ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Σχετικά έγγραφα
Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 6: Μερικές παράγωγοι. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 15: Τοπικά ακρότατα υπό συνθήκες. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 3: Όρια και συνέχεια συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 10

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 12

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Λογισμός 4. Ενότητα 4: Ιδιότητες του Ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 17

Ιστορία της μετάφρασης

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο

Λογισμός 4 Ενότητα 16

Λογισμός 4 Ενότητα 15

Λογισμός 4 Ενότητα 19

Λογισμός 4 Ενότητα 18

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 14

Παράκτια Τεχνικά Έργα

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Συμπεριφορά Καταναλωτή

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μηχανολογικό Σχέδιο Ι

Θέματα Αρμονικής Ανάλυσης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Ιστορία της μετάφρασης

Θεωρία μέτρου και ολοκλήρωσης

Εισαγωγή στους Αλγορίθμους

Μοντέρνα Θεωρία Ελέγχου

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γεωργική Εκπαίδευση Ενότητα 9

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Φ 619 Προβλήματα Βιοηθικής

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Συμπεριφορά Καταναλωτή

Εισαγωγή στους Αλγορίθμους

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Λογισμός 4 Ενότητα 11

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεωρία μέτρου και ολοκλήρωσης

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διπλωματική Ιστορία Ενότητα 2η:

Λογισμός 4 Ενότητα 13

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Διοικητική Λογιστική

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Μοντέρνα Θεωρία Ελέγχου

Φ 619 Προβλήματα Βιοηθικής

Μοντέρνα Θεωρία Ελέγχου

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Κλασσική Θεωρία Ελέγχου

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Διδακτική της Πληροφορικής

Εκκλησιαστικό Δίκαιο

Μάρκετινγκ Εξαγωγών. Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Θέματα Αρμονικής Ανάλυσης

Στρατηγικό Μάρκετινγκ

Μοντέρνα Θεωρία Ελέγχου

Θεωρία μέτρου και ολοκλήρωσης

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Τύπος του Taylor. 4

Σκοποί ενότητας Απόδειξη του τύπου του Taylor 2 ης τάξης. 5

Ο τύπος του Taylor στη διάσταση 1 Ας ξεκινήσουμε από την διάσταση 1. Έστω :,, μία συνάρτηση 1φορές διαφορίσιμη και ένα σημείο του,. Ο τύπος του Taylor μας επιτρέπει να αναπτύξουμε την σε πολυώνυμο. Για κάθε, 1! 2!! 1! 6

Τύπος Taylor στη διάσταση 1 (1) όπου το είναι ανάμεσα στο και στο και εξαρτάται από το εκάστοτε. Ο τελευταίος όρος λέγεται υπόλοιπο και συμβολίζεται με,. 1! Το πολυώνυμο, 1! 2!! λέγεται πολυώνυμο Taylor τάξης της. 7

Τύπος Taylor στη διάσταση 1 (2) Ο τύπος του Taylor μας δίνει λοιπόν μια σαφή εικόνα της συνάρτησης συναρτήσει των παραγώγων της. Μάλιστα, αν πάρουμε το πολύ κοντά στο, τότε το υπόλοιπο, είναι πολύ πιο μικρό από τους υπόλοιπους όρους του αναπτύγματος αφού, 1! 1! 0. 8

Τύπος Taylor στη διάσταση 1 (3) Έτσι μπορούμε να το θεωρήσουμε το, αμελητέο και κατά συνέπεια έχουμε μια πολύ καλή προσέγγιση της από το πολυώνυμο Taylor: 1! 2!! Με τον τύπο του Taylor, μπορούμε να δούμε π.χ. ότι για κοντά στο 0, το #$ προσεγγίζεται από το πολυώνυμο 9

Τύπος Taylor στη διάσταση 1 (4) % 3! 5! ) 7!, ενώ το θεώρημα μέσης τιμής δίνει μόνο #$. Διαπιστώνουμε λοιπόν ότι ο τύπος του Taylor δίνει προσεγγίσεις ανώτερης τάξης και σαφώς καλύτερες από κάθε άλλη μέθοδο. Έτσι καθίσταται ένα εξαιρετικά χρήσιμο εργαλείο της Μαθηματικής ανάλυσης. ' 10

Τοπικά ακρότατα και Taylor Μία άλλη ενδιαφέρουσα εφαρμογή του Taylor είναι στην μελέτη των τοπικών ακροτάτων μιας συνάρτησης. Στην διάσταση 1 και πάλι, αν το είναι τοπικό ακρότατο, τότε 0 και το πολυώνυμο Taylor δίνει ότι 2!. Συνεπώς, το είναι τοπικό ελάχιστο, δηλαδή + αν το είναι κοντά στο, όταν +0. Ανάλογα, το είναι τοπικό μέγιστο όταν,0. 11

Ανάπτυγμα Taylorδεύτερης τάξης Θεώρημα: Έστω. τάξης 0%, τότε για. και 1 αρκούντως μικρό ώστε 1., ισχύει: 1 4 21 3 4 3 35 1 2 2 1 4 61 3 4 6 4 3 6,35,1, όπου το υπόλοιπο,1 ικανοποιεί 7 8,9 9 8 0,:;ώ= 1 0. 12

Παράδειγμα 1 (1) Αν π.χ.,>? @ ABC, τότε για να βρούμε το ανάπτυγμα Taylor γύρω από το (0,0) παρατηρούμε ότι και 0,0 1, 4 4 0,0 0,4 4> 0,0 1, 4 4 0,0 1,4 4> 0,0 1, 4 44> 0,0 0. 13

Παράδειγμα 1 (2) Άρα 1,1 1 1 1 Για 1 πολύ μικρό 1 2 2 1,1 ~1 1 1 2 1 0,1. 2. 14

Παράδειγμα 2 (1) Να υπολογιστεί το ανάπτυγμα Taylor της,> #$2 > στο (0,0). Λύση: γράφουμε το ανάπτυγμα Taylor στις δύο διαστάσεις 1,> 1,> E, 1,1 1 2 F,> 1, 1 1 1,>, 1,1 15

Παράδειγμα 2 (2) Αναπτύσσοντας τα εσωτερικά γινόμενα βρίσκουμε 1,> 1,> 4 4,> 1 4 4>,> 1 1 4 24,> 1 14 24>,> 1 4 44>,> 1 1,>, 1,1 Για την περίπτωση της,> #$2 > έχουμε 16

Παράδειγμα 2 (3) 0,0 0, G/ G G/ G@ 0,0 2ABC 2.0 0 2, 0,0 ABC 2.0 0 1, G8 / G8 0,0 0, G8 / G@ 8 0,0 0, G 8 / GG@ 0,0 0. 17

Παράδειγμα 2 (4) Άρα όπου 1,1 21 1 1,1, 1,1 1 1 9 H,9 8 0. 18

Βιβλιογραφία 1. V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, Inc., New Jersey, 1974. 2. J. Marsden, A. Tromba, Διανυσματικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2000. 3. J.-M. Monier, Analyse 4, Dunod, Paris, 2000. 4. M. Spivak, ΛογισμόςσεΠολλαπλότητες, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1994. 5. Τ. Χατζηαφράτης, Απειροστικός Λογισμός σε Πολλές Μεταβλητές, Αθήνα, 1996. 19

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο, Μιχάλης Μαριάς. «. Τύπος του Taylor». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs289/.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative CommonsΑναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχοξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Χειμερινό Εξάμηνο 2014-2015