Ντετερµινιστική προσοµοίωση

Σχετικά έγγραφα
Κατάστρωση µοντέλων συστηµάτων και διεξαγωγή υπολογιστικών πειραµάτων µε τα µοντέλα αυτά για:

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 10: Προσομοίωση

Υπολογιστική Επιστήμη & Τεχνολογία

Υπολογιστική Επιστήμη & Τεχνολογία


Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ

Φυσική για Μηχανικούς

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Διαγώνισμα Φυσικής Α! Λυκείου. Νόμοι του Νεύτωνα. Φροντιστήριο ΦΑΣΜΑ. Ζήτημα 1 ο. A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ;

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Physics by Chris Simopoulos

Περί Γνώσεως ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε.

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Φυσική για Μηχανικούς

1. Κίνηση Υλικού Σημείου

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

ΙΑΓΩΝΙΣΜΑ. Φυσική Α' Λυκείου. Ευθύγραµµη οµαλή κίνηση. ΘΕΜΑ 1 ο

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

Φυσική για Μηχανικούς

Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις


1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

ΣΥΝΟΨΗ 3 ου Μαθήματος

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

υναµική στο επίπεδο.

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2

Παρεμβολή πραγματικού χρόνου σε συστήματα CNC

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα

ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

Ενδεικτικές Λύσεις. Θέµα Α

Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! = mg " L & $ !

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

1 η Ενότητα Κλασική Μηχανική

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΔΥΝΑΜΙΚΗ. Ονοματεπώνυμο Τμήμα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηματική Εισαγωγή Συναρτήσεις

Φυσική για Μηχανικούς

1.1. Μηχανικές Ταλαντώσεις.

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

Οι νόμοι των δυνάμεων

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Έργο Ενέργεια. ΦΥΣ Διαλ.15 1

Έργο Δύναμης Έργο σταθερής δύναμης

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου2007

Ενότητα 3 (μέρος 1 ο )

F Στεφάνου Μ. 1 Φυσικός

ΦΥΕ14-5 η Εργασία Παράδοση

Μαθηματική Εισαγωγή Συναρτήσεις

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

γραπτή εξέταση στο μάθημα

dx cos x = ln 1 + sin x 1 sin x.

website:

Transcript:

Ντετερµινιστική προσοµοίωση Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #1 1

Προσοµοίωση Κατάστρωση µοντέλων συστηµάτων και διεξαγωγή υπολογιστικών πειραµάτων µε τα µοντέλα αυτά για: πρόβλεψη µελλοντικής συµπεριφοράς του συστήµατος (π.χ. µετεωρολογικά µοντέλα) διερεύνηση εναλλακτικών σεναρίων λειτουργίας του συστήµατος (π.χ. οικονοµικά µοντέλα). Η προσωµοίωση περιγράφει τη µεταβολή του συστήµατος µε το χρόνο. Η ποσοτική περιγραφή του συστήµατος σε κάποια χρονική στιγµή δίνει την κατάσταση του συστήµατος, και οι µεταβλητές που την περιγράφουν ονοµάζονται µεταβλητές κατάστασης. Προσοµοίωση Μ. ρακόπουλος 2 Προσοµοίωση (συνεχ.) Βασικό πρόβληµα προσοµοίωσης: πως οι µεταβλητές κατάστασεις µεταβάλλονται µε το χρόνο. Συνεχή µοντέλα: Ϲητείται η κατάσταση για κάθε t. ιακριτά µοντέλα: κατάσταση σε διακριτές χρονικές στιγµές (t + δt). Τα συνεχή µοντέλα προσεγγίζονται από διακριτά. Οι κανόνες µεταβολής της κατάστασης µπορεί να δίνουν: προκαθορισµένη (νοµοτελειακή) εξέλιξη του συστήµατος (η νέα κατάσταση καθορίζεται πλήρως από τις προηγούµενες). πιθανοτική (στοχαστική) εξέλιξη (από διαφορετικές δυνατές νέες καταστάσεις επιλέγεται µια, πιθανοτικά). Προσοµοίωση Μ. ρακόπουλος 3 οµή αλγορίθµων προσοµοίωσης 1. input παραµέτρους προσοµοίωσης και αρχικές καταστάσσεις 2. while δεν έχει επιτευχθεί το κριτήριο τερµατισµού (α) t t + δt (ϐ) Αλλαγή στις µεταβλητές κατάστασης νέα κατάσταση 3. Συµπεράσµατα για συµπεριφορά του συστήµατος Το ϐήµα 2(ϐ) είναι το σηµαντικότερο και συνήθως απαιτεί πολλούς και πολύπλοκους υπολογισµούς. Στο 3ο ϐήµα η συµπεριφορά του συστήµατος περιγράφεται συνοψίζοντας σηµαντικές λειτουργίες είτε µε κάποιο πίνακα είτε γραφικά. Προσοµοίωση Μ. ρακόπουλος 4 Παράδειγµα επένδυσης Μισθωτός µε ετήσιο εισόδηµα s και ετήσια αύξηση µισθού 1α% επενδύει κάθε χρόνο το 1β% του προηγούµενου µισθού του µε ετήσιο επιτόκιο 1ǫ%. Ποιά η κατάσταση της επένδυσης σε 5, 1, 15,..., 3 χρόνια? Ο µισθός µε το χρόνο: s(t + 1) = s(t) + αs(t) και η αποταµίευση p: p(t + 1) = p(t) + ǫp(t) + βs(t) Προσοµοίωση Μ. ρακόπουλος 5 2

Επένδυση (συνεχ.) s = input( Arxikos misjos? ); p = input( Arxikh epush? ); alpha = input( Ethsia auxhsh? ); beta = input( Pososto epushs? ); epsilon = input( Ethsio epitokio? ); for t = 1:3 p = p + epsilon*p + beta*s; s = s + alpha*s; if rem(t,5)==, disp(t); disp(s); disp(p); Προσοµοίωση Μ. ρακόπουλος 6 Παράδειγµα καταδίωξης Πεζοπόρος (Π) κινείται προς ϕράχτη (Φ) σε απόσταση 4m και καταδιώκεται από ταύρο (Τ) µε αρχική κατάσταση όπως στο σχήµα: y Τ(5,1) θ Π 1 2 3 Φ x Αν οι ταχύτητες των Π και Τ είναι αντίστοιχα v Π =8m/sec και v T =8.5m/sec, ποιά η κατάληξη της καταδίωξης? Προσοµοίωση Μ. ρακόπουλος 7 Καταδίωξη (συνεχ.) Η ϑέση του Τ εξαρτάται από τη ϑέση του Π. Για µικρά δt ϑεωρούµε ότι ο Τ κινείται σε ευθεία προς τον Π. Οι κινήσεις τους καθορίζονται από τις συντεταγµένες τους. Σε κάθε χρονική στιγµή η µεταξύ τους απόσταση είναι: η κίνηση του Π: s(t) = (x T (t) x Π (t)) 2 + y T (t) 2 x Π (t + δt) = x Π (t) + v Π δt και η κίνηση του Τ: x T (t + δt) = x T (t) + δt v T sin θ = x T (t) + δt v T x Π(t) x T (t) s(t) yt (t) y T (t + δt) = y T (t) + δt v T cos θ = y T (t) + δt v T s(t) Προσοµοίωση Μ. ρακόπουλος 8 3

Αλγόριθµος καταδίωξης % Arxikes jeseis taurou, odoiporou kai fraxth xb = input( x taurou? ); yb = input( y taurou? ); xh = input( x pezoporou? ); xf = input( x fraxth? ); dt = input( dt? ); vb = input( v taurou? ); vh = input( v pezoporou? ); t = ; s = sqrt((xb-xh)^2+yb^2); while xh<xf && s>1 t = t + dt; xb = xb + (xh-xb)*vb*dt/s; yb = yb - yb*vb*dt/s; xh = xh + vh*dt; s = sqrt((xb-xh)^2+yb^2); if xh >= xf, disp( O P swjhke ); disp(s); else fprintf( O T eftase ton P meta apo %f m, xh); Προσοµοίωση Μ. ρακόπουλος 9 Η πορεία του ταύρου Για ταχύτητες και αρχικές ϑέσεις όπως προηγουµένως: 1 Bull s course 9 8 7 6 y (bull) 5 4 3 2 1 5 1 15 2 25 3 35 4 x (bull) Προσοµοίωση Μ. ρακόπουλος 1 4

Η απόσταση ταύρου - πεζοπόρου Για ταχύτητες και αρχικές ϑέσεις όπως προηγουµένως: 12 Distance between bull and hiker 1 8 s 6 4 2 1 2 3 4 5 6 t (sec) Προσοµοίωση Μ. ρακόπουλος 11 Παράδειγµα δυναµικής Κίνηση αντικειµένων υπό την επίδραση εξωτερικών δράσεων. Επιλέγεται σύστηµα συντεταγµένων, χαράσεται το διάγραµµα ελευθέρου σώµατος που έχει µάζα m, ταχύτητα v, επιτάχυνση γ και πάνω του ασκείται συνολική δύναµη F. Για την περιγραφή του µοντέλου χρησιµοποιούνται για κάθε κατεύθυνση x, y οι σχέσεις: F x = mγ x, dv x = γ x dt, dx = v x dt, F y = mγ y dv y = γ y dt dy = v y dt. όπου v, γ οι µέσες τιµές για ταχύτητα και επιτάχυνση αντίστοιχα. Προσοµοίωση Μ. ρακόπουλος 12 5

υναµική (συνεχ.) Αναπήδηση µπάλλας σε επίπεδο δάπεδο, µε αρχική ταχύτητα v στη ϑέση (x, y ) και επιτάχυνση ϐαρύτητας g = 9.81m/sec 2. y v y v y 11111 11111 11111 1111 θ v x x Σε κάθε αναπήδηση η κατακόρυφη συνιστώσα της ταχύτητας ελαττώνεται κατά 1%. x Προσοµοίωση Μ. ρακόπουλος 13 υναµική (συνεχ.) Εξισώσεις κίνησης: Για την αναπήδηση: if y(t + δt), v y (t + δt).9 v y (t + δt) v x (t) = σταθ. v y (t + δt) = v y (t) g δt x(t + δt) = x(t) + v x (t) δt y(t + δt) = y(t) + v y(t) + v y (t + δt) 2 δt Προσοµοίωση Μ. ρακόπουλος 14 6

Αλγόριθµος αναπήδησης x = input( arxiko x? ); y = input( arxiko y? ); v = input( arxikh taxuthta (metro)}? ); theta = input( gwnia bolhs? ); dt = input( dt? ); nmax = input( megistos arijmos anaphdhsewn? ); g = -9.8; vx = v*cos(theta); vy_old = v*sin(theta); n = ; t = ; while n < nmax, t = t + dt vy_new = vy_old + g*dt; x = x + vx*dt; y = y + (vy_old + vy_new)*dt/2; vy_old = vy_new; if y <=, vy_old = abs(.9*vy_old); y = ; n = n + 1; Προσοµοίωση Μ. ρακόπουλος 15 Γραφική παράσταση αναπήδησης Για x = y =, v = 1m/sec, θ = π/4, nmax = 5 και δt =.1: 3 2.5 2 y 1.5 1.5 5 1 15 2 25 3 35 4 45 x Προσοµοίωση Μ. ρακόπουλος 16 7

υναµική πληθυσµών Αλληλεπίδραση πληθυσµών µεταξύ τους και µε το περιβάλλον. Ενα είδος - σταθερός ϱυθµός ανάπτυξης Ο πληθυσµός P σε χρόνο t µε ϱυθµό ανάπτυξης c: και για ισαπέχοντα χρονικά διαστήµατα: P(t + δt) = P(t) + c P(t) δt = (1 + c δt) (P(t)) P P(t) = P() (1 + c δt) n, t = n δt c> P() c= c< Προσοµοίωση Μ. ρακόπουλος 17 t Πληθυσµός µε περιορισµένα αποθέµατα τροφής Το περιβάλλον µπορεί να υποστηρίξει µέχρι P max άτοµα. Ο ϱυθµός ανάπτυξης προσεγγίζεται από: c = c P max P(t) P max που για P(t), P(t) P max δίνει αντίστοιχα c = c και c =. Ο πληθυσµός στο χρόνο: P(t + δt) = P(t) + c P(t) δt και µε κανονικοποίηση p(t) = P(t)/P max προκύπτει η ϑεµελιώδης εξίσωση της οικολογίας: p(t + δt) = p(t) + c (1 p(t)) p(t) δt Προσοµοίωση Μ. ρακόπουλος 18 8

Αλγόριθµος για ϑεµελιώδη εξ. οικολογίας function [p, t] = eco(c, dt, p, tlimit) nsteps = floor(tlimit/dt)+1; t = zeros(1,nsteps); p = zeros(1,nsteps); p(1) = p; for i=2:nsteps t(i) = t(i-1) + dt; p(i) = p(i-1) + c*(1-p(i-1))*p(i-1)*dt; Προσοµοίωση Μ. ρακόπουλος 19 Γραφική παράσταση Για c = 1, p =.5, δt =.25, t limit = 1: 1.9.8.7.6 p(t).5.4.3.2.1 1 2 3 4 5 6 7 8 9 1 t Προσοµοίωση Μ. ρακόπουλος 2 9

Αρπακτικά και λεία Ενας πληθυσµός (λεία) αποτελεί τροφή για έναν άλλο (αρπακτικά): Λαγοί R(t): αναπαράγονται 4 λαγοί το µήνα από κάθε Ϲεύγος (c = 2). R(t + δt) = R(t) + 2 δt R max R(t) R max R(t) (1) Αλεπούδες F(t): αυξάνουν κατά 4 το χρόνο ανά Ϲεύγος (για ένα µήνα c = 2/12 =.167) όταν R(t) = R max και F(t) <<<. Ελαττώνονται ανάλογα. Οταν αντιστοιχούν 15 λαγοί ανά αλεπού, τότε οι αλεπούδες δεν αυξάνονται πλέον (c = ): c R(t) 15 F(t) = R max και για τον πληθυσµό των αλεπούδων: F(t + δt) = F(t) +.167 δt R(t) 15 F(t) R max F(t) Προσοµοίωση Μ. ρακόπουλος 21 Αρπακτικά και λεία (συνεχ.) Αλλά οι λαγοί µειώνονται από τις αλεπούδες µε ϱυθµό ανάλογο του διαθέσιµου πληθυσµού τους, που αντιστοιχεί σε 15 λαγούς ανά αλεπού όταν R(t) = R max. Οπότε η (1) γίνεται: R(t + δt) = R(t) + 2 δt R max R(t) R max R(t) 15 δt R(t) R max F(t) Με κανονικοποίηση ως πρός R max, δηλ. r(t) = R(t)/R max και f(t) = F(t)/R max οι λαγοί: r(t + δt) = r(t) + 2 δt r(t) (1 (r(t)) 15 δt r(t) f(t) και οι αλεπούδες: f((t + δt) = f(t) +.167 δt f(t) (r(t) 15 f(t)) Προσοµοίωση Μ. ρακόπουλος 22 Αλγόριθµος αρπακτικών-λείας function [r, f, t] = foxrabbit(tmax,nsteps,r,f) % tmax - diarkeia parathrhshs (se mhnes) % nsteps - bhmata xronou ana m hna % r, f - arxikoi plhjusmoi t = zeros(1, tmax*nsteps+1); f = zeros(1, tmax*nsteps+1); r = zeros(1, tmax*nsteps+1); f(1) = f; r(1) = r; dt = 1/nsteps; i = 1; for m = 1:tmax for n = 1:nsteps i = i + 1; t(i) = t(i-1) + dt; f(i) = f(i-1) +....167*dt*f(i-1)*(r(i-1)-15*f(i-1)); r(i) = r(i-1) +... 2*dt*r(i-1)*(1-r(i-1))-15*dt*r(i-1)*f(i-1); if r(i)<, r(i)=; Προσοµοίωση Μ. ρακόπουλος 23 1

Γραφικές παραστάσεις Γιαtmax = 6 µήνες καιnsteps = 1: 1.7.9.6 rabbits.8.7 rabbits.5 population.6.5.4 population.4.3.3.2.2.1 foxes.1 foxes 1 2 3 4 5 6 7 t (months) 1 2 3 4 5 6 7 t (months) Το συγκεκριµένο οικοσύστηµα ισορροπεί ανέξάρτητα από τους αρχικούς πληθυσµούς. Προσοµοίωση Μ. ρακόπουλος 24 11