικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ Στα πλαίσια του προπτυχιακού μαθήματος Χρονικές σειρές Τμήμα μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα 1 Μονοδιάστατες τυχαίες μεταβλητές Τυχαία μεταβλητή είναι
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές. διαδρομής (2)
Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΠροσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές. διαδρομής (3)
Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΜάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση
«Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΧρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?
AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΤεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με
Διαβάστε περισσότερα9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Διαβάστε περισσότεραΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 18: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑI ΑΡΙΘΜΟΔΕΙΚΤΕΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί
Διαβάστε περισσότεραΠολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότεραΑπλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Διαβάστε περισσότεραΠαραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)
ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual
Διαβάστε περισσότεραΟγενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
Διαβάστε περισσότεραΕπίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Διαβάστε περισσότεραΣτοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ & ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΑΣ ΤΜΗΜΑ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ &ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ TECHNOLOGICAL EDUCATION INST ITUTE OF PATRAS DEPARTMENT: BUSINESS PLANNING & INFORMATION SYSTEMS ΣΗΜΕΙΩΣΕΙΣ
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΧΡΟΝΟΣΕΙΡΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ: «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση: ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΧΡΟΝΟΣΕΙΡΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Στοχαστικά προβλήματα διαδρομής Μεθοδολογία (1) Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 4 η ενότητα: Προβλήματα αντικατάστασης εργαλείων Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΧρονικές σειρές 3 o μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 3 o μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότερα2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Διαβάστε περισσότερα3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Αυτοσυσχέτιση Αν τα σφάλµατα δεν συσχετίζονται µεταξύ τους, Corr(u t, u s ) = 0 για κάθε t s, t, s
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ ΘΕΩΡΙΑΣ-ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΧΡΟΝΟΣΕΙΡΩΝ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΟικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότερα