Parameter Estimation Fitting Probability Distributions Bayesian Approach

Σχετικά έγγραφα
Homework for 1/27 Due 2/5

Other Test Constructions: Likelihood Ratio & Bayes Tests

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Solutions: Homework 3

p n r

Outline. Detection Theory. Background. Background (Cont.)

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Solution Series 9. i=1 x i and i=1 x i.

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

ST5224: Advanced Statistical Theory II

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Statistical Inference I Locally most powerful tests

6. MAXIMUM LIKELIHOOD ESTIMATION

The Heisenberg Uncertainty Principle

The Equivalence Theorem in Optimal Design

LAD Estimation for Time Series Models With Finite and Infinite Variance

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Bessel function for complex variable

Homework 3 Solutions

An Inventory of Continuous Distributions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)


SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

α β

HMY 795: Αναγνώριση Προτύπων

Αναγνώριση Προτύπων. Non Parametric

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Approximation of distance between locations on earth given by latitude and longitude

Inverse trigonometric functions & General Solution of Trigonometric Equations

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

Diane Hu LDA for Audio Music April 12, 2010

Μηχανική Μάθηση Hypothesis Testing

Theorem 8 Let φ be the most powerful size α test of H

( ) 2 and compare to M.

Three Classical Tests; Wald, LM(Score), and LR tests

The Simply Typed Lambda Calculus

Ψηφιακή Επεξεργασία Εικόνας

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Bayes Rule and its Applications

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 12: Pseudo likelihood approach

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

Homework 8 Model Solution Section

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

IIT JEE (2013) (Trigonomtery 1) Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Lecture 2. Soundness and completeness of propositional logic

Matrices and Determinants

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

2 Composition. Invertible Mappings

5.4 The Poisson Distribution.

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Math 6 SL Probability Distributions Practice Test Mark Scheme

5. Choice under Uncertainty

Homework 4.1 Solutions Math 5110/6830

Risk! " #$%&'() *!'+,'''## -. / # $

Space-Time Symmetries

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Example of the Baum-Welch Algorithm

Lecture 3: Asymptotic Normality of M-estimators

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Example Sheet 3 Solutions

Bayesian modeling of inseparable space-time variation in disease risk

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

C.S. 430 Assignment 6, Sample Solutions

Numerical Analysis FMN011

SPECIAL FUNCTIONS and POLYNOMIALS

len(observed ) 1 (observed[i] predicted[i]) 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tutorial on Multinomial Logistic Regression

The ε-pseudospectrum of a Matrix

Problem Set 3: Solutions

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Introduction to Bayesian Statistics

Εφαρμοσμένη Στατιστική

Forced Pendulum Numerical approach

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

FORMULAS FOR STATISTICS 1

Exam Statistics 6 th September 2017 Solution

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

lecture 10: the em algorithm (contd)

Transcript:

Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Outlie Bayesia Approach to Parameter Estimatio 1 Bayesia Approach to Parameter Estimatio 2 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Framework: Extesio of Maximum Likelihood Geeral Model Data Model : X = (X 1, X 2,..., X ) vector-valued radom variable with joit desity give by f (x 1,..., x θ) Data Realizatio: X = x = (x 1,..., x ) Likelihood of θ (give x): lik(θ) = f (x 1,..., x θ) (MLE θˆ maximizes lik(θ) for fixed realizatio) Prior distributio: true θ Θ modeled as radom variable θ Π, with desity π(θ), θ Θ Posterior Distributio: Distributio of θ give X = x Joit desity of (X, θ): f X,θ (x, θ) = f (x θ)π(θ) Desity of margial X distributio of X : f X (x) = f X,θ (x, θ)dθ = f (x θ)π(θ)dθ Θ Θ Desity of posterior distributio of θ give X = x f X,θ (x, θ) π(θ x) = f X (x) 3 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Framework Posterior Distributio: Coditioal distributio of θ give X = x f X,θ (x, θ) f (x θ)π(θ) π(θ x) = = X f X (x) f (x θ)π(θ)dθ Posterior desity Bayesia Priciples Θ = f (x θ)π(θ) = Likelihood(θ) Prior desity Prior distributio models ucertaity about θ, a priori (before observig ay data) Justified by axioms of statistical decisio theory (utility theory ad the optimality of maximizig expected utility). All iformatio about θ is cotaied i π(θ x) Posterior mea miimizes expected squared error E [(θ a) 2 x] miimized by a = E [θ x]. Posterior media miimizes expected absolute error E [ θ a x] miimized by a = media(θ x). 4 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Framework Bayesia Priciples (cotiued): Posterior Mode: Modal value of π(θ x) is most probable. Aalogue to 90% cofidece iterval: θ values betwee 0.05 ad 0.95 quatiles of π(θ x). Highest posterior desity (HPD) iterval (regio): For α : 0 < α < 1, the (1 α)hpd regio for θ is R d = {θ : π(θ x) > d } where d is the value such that π(r d x) = 1 α. Note: if posterior desity is uimodal but ot symmetric, the the tail probabilities outside the regio will be uequal. 5 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Beroulli Trials: X 1, X 2,..., X i.i.d. Beroulli(θ) Sample Space: X = {1, 0} ( success or failure ) Probability mass fuctio θ, if x = 1 f (x θ) = (1 θ), if x = 0 Examples: Flippig a coi ad observig a Head versus a Tail. Radom sample from a populatio ad measurig a dichotomous attribute (e.g., preferece for a give political cadidate, testig positive for a give disease). Summary Statistic: S = X 1 + X 2 + + X S Biomial(, p ) P(S = k θ) = θ k (1 θ) k, k = 0, 1,...,. k 6 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: π(θ) = 1, 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = p f S θ (s ) θ)π(θ) = θ s (1 θ) ( s) 1 s Margial desity of S p ) X 1 f S (s) = 0 θ s (1 θ) ( s) dθ p ) s X 1 = 0 θ s (1 θ) ( s) dθ p s ) 1 = Beta(s + 1, ( s) + 1) s +1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) 7 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s (1 θ) ( s) = Beta(s + 1, ( s) + 1) Recall a radom variable U Beta(a, b), has desity a 1 (1 u) g(u a, b) = u b 1 Beta(a,b), 0 < u < 1 where Γ(a)Γ(b) Beta(a, b) =, with Γ(a+b) X α 1 0 Γ(a) = y e x dx, (see Gamma(a) desity) Γ(a + 1) = a Γ(a) = (a!) for itegral a Also (Appedix A3 of Rice, 2007) E [U a, b] = a/(a + b) Var[U a, b] = ab/[(a + b) 2 (a + b + 1)] 8 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Prior: θ Beta(a = 1, b = 1), priori a Sample data: = 20 ad S = i=1 X i = 13 (Example 3.5.E) Posterior: [θ S = s] Beta(a, b) with a = s + 1 = 14 ad b = ( s) + 1 = 8 Use R to compute: Posterior mea: a/(a + b) Posterior stadard deviatio: ab/[(a + b) 2 (a + b + 1)] Posterior probability:π({θ.5} s) > a=14; b=8 > a/(a+b) [1] 0.6363636 > sqrt(a*b/(((a+b)**2)*(a+b +1))) [1] 0.100305 > pbeta(.5,shape1=14, shape2=8) [1] 0.09462357 9 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Case 2: Beta Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: θ a 1 (1 θ) π(θ) = b 1 Beta(a,b), 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = f p S θ (s ) θ)π(θ) θ a 1 (1 θ) = θ s (1 θ) ( s) b 1 s Beta(a,b) θ s+a 1 (1 θ) ( s)+b 1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) 10 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Beroulli Trials Case 2: Beta Prior (cotiued) Note: Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) This is a Beta(a, b ) distributio with a = s + a ad b = ( s) + b. A prior distributio Beta(a, b) correspods to a prior belief cosistet with hypothetical prior data cosistig of a successes ad b failures, ad uiform pre-hypothetical prior. 11 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Normal Sample X 1, X 2,..., X i.i.d. N(µ, σ 2 ). Sample Space: X = (, + ) (for each X i ) Probability desity fuctio: f (x µ, σ 2 ) = 2πσ 2 Cosider re-parametrizatio: Three Cases: 1 (x µ) 1 2 2 σ 2 ξ = 1/σ 2 (the precisio) ad θ = µ. 1 1 ξ(x θ) f (x θ, ξ) = ( ξ ) 2 e 2 2 2π Ukow θ (ξ = ξ 0, kow) Ukow ξ (θ = θ 0, kow) Both θ ad ξ ukow e 12 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Likelihood of sample x = (x 1,..., x ) lik(θ) = f ( (x 1,..., x θ, ξ 0 ) = f (x i θ, ξ 0 ) ( i=1 1 = ( ξ 0 ) 2 e 2 1 ξ 0 (x i θ) 2 i=1 2π 1 2π = ( ξ 0 ) 2 e 2 ξ 0 i=1 (x i θ) 2 Prior distributio: θ N(θ 0, ξ 1 ) prior ξ prior 1 1 ξprior (θ θ 0 ) 2 π(θ) = ( 2π ) 2 e 2 Posterior distributio π(θ x) lik(θ) π(θ) 1 1 = ( ξ 0 ) 1 2 e 2 ξ 0 i=1 (x i θ) 2 ( ξ prior ) 2 e 2 ξ prior (θ θ 0 ) 2 2π 2π 1 [ξ 0 i=1 (x i θ) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 (all costat factor terms dropped) 13 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Claim: posterior distributio is Normal(!) Proof: π(θ x) lik(θ) π(θ) 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 Q(θ) e 2 where Q(θ) = ξ post (θ θ post ) 2 with ξ post = ξ prior + ξ 0 (ξ prior )θ 0 +(ξ 0 )x θ post = (ξ prior )+(ξ 0 ) = αθ 0 + (1 α)x, where α = ξ prior /ξ post By examiatio: θ x N(θ post, ξpost 1 ) Note: As ξ prior 0, θ post x = θˆmle ξ (σ 2 σ 2 post ξ 0 0 /) 14 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap post

Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0. Likelihood of sample x = (x 1,..., x ) lik(ξ) = f ( (x 1,..., x θ 0, ξ) = i=1 f (x i θ 0, ξ) ( 1 1 ξ(x i θ 0 ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ ξ (x i θ 0 ) = 2 2π ) 2 e 1 2 i=1 Prior distributio: ξ Gamma(α, λ) λ α ξ α 1 π(ξ) = e λξ, ξ > 0 ( Cojugate Prior) Γ(α) Posterior distributio π(ξ x) l lik(ξ) π(ξ) l = ( ξ ) 2 e 2 i=1 e 1 ξ (x i θ 0 ) 2 λ α ξ (α 1 λξ 2π Γ(α) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + ad λ = λ + (x i θ 0 ) 2. 2 2 i=1 15 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0 (cotiued) Posterior distributio π(ξ x) lik(ξ) π(ξ) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + 2 ad λ = λ + 2 i=1(x i θ 0 ) 2. Posterior mea: E [ξ x] = α λ Posterior mode: mode(π(ξ x)) = α 1 λ For small α ad λ, E [ξ x] = 1/σˆ2 (x i θ 0 ) 2 MLE i=1 2 σ 2 i=1 (x i θ 0 ) 2 MLE mode(π(ξ x)) = (1 2 )/ˆ 16 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Case3: Ukow mea θ ad ukow precisio ξ Likelihood of sample x = (x 1,..., x ) lik(θ, ξ) = f ( (x 1,..., x θ, ξ) = i=1 f (x i θ, ξ) ( 1 1 ξ(x i θ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ 1 ξ (x i θ) = 2 2π ) 2 e 2 i=1 Prior distributio: θ ad ξ idepedet, a priori with θ N(θ 0, ξ 1 prior ) ξ Gamma(α, λ) π(θ, ξ) = π(θ)π(ξ) l ] l ] ξ 1 λ α ξ α 1 prior 1 ξ prior (θ θ 0 ) = ( ) 2 e 2 2 e λξ 2π Γ(α) Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) l 1 ] ] ξ i=1 (x i θ) 2 1 ξ prior (θ θ 0 ) (ξ) 2 e 2 e 2 2 e λξ ξ α 1 17 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Sample Case 3 Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) ] l (ξ) 2 e 2 i=1 e 2 1 ξ (x i θ) 2 1 ξ prior (θ θ 0 ) 2 ξ α 1 λξ e Margial Posterior distributio X of θ : π(θ x) = l {ξ} π(θ, ξ x)dξ ] X e 1 2 ξ [ prior (θ θ λ 0 ) 2 (ξ) α 1 ] e ξ {ξ} dξ l ] 1 ξ Γ(α prior (θ θ 0 ) 2 ) = e 2 (λ ) a α where α = α + ad λ = λ + 1 2 2 i=1(x i θ) 2. Limitig case as ξ prior, α ad λ 0 a π(θ x) (λ ) α = [ (x i θ) 2 ] 2 i=1 = [( 1)s 2 + (θ x) 2 ] 2 1 (θ x) 2 ] 1 s 2 [1 + 2 Note: A posteriori (θ x)/s t 1 (for small ξ prior, α, λ) ] 18 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Poisso Distributio Poisso Sample X 1, X 2,..., X i.i.d. Poisso(λ) Sample Space: X = {0, 1, 2,...} (for each X i ) Probability mass fuctio: λ x λ f (x λ) = e x! Likelihood of sample x = (x 1,..., x ) lik(λ) = f (x 1,..., x λ) ( ( λ x i = f (x λ i=1 i λ) = i=1 x i! e λ 1 x i e λ Prior distributio: λ Gamma(α, ν) π(λ) = να λ α 1 e νλ Γ(α), λ > 0 Posterior distributio l ] l ] 1 x i ν α λ π(λ x) lik(λ) π(λ) = λ e λ α 1 e νλ λ α 1 ν λ Γ(α) e a Gamma(α, ν ) with α = α + 1 x i ad ν = ν +. 19 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Poisso Distributio Specifyig the prior distributio: λ Gamma(α, ν). Choose α ad ν to match prior mea ad prior variace E [λ α, ν] = α/ν (= µ 1 ) Var[λ α, ν] = α/ν 2 (= σ 2 = µ 2 2 µ 1 ) Set ν = µ 1 /σ 2 ad α = µ 1 ν Cosider uiform distributio o iterval [0, λ MAX ] = {λ : 0 < λ < λ MAX } (Choose λ MAX to be very large) Example 8.4.A Couts of asbestos fibers o filters (Steel et al. 1980). 23 grid squares with mea cout: x = 1 a 2 23 i=1 3x i = 24.9. λˆ MOM = λˆ MLE E= 24.9 E StError(λˆ) = Var(ˆ V λ) = λ/ ˆ = 24.9/23 = 1.04 Compare with Bayesia Iferece (µ 1 = 15 ad σ 2 = 5 2 ) 20 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Hardy-Weiberg Model Example 8.5.1 A / 8.6 C Multiomial sample Data: couts of multiomial cells, (X 1, X 2, X 3 ) = (342, 500, 187), for = 1029 outcomes correspodig to geotypes AA, Aa ad aa which occur with probabilities: (1 θ) 2, 2θ(1 θ) ad θ 2. Prior for θ : Uiform distributio o (0, 1) = {θ : 0 < θ < 1}. Bayes predictive iterval for θ agrees with approximate cofidece iterval based o θˆ = 0.4247. See R Script implemetig the Bayesia computatios. 21 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Prior Distributios Importat Cocepts Cojugate Prior Distributio: a prior distributio from a distriibutio family for which the posterior distributio is from the same distributio family Beta distributios for Beroulli/Biomial Samples Gamma distributios for Poisso Samples Normal distributios for Normal Samples (ukow mea, kow variace) No-iformative Prior Distributios: Prior distributios that let the data domiate the structure of the posterior distributio. Uiform/Flat prior Complicated by choice of scale/uits for parameter No-iformative prior desity may ot itegrate to 1 I.e., prior distributio is improper Posterior distributio for improper priors correspods to limitig case of sequece of proper priors. 22 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

Bayesia Iferece: Normal Approximatio to Posterior Posterior Distributio With Large-Samples Coditioal desity/pmf of data: X f (x θ) Prior desity of parameter: θ π(θ) Posterior desity π(θ x) π(θ)f (x θ) = exp [log π(θ)] exp [log f (x θ)] = exp [log π(θ)] exp [ (θ)] For a large sample, (θ) ca be expressed as a Taylor Series about the MLE θˆ (θ) = (θˆ) + (θ θˆ) / (θˆ) + 1 (θ θ) ˆ 2 2 // (ˆ θ) (θ θˆ) 0 + 1 (θ θ) ˆ 2 2 // (ˆ θ) 1 = (θ θ) ˆ 2 2 // (ˆ θ) (i.e. Normal log-likelihood, mea θˆ ad variace [ (θˆ)] 1 ) For large sample, π(θ) is relatively flat i rage ear θ θˆ ad likelihood cocetrates i same rage. 23 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap

MIT OpeCourseWare http://ocw.mit.edu 18.443 Statistics for Applicatios Sprig 2015 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.