Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Σχετικά έγγραφα
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία της μετάφρασης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στους Αλγορίθμους

Μηχανολογικό Σχέδιο Ι

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Ιστορία της μετάφρασης

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Εκκλησιαστικό Δίκαιο

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Διοικητική Λογιστική

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Παράκτια Τεχνικά Έργα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Εισαγωγή στους Αλγορίθμους

Διπλωματική Ιστορία Ενότητα 2η:

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Φ 619 Προβλήματα Βιοηθικής

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Συμπεριφορά Καταναλωτή

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Γεωργική Εκπαίδευση Ενότητα 9

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Χώρος και Διαδικασίες Αγωγής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Συγκριτικό Εκκλησιαστικό Δίκαιο

Βέλτιστος Έλεγχος Συστημάτων

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Συνταγματικό Δίκαιο Ενότητα 11:Εκτελεστική Λειτουργία

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Φ 619 Προβλήματα Βιοηθικής

Ευαγγελικές αφηγήσεις της Ανάστασης

Συγκριτικό Εκκλησιαστικό Δίκαιο

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Βάσεις Περιβαλλοντικών Δεδομένων

Μάρκετινγκ Εξαγωγών. Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Στρατηγικό Μάρκετινγκ

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Χώρος και Διαδικασίες Αγωγής

Εκκλησιαστικό Δίκαιο

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Χώρος και Διαδικασίες Αγωγής

Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης

Διαγλωσσική μεταφορά και διαμεσολάβηση

Διαγλωσσική μεταφορά και διαμεσολάβηση

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Εφαρμογές Σειρών Tylor Λουκάς Βλάχος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Θεώρημα de l Hospitl: Απόδειξη Έχοντας ως αφετηρία το θεώρημα Rolle: ' 3

Θεώρημα de l Hospitl: Απόδειξη 4 Έχοντας ως αφετηρία το θεώρημα Rolle: ' ' Θεώρημα: Έστω, και ισχύουν: lim lim ' ' lim και υπάρχει ' ' lim lim

Θεώρημα de l Hospitl: Απόδειξη ' 5

Θεώρημα de l Hospitl: Απόδειξη 6 ' h ' h h h ' ' ' h

Θεώρημα de l Hospitl: Απόδειξη 7 Άρα: ' h ' h h h ' ' ' h ' ' lim lim ' '

Διαφορικό: Εφαρμογή Έστω η θερμοκρασία κατά μήκος μιας ράβδου: 3 3 T e sin Σε τί σφάλμα στη μέτρηση της θερμοκρασίας αντιστοιχεί ένα σφάλμα στη μέτρηση της θέσης κατά Δ; 8

Διαφορικό: Εφαρμογή Έστω η θερμοκρασία κατά μήκος μιας ράβδου: 3 3 T e sin Σε τί σφάλμα στη μέτρηση της θερμοκρασίας αντιστοιχεί ένα σφάλμα στη μέτρηση της θέσης κατά Δ; Το σφάλμα στη μέτρηση της θερμοκρασίας θα είναι: T T ' 9

Διαφορικό: Εφαρμογή Έστω η θερμοκρασία κατά μήκος μιας ράβδου: 3 3 T e sin Σε τί σφάλμα στη μέτρηση της θερμοκρασίας αντιστοιχεί ένα σφάλμα στη μέτρηση της θέσης κατά Δ; Το σφάλμα στη μέτρηση της θερμοκρασίας θα είναι: T T' Το παραπάνω προκύπτει από τη γραμμική προσέγγιση στο ανάπτυγμα Tylor: T T T'

Κριτήριο ης Παραγώγου Με Χρήση Του Πολυωνύμου Tylor Πρώτα, βρίσκουμε τα ακρότατα, από τις ρίζες της πρώτης παραγώγου, =. Αναπτύσσουμε τη συνάρτηση σε σειρά Tylor, στα ακρότατα: ' '' O 3

Κριτήριο ης Παραγώγου Με Χρήση Του Πολυωνύμου Tylor Πρώτα, βρίσκουμε τα ακρότατα, από τις ρίζες της πρώτης παραγώγου, =. Αναπτύσσουμε τη συνάρτηση σε σειρά Tylor, στα ακρότατα: ' '' O 3 '' '' '' ά έ

Σειρά Tylor: Εφαρμογή Η Νευτώνεια φυσική ορίζει την κινητική ενέργεια ως: E. mu Η Ειδική Θεωρία της Σχετικότητας ορίζει την κινητική ενέργεια ως: E m c u c m c 3

Σειρά Tylor: Εφαρμογή Αναπτύσσοντας σε σειρά Mclurin την παρακάτω συνάρτηση έχουμε: 4

Σειρά Tylor: Εφαρμογή Αναπτύσσοντας σε σειρά Mclurin την παρακάτω συνάρτηση έχουμε: Εφαρμόζοντας το αποτέλεσμα στη σχέση της ενέργειας από την ειδική θεωρία σχετικότητας έχουμε: E m c u c m c m c u c mc m u 5

Παράδειγμα Σειράς Mclurin e 3! 3... n! n n k k! k 6

Παράδειγμα Σειράς Mclurin e 3! 3... n! n n k k! k e.... 5. Με χρήση υπολογιστή παίρνουμε: 578 e. 7

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο και από εθνικούς πόρους. 8

Σημείωμα Αναφοράς Copyriht, Λουκάς Βλάχος.. Έκδοση:.. Θεσσαλονίκη 4. Διαθέσιμο από τη δικτυακή διεύθυνση: http://opencourses.uth.r/eclss_courses.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Cretive Commons Αναφορά - Παρόμοια Διανομή [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [] http://cretivecommons.or/licenses/y-s/4./

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Νικόλαος Τρυφωνίδης Θεσσαλονίκη, 5

ΣΗΜΕΙΏΜΑΤΑ

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων εφόσον υπάρχει μαζί με τους συνοδευόμενους υπερσυνδέσμους.