2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

Σχετικά έγγραφα
3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

Estimation Theory Exercises*

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.

ÅÑÙÔÇÓÅÉÓ. Åõèýãñáììç êßíçóç. ôçò ìåôáôüðéóþò ôïõ êáé íá âñåßôå ôçí ôéìþ ôçò. Ðüóï åßíáé ôï äéüóôçìá ðïõ äéüíõóå ôï êéíçôü óôç äéáäñïìþ áõôþ;

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

Íá èõìçèïýìå ôç èåùñßá...

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

Ìáèáßíïõìå ôéò áðïäåßîåéò

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

10. ÃÑÁÖÉÊÅÓ ÐÁÑÁÓÔÁÓÅÉÓ Ðùò êáôáóêåõüæïõìå ìéá ãñáöéêþ ðáñüóôáóç

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

ÅñùôÞóåéò ÓõìðëÞñùóçò êåíïý

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ

ËÕÓÇ ÐÁÑÁÄÅÉÃÌÁÔÙÍ ÁÐÅÉÑÏÓÔÉÊÏÕ ËÏÃÉÓÌÏÕ ÌÅ ÔÇ ÑÇÓÇ ÔÏÕ MAPLE

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ

Ç íýá Ýííïéá ôïõ ýðíïõ!

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -

ÐÁÍÅÐÉÓÔÇÌÉÏ ÐÅËÏÐÏÍÍÇÓÏÕ ÁÊÁÄÇÌÁÚÊÏ ÅÔÏÓ ÔÑÉÐÏËÇ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß

6 s(s 1)(s 3) = A s + B. 3. Íá âñåèåß ï ìåô/ìüò Laplace ôùí ðáñáêüôù óõíáñôþóåùí

ΠΕΙΡΑΜΑ ΕΦΕΛΚΥΣΜΟΥ. 2. Βασικοί Ορισμοί. P / A o. Ονομαστική ή Μηχανική Τάση P / A. Πραγματική Τάση. Oνομαστική ή Μηχανική Επιμήκυνση L o

Åîéóþóåéò 1ïõ âáèìïý

ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

ÅÑÙÔÇÓÅÉÓ. ÄõíáìéêÞ óå ìßá äéüóôáóç. 1. Íá áíáöýñåôå ðáñáäåßãìáôá áðü ôá ïðïßá íá öáßíåôáé üôé ç äýíáìç åßíáé äéáíõóìáôéêü

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

ÁÓÊÇÓÅÉÓ ÓÔÏÕÓ ÌÉÃÁÄÉÊÏÕÓ ÁÑÉÈÌÏÕÓ.

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

Ç áñ Þ äéáôþñçóçò ôçò åíýñãåéáò

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ

Μηχανική του Συνεχούς Μέσου

ÐñïêáôáñêôéêÝò ÌáèçìáôéêÝò ííïéåò

Εφαρμοσμένα Μαθηματικά

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í.

Åõèýãñáììç êßíçóç. 1.1 Åõèýãñáììç êßíçóç

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí

ΙΣΤΙΟΠΛΟΪΚΟΣ ΑΓΩΝΑΣ : ΑΣΠΡΟΝΗΣΟΣ Ο ΗΓΙΕΣ ΠΛΟΥ

ΠΑΡΟΣ ΑΓΚΑΙΡΙΑΣ ΟΙΚΙΣΜΟΣ: ΠΑΡΑΔΟΣΙΑΚΟΣ ÏÉÊÉÓÌÏÓ. 2) Για τουριστικές εγκαταστάσεις και για εγκαταστάσεις οργανισμών κοινής ωφελείας:

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).

ΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ. Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012

ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Çëåêôñéêü Ðåäßï - Íüìïé & ÂáóéêÜ ÌåãÝèç

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ

Ïé Íüìïé êßíçóçò ôïõ Newton

Το νέο Maxi-Cosi Pebble. Η τελευταία λέξη στην ασφάλεια και την άνεση.

Y y= if x<=0 then 0 else if x<24 then 10xe^(-(x/10)) else 0 Y y= if x<=0 then 0 else if x<24 then (10-x)e^(-(x/10)) else 0

Εφαρμοσμένα Μαθηματικά

ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009

ÓÔÏÌÉÁ ÏÑÏÖÇÓ -ÓÅÉÑÁ OK

ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

Εφαρμοσμένα Μαθηματικά

(Á 154). Amitraz.

à ËÕÊÅÉÏÕ ÈÅÌÁÔÁ ÖÕÓÉÊÇÓ ÈÅÔÉÊÇÓ ÊÁÉ ÔÅ ÍÏËÏÃÉÊÇÓ ÊÁÔÅÕÈÕÍÓÇÓ. ÈÅÌÁ 1ï

Ç ÅÔÁÉÑÉÁ ÔÁ ÐÑÏÚÏÍÔÁ. Ç åôáéñßá ðáñüãåé, åìðïñåýåôáé êáé åîüãåé ôá ðáñáêüôù ðñïúüíôá:

Union of Pure and Applied Chemistry).

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ


Transcript:

2.1 i) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = 2 + t)i + 1 2t)j + 3tk ôýìíåé ôï åðßðåäï xz. ii) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = ti + 1 + 2t)j 3tk ôýìíåé ôï åðßðåäï 3x y z = 2. 2.2 Íá õðïëïãéóôïýí ôá üñéá i) lim t 2 ti 3j + t 2 k) ii) limcos 3ti + e t j + tk) t π iii) lim tan 1 ti + t t + t 2 + 3 j + cos 2 ) t k 3 iv) lim t 1 t 2 i + ln t ) t 2 j + sin 2tk 1 2.3 i) Íá äåé èåß üôé ïé ãñáöéêýò ðáñáóôüóåéò ôùí r 1 t) = t 2 i + tj + 3t 3 k êáé r 2 t) = t 1)i + 1 4 t2 j + 5 t)k ôýìíïíôáé óôï óçìåßï P 1, 1, 3). Íá âñåèåß ç ãùíßá ðïõ ó çìáôßæïõí ïé åöáðôïìýíåò ôùí r 1 êáé r 2 óôï óçìåßï P. ii) Íá äåé èåß üôé ïé ãñáöéêýò ðáñáóôüóåéò ôùí r 1 t) = 2e t i+cos t)j+t 2 + 3)k êáé r 2 t) = 1 t)i + t 2 j + t 3 + 4)k ôýìíïíôáé óôï óçìåßï P 2, 1, 3). Íá âñåèåß ç ãùíßá ðïõ ó çìáôßæïõí ïé åöáðôïìýíåò ôùí r 1 êáé r 2 óôï óçìåßï P. 2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr du : i) r = ti + t 2 j, t = 4u + 1 ii) r = 3 cos ti + 3 sin tj, t = πu 2.5 óôù rt) = a cos t)i + a sin t)j, a > 0. Íá äåé èåß üôé rt) r t) = 0. Íá äïèåß ç ãåùìåôñéêþ åñìçíåßá áõôïý ôïõ áðïôåëýóìáôïò. 2.6 Íá áðïäåé èåß üôé ] d r = 1 r r r r r r 3 r. 2.7 Íá õðïëïãéóôïýí ôá ïëïêëçñþìáôá: i) t 2 i 2tj + 1t ) k e ii) t i + e t j + 3t 2 k ) 1

iii) iv) 1 0 3 3 e 2t i + e t j + tk ) ) 3 t) 3/2 i + 3 + t) 3/2 j + k 2.8 i) Äßíåôáé üôé r t) = i + e t j, r0) = 2i, r 0) = j. Íá âñåèåß ôï rt). ii) Äßíåôáé üôé r t) = e 2t i + cos t)j k, r0) = 3j + 2k. Íá âñåèåß ôï rt). t iii) Äßíåôáé üôé r t) = 2i + t 2 +1 j + tk, r1) = 0. Íá âñåèåß ôï rt). iv) Äßíåôáé üôé r t) = 4 sin 2t)i + 6tj + e t k, r0) = 2i, r 0) = k. Íá âñåèåß ôï rt). 2.9 Íá âñåèåß ôï ìþêïò ôüîïõ ôùí ðéï êüôù êáìðõëþí óôï äéüóôçìá ðïõ äßíåôáé: i) rt) = 3 cos ti + 3 sin tj + tk, 0 t 2π ii) rt) = cos 3 ti + sin 3 tj + 2k, 0 t π 2 iii) rt) = e t i + e t j + 2tk, 0 t 1 iv) rt) = 1 2 ti + 1 3 1 t) 3 2 j + 1 3 1 + t) 3 2 k, 1 t 1 2.10 Íá âñåèïýí ïé ðáñáìåôñéêýò åîéóþóåéò ôùí ðéï êüôù êáìðõëþí óõíáñôþóåé ôçò ðáñáìýôñïõ s ìþêïò ôüîïõ). Íá ñçóéìïðïéçèåß ùò óçìåßï áíáöïñüò ôï óçìåßï ôçò êáìðýëçò üðïõ t = 0. i) rt) = 1 + t) 2 i + 1 + t) 3 j, 0 t 1 ii) rt) = e t cos t)i + e t sin t)j, 0 t π 2 iii) rt) = sine t )i + cose t )j + 3e t k, t 0 iv) rt) = t cos t)i + t sin t)j + 2 3 3 2t 2 k, t 0 2.11 Íá äåé èåß üôé óå êõëéíäñéêåò óõíôåôáãìýíåò ìéá êáìðýëç ç ïðïßá ïñßæåôáé ðáñáìåôñéêü, r = rt), θ = θt), z = zt), a t b, Ý åé ìþêïò ôüîïõ b dr ) 2 ) dθ 2 ) dz 2 L = + r 2 +. a ñçóéìïðïéþíôáò ôïí ðéï ðüíù ôýðï íá âñåèåß ôï ìþêïò ôüîïõ ôùí ðéï êüôù êáìðõëþí óôï äéüóôçìá ðïõ äßíåôáé: i) r = e 2t, θ = t, z = e 2t, 0 t ln 2 ii) r = t 2, θ = ln t, z = 1 3 t3, 1 t 2 2.12 Íá âñåèåß ôï ìïíáäéáßï åöáðôüìåíï äéüíõóìá T êáé ìïíáäéáßï êüèåôï äéüíõóìá N ãéá ôéò ðéï êüôù êáìðýëåò óôï óçìåßï ðïõ äßíåôáé: 2

i) rt) = 3 cos ti + 4 sin tj + tk, t = π 2 ii) x = e t cos t, y = e t sin t, z = e t, t = 0 iii) rt) = i + tj + t 2 k, t = 1 iv) x = cosh t, y = sinh t, z = t, t = ln 2 2.13 ïõìå ] äåé üôé ôï äéüíõóìá N Ý åé ôçí êáôåýèõíóç ôïõ äéáíýóìáôïò T =. ñçóéìïðïéþíôáò ôçí Üóêçóç 2.6, íá äåé èåß üôé äéüíõóìá N Ý åé d r r åðßóçò ôçí êáôåýèõíóç ôïõ äéáíýóìáôïò u = r 2 r r r )r êáé åðïìýíùò ôï ìïíáäéáßï äéüíõóìá N ìðïñåß íá õðïëïãéóôåß áðü ôïí ôýðï N = u u. ñçóéìïðïéþíôáò ôïí ðéï ðüíù ôýðï íá âñåèåß ìïíáäéáßï êüèåôï äéüíõóìá N ãéá ôéò ðéï êüôù êáìðýëåò óôï óçìåßï ðïõ äßíåôáé: i) x = e t, y = e t, z = t, t = 0 ii) rt) = ti + 1 2 t2 j + 1 3 t3 k, t = 0 iii) x = sin t, y = cos t, z = 1 2 t2, t = 0 2.14 i) Íá äåé èåß üôé ãéá ôçí êáìðýëç y = fx), ç êáìðõëüôçôá κx) äßíåôáé áðü ôïí ôýðï d2 y dx κx) = 2 ) ] 3. 2 2 1 + dy dx ii) Íá äåé èåß üôé ãéá ôçí êáìðýëç r = xt)i + yt)j, ç êáìðõëüôçôá äßíåôáé áðü ôïí ôýðï κ = x y x y x 2 + y 2 ) 3 2 iii) Íá äåé èåß üôé ìéá êáìðýëç óå ðïëéêýò óõíôåôáãìýíåò ç ïðïßá ðåñéãñüöåôáé áðü ôçí åîßóùóç r = fθ) Ý åé êáìðõëüôçôá ßóç ìå κ = r 2 + 2 dr dθ r 2 + dr dθ ) 2 ] r d 2 r dθ 2 ) 2 ] 3 2 2.15 ñçóéìïðïéþíôáò ôïí êáôüëëçëï ôýðï, íá âñåèåß ç êáìðõëüôçôá ôùí ðéï 3

i) y = 1 3 x3, x = 0 ii) y = e x, x = 1 iii) y 2 4x 2 = 9, 2, 5) 2.16 ñçóéìïðïéþíôáò ôïí êáôüëëçëï ôýðï, íá âñåèåß ç êáìðõëüôçôá ôùí ðéï i) rt) = 4 cos t)i + sin t)j, t = π 2 ii) x = 1 t 3, y = 1 t 2, t = 1 iii) x = 2abt, y = b 2 t 2, t = 1, a > 0, b > 0) 2.17 ñçóéìïðïéþíôáò ôïí êáôüëëçëï ôýðï, íá âñåèåß ç êáìðõëüôçôá ôùí ðéï i) r = θ, θ = 1 ii) r = a1 + cos θ), θ = π 2 iii) r = e 2θ, θ = 1 2.18 i) Íá âñåèåß ç åëü éóôç êáé ìýãéóôç ôéìþ ôçò áêôßíáò êáìðõëüôçôáò ôçò êáìðýëçò x = cos t, y = sin t, z = cos t. ii) Íá âñåèåß ç ìýãéóôç ôéìþ ôçò áêôßíáò êáìðõëüôçôáò ôçò êáìðýëçò x = e t, y = e t, z = 2t. 2.19 óôù rt) = ln t)i + 2tj + t 2 k. Íá âñåèïýí: i) r t) ii) ds iii) 3 1 r t) 2.20 óôù ç êáìðýëç C ç ïðïßá ïñßæåôáé ðáñáìåôñéêü óõíáñôþóåé ôçò ðáñáìýôñïõ ìþêïõò ôüîïõ, x = 3 5 s + 1, y = 4 s 2, 0 s 10 5 i) Íá âñåèåß ôï Ts). ii) Íá ãßíåé ç ãñáöéêþ ðáñüóôáóç ôçò êáìðýëçò êáé ôïõ äéáíýóìáôïò T5). 2.21 i) Ç êßíçóç åíüò óùìáôéäßïõ ðåñéãñüöåôáé áðü ôç äéáíõóìáôéêþ óõíüñôçóç r = t t 2 )i t 2 j. Íá âñåèåß ç åëü éóôç ôá ýôçôá ôïõ óùìáôéäßïõ êáé ç èýóç ôïõ üôáí Ý åé áõôþ ôç ôá ýôçôá. ii) Íá âñåèåß ç ìýãéóôç êáé ç åëü éóôç ôá ýôçôá ôïõ óùìáôéäßïõ ôïõ ïðïßïõ ç êßíçóç ðåñéãñüöåôáé áðü ôç äéáíõóìáôéêþ óõíüñôçóç r = sin 3ti 2 cos 3tj. 4

iii) Íá âñåèåß ç ìýãéóôç êáé ç åëü éóôç ôá ýôçôá ôïõ óùìáôéäßïõ ôïõ ïðïßïõ ç êßíçóç ðåñéãñüöåôáé áðü ôç äéáíõóìáôéêþ óõíüñôçóç r = 3 cos 2ti + sin 2tj + 4tk. 2.22 Íá âñåèåß ôï óçìåßï ðüíù óôç ôñï éü r = t 2 5t)i + 2t + 1)j + 3t 2 k óôï ïðïßï ç ôá ýôçôá ôýìíåé êüèåôá ôçí åðéôü õíóç. 2.23 i) íá óùìáôßäéï êéíåßôáé êáôü ìþêïò ôçò ðáñáâïëþò y = x 2 ìå óôáèåñþ ôá ýôçôá 3 ìïíüäåò/sec. Íá âñåèåß ç êüèåôç óõíéóôþóá ôçò åðéôü õíóçò ùò óõíüñôçóç ôïõ x. ii) íá óùìáôßäéï êéíåßôáé êáôü ìþêïò ôçò êáìðýëçò y = e x ìå óôáèåñþ ôá ýôçôá 2 ìïíüäåò/sec. Íá âñåèåß ç êüèåôç óõíéóôþóá ôçò åðéôü õíóçò ùò óõíüñôçóç ôïõ x. 2.24 íá óùìáôßäéï åêôïîåýåôáé áðü ôï Ýäáöïò ìå ôá ýôçôá 980 m/sec ðïõ ó çìáôßæåé ãùíßá 45 o ìå ôçí ïñéæüíôéá. Íá âñåèïýí: i) ïé ðáñáìåôñéêýò åîéóþóåéò ôçò ôñï éüò ôïõ óùìáôéäßïõ, ii) ôï ìýãéóôï ýøïò ðïõ èá öèüóåé ôï óùìáôßäéï, iii) ç ïñéæüíôéá áðüóôáóç ðïõ èá êáëýøåé ôï óùìáôßäéï, iv) ç ôá ýôçôá ôïõ óùìáôéäßïõ üôáí èá åðéóôñýøåé óôï Ýäáöïò. 2.25 íá óùìáôßäéï åêôïîåýåôáé áðü êôßñéï ðïõ Ý åé ýøïò 168m ìå ôá ýôçôá 80 m/sec ðïõ ó çìáôßæåé ãùíßá 60 o ìå ôçí ïñéæüíôéá. Íá âñåèåß ç áðüóôáóç ôïõ óçìåßïõ óôï Ýäáöïò üðïõ èá êôõðþóåé ôï óùìáôßäéï, áðü ôï êôßñéï. 2.26 íá óùìáôßäéï ðýöôåé áðü ôñáðýæé ýøïõò 4 ft åíþ âñéóêüôáí óå êßíçóç ìå óôáèåñþ ôá ýôçôá 5 ft/sec. i) Íá âñåèåß ï ñüíïò ðïõ ñåéüóôçêå ôï óùìáôßäéï áðü ôç óôéãìþ ðïõ Ýðåóå áðü ôï ôñáðýæé ìý ñé íá öèüóåé óôï Ýäáöïò. ii) Íá âñåèåß ç ôá ýôçôá ôïõ óùìáôéäßïõ üôáí èá êôõðþóåé óôï Ýäáöïò. iii) Áí ôç ßäéá ñïíéêþ óôéãìþ üðïõ ôï óùìáôßäéï Ýðåöôå áðü ôï ôñáðýæé, Ýíá äåýôåñï óùìáôßäéï áöþíåôáé íá ðýóåé äçëáäþ, ç áñ éêþ ôá ýôçôá åßíáé ìçäýí) áðü ôï ýøïò ôïõ ôñáðåæéïý. Íá âñåèåß ðïéï óùìáôßäéï èá êôõðþóåé ðñþôï ôï Ýäáöïò. 5