LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26

Σχετικά έγγραφα
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

MATHACHij = γ00 + u0j + rij

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

Stata Session 3. Tarjei Havnes. University of Oslo. Statistics Norway. ECON 4136, UiO, 2012

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

SECTION II: PROBABILITY MODELS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm

Estimation of gasoline demand function

ΔPersediaan = Persediaan t+1 - Persediaan t

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.

Προβλέψεις ισοτιμιών στο EViews

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

Lampiran 1 Output SPSS MODEL I

Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST. Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST Ulangan Jumlah Purata

Akaike Information Criteria. Best Linear Unbiased Estimator. Census and Economic Information Centre. Durbin Watson statistics


Queensland University of Technology Transport Data Analysis and Modeling Methodologies

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

Multilevel models for analyzing people s daily moving behaviour

Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Εισαγωγή στην Ανάλυση Διακύμανσης

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

Biostatistics for Health Sciences Review Sheet

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα



/

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

OLS. University of New South Wales, Australia

KONSEP ASAS & PENGUJIAN HIPOTESIS

Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia

Απλή Ευθύγραµµη Συµµεταβολή

Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Summary of the model specified

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA)

ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

5.4 The Poisson Distribution.

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Ciri-ciri Taburan Normal

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio

KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος:

Lecture 8: Serial Correlation. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II

BAB V PENUTUP , maka diperoleh kesimpulan yang dapat diuraikan sebagai berikut:

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL

τατιςτική ςτην Εκπαίδευςη II

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )

Transformasi Koordinat 2 Dimensi

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Επαναληπτικό μάθημα GLM

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

Simon et al. Supplemental Data Page 1

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

Supplementary figures

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Λυμένες Ασκήσεις για το μάθημα:

Lampiran 1. Urutan basa dari 4 primer SSR. Nama Primer Sekuen (5 3 )

ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

5. Partial Autocorrelation Function of MA(1) Process:

Marginal effects in the probit model with a triple dummy variable interaction term

τατιστική στην Εκπαίδευση II

Περιγραφή των εργαλείων ρουτινών του στατιστικού

DAFTAR ISI HALAMAN JUDUL

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

Lecture 21: Properties and robustness of LSE

Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις

Transcript:

LAMPIRAN Lampiran 1 Uji Chow Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.4869 Obs per group: min = 14 between = 0.6365 avg = 14.0 overall = 0.5603 max = 14 F(2,336) = 159.41 corr(u_i, Xb) = 0.1372 Prob > F = 0.0000 lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l. 4902825.0296395 16.54 0.000.4319802.5485848 lnhumcap_l.1398917.0467401 2.99 0.003.0479516.2318318 _cons 8.143564.4733422 17.20 0.000 7.212477 9.074652 sigma_u.45854983 sigma_e.52956566 rho.42849935 (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = 10.20 Prob > F = 0.0643 a

Lampiran 2 LM Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.4868 Obs per group: min = 14 between = 0.6376 avg = 14.0 overall = 0.5607 max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = 360.08 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l.4959077.0283831 17.47 0.000.4402778.5515375 lnhumcap_l.1495893.0457942 3.27 0.001.0598344.2393442 _cons 8.066971.4622445 17.45 0.000 7.160988 8.972953 sigma_u.43858841 sigma_e.52956566 rho.40685271 (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: lnpdrb_l[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) ---------+----------------------------- lnpdrb_l 1.042718 1.021136 e.2804398.5295657 u.1923598.4385884 Test: Var(u) = 0 chi2(1) = 341.72 Prob > chi2 = 0.0204 b

Lampiran 3 Hausman Test Model Pertama Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.4869 Obs per group: min = 14 between = 0.6365 avg = 14.0 overall = 0.5603 max = 14 F(2,336) = 159.41 corr(u_i, Xb) = 0.1372 Prob > F = 0.0000 lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l.4902825.0296395 16.54 0.000.4319802.5485848 lnhumcap_l.1398917.0467401 2.99 0.003.0479516.2318318 _cons 8.143564.4733422 17.20 0.000 7.212477 9.074652 sigma_u.45854983 sigma_e.52956566 rho.42849935 (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = 10.20 Prob > F = 0.0643. est store fixed. xtreg lnpdrb_l lnmodal_l lnhumcap_l, re Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.4868 Obs per group: min = 14 between = 0.6376 avg = 14.0 overall = 0.5607 max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = 360.08 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l.4959077.0283831 17.47 0.000.4402778.5515375 lnhumcap_l.1495893.0457942 3.27 0.001.0598344.2393442 _cons 8.066971.4622445 17.45 0.000 7.160988 8.972953 sigma_u.43858841 sigma_e.52956566 rho.40685271 (fraction of variance due to u_i). est store random c

. hausman fixed random ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lnmodal_l.4902825.4959077 -.0056252.0085381 lnhumcap_l.1398917.1495893 -.0096976.0093559 b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 1.61 Prob>chi2 = 0.4465. d

Lampiran 4 Uji Chow Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = 0.2072 Obs per group: min = 17 between = 0.0914 avg = 21.9 overall = 0.0443 max = 26 F(5,288) = 15.06 corr(u_i, Xb) = -0.7889 Prob > F = 0.0000 lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap.2906831.0606094 4.80 0.000 0.1713897 0.4099766 lngdp_cap.0489198.1728127 0.28 0.778 -.2932667.3911063 lnopenness.0651930.0318124 3.50 0.001.0427514.1679798 gini -.000424.0002449-1.73 0.085 -.000906.0000581 educ_gdp.0314102.0619479 0.51 0.612 -.0900053.1528258 _cons 13.09068 1.271058 10.30 0.000 10.58894 15.59242 sigma_u.65160597 sigma_e.82091781 rho.38651955 (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = 0.0228 e

Lampiran 5 LM Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = 0.1471 Obs per group: min = 17 between = 0.2318 avg = 21.9 overall = 0.1504 max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = 53.27 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 lnhd Coef. Std. Err. z P> z [95% Conf. Interval] lninhumcap.2373688.0600378 3.95 0.000.1196968.3550408 lngdp_cap.0836455.0604376 1.38 0.166 -.03481.202101 lnopenness.0913011.0126731-0.29 0.852 -.0275599.0221178 gini -.0005145.0002514-2.05 0.041 -.0010073 -.0000217 educ_gdp -.0921099.0209517-4.40 0.000 -.1331745 -.0510453 _cons 9.264133.984846 9.41 0.000 7.33387 11.1944 sigma_u 0 sigma_e.82091781 rho 0 (fraction of variance due to u_i) Breusch and Pagan Lagrangian multiplier test for random effects: lnhd[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) ---------+----------------------------- lnhd.8313336.911775 e.2352621.4850383 u.4631147.6805253 Test: Var(u) = 0 chi2(1) = 411.67 Prob > chi2 = 0.0103 f

Lampiran 6 Hausman Test Model Ketiga Hipotesis: Ho: Random Effect Method Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = 0.2072 Obs per group: min = 17 between = 0.0914 avg = 21.9 overall = 0.0443 max = 26 F(5,288) = 15.06 corr(u_i, Xb) = -0.7889 Prob > F = 0.0000 lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap.2906831.0606094 4.80 0.000 0.1713897 0.4099766 lngdp_cap.0489198.1728127 0.28 0.778 -.2932667.3911063 lnopenness.0651930.0318124 3.50 0.001.0427514.1679798 gini -.000424.0002449-1.73 0.085 -.000906.0000581 educ_gdp.0314102.0619479 0.51 0.612 -.0900053.1528258 _cons 13.09068 1.271058 10.30 0.000 10.58894 15.59242 sigma_u.65160597 sigma_e.82091781 rho.38651955 (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = 0.0228 Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = 0.1471 Obs per group: min = 17 between = 0.2318 avg = 21.9 overall = 0.1504 max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = 53.27 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 lnhd Coef. Std. Err. z P> z [95% Conf. Interval] g

lninhumcap.2373688.0600378 3.95 0.000.1196968.3550408 lngdp_cap.0836455.0604376 1.38 0.166 -.03481.202101 lnopenness.0913011.0126731-0.29 0.852 -.0275599.0221178 gini -.0005145.0002514-2.05 0.041 -.0010073 -.0000217 educ_gdp -.0921099.0209517-4.40 0.000 -.1331745 -.0510453 _cons 9.264133.984846 9.41 0.000 7.33387 11.1944 sigma_u 0 sigma_e.82091781 rho 0 (fraction of variance due to u_i) ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lninhumcap.2906831.2373688.0533143.0083039. lngdp_cap.0489198.0836455 -.0347257.0877409 lnopenness.0651930.0913011-0.0261081.0291791 gini -.000424 -.0005145.0000906 1.134113 educ_gdp.0314102 -.0921099.1235201.0131802 b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 30.28 Prob>chi2 = 0.0000 h

Lampiran 7 Uji Chow Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.1338 Obs per group: min = 14 between = 0.0019 avg = 14.0 overall = 0.0329 max = 14 F(3,335) = 17.25 corr(u_i, Xb) = -0.0590 Prob > F = 0.0000 kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop1.5884557.0829456 7.09 0.000.4252959.7516155 co_pop1.0032096.0118997 0.27 0.788 -.0201979.0266171 em_pop -.0700806.0327364-2.14 0.033 -.1344754 -.0056857 _cons 64.91399 1.327741 48.89 0.000 62.30223 67.52575 sigma_u 7.5866097 sigma_e 4.4621936 rho.74297493 (fraction of variance due to u_i) F test that all u_i=0: F(25, 335) = 35.02 Prob > F = 0.0000 i

Lampiran 8 LM Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = 0.1322 Obs per group: min = 14 between = 0.0426 avg = 14.0 overall = 0.0668 max = 14 Random effects u_i ~ Gaussian Wald chi2(3) = 51.87 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 kota_pop Coef. Std. Err. z P> z [95% Conf. Interval] se_pop1.5942262.0825331 7.20 0.000.4324643.755988 co_pop1.0051867.0118942 0.44 0.663 -.0181255.0284989 em_pop -.0449388.0295676-1.52 0.129 -.1028903.0130126 _cons 63.92107 1.825267 35.02 0.000 60.34361 67.49852 sigma_u 6.9890826 sigma_e 4.4621936 rho.71041854 (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: kota_pop[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) ---------+----------------------------- kota_pop 76.18543 8.728426 e 19.91117 4.462194 u 48.84728 6.989083 Test: Var(u) = 0 chi2(1) = 1092.68 Prob > chi2 = 0.0000 j

Lampiran 9 Metode Robust untuk Menghilangkan Pelanggaran Asumsi Heteroskedastisitas dan Autokorelasi Regression with robust standard errors Number of obs = 364 F( 3, 360) = 10.21 Prob > F = 0.0000 R-squared = 0.1285 Root MSE = 8.182 Robust kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop1.4919454.1914339 2.57 0.011.1154761.8684146 co_pop1.0434335.0342941 1.27 0.206 -.0240085.1108754 em_pop.051704.0331243 1.56 0.119 -.0134375.1168455 _cons 60.77534 1.02892 59.07 0.000 58.75189 62.79878 k

Lampiran 10 Hasil Regresi Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi. (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed Effect GLS Regressions Number of obs 364 Group variable (i): thn Number of groups 26 R-Square Within: 0.4869 Between: 0.6365 Overall: 0.5603 per group: min 12 avg 13.9 max 14 Fixed effects u_i ~ Gaussian F(2,336) 159.41 corr(u_i, Xb) 0.1372 Prob > chi2 0.0643 (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpdrb Coef. Std. Err. t P> t [95% Conf. Interval] lnhumcap.1398917.0467401 2.99 0.003.0479516.2318318 lnmodal.4902825.0296395 16.54 0.000***.4319802.5485848 _cons 8.143564.4733422 17.20 0.000*** 7.212477 9.074652 Lampiran 11 Matrik Pengujian Asumsi BLUE Model Pertama Multikolinieritas lnmodal lnhumcap lnmodal 1.0000 lnhumcap 0.2831 1.0000 Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) 341.72 Prob > chi2 0.0204 Autokorelasi (Wooldridge Test) F(25, 336) 10.20 Prob > F 0.0643 l

Lampiran 12 Arah dan Signifikansi Analisa Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi Variabel Estimasi Arah Arah Pada Hasil Regresi Keterangan lnhumcap Positif Positif Signifikan (α = 1%), arah sama lnmodal Positif Positif Signifikan (α = 1%), lnlabor Positif Positif arah sama _cons Positif Positif Signifikan (α = 1%), arah sama m

Lampiran 13 Hasil Regresi Model Ketiga (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed-effects (within) Number of obs 307 regression Group variable (i): thn Number of groups 14 R-Square Within: per group: 17 0.2072 min Between: 0.0914 avg 21.9 Overall: max 26 0.0443 F(5,288) 15.06 corr(u_i, Xb) -0.7889 Prob > F 0.0228 (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpop Coef. Std. Err. t P> t [95% Conf. Interval].2906831.0606094 4.80 0.000 0.1713897 0.4099766 lninhumcap.0489198.1728127 0.28 0.778 -.2932667.3911063 lngdp_cap.0651930.0318124 3.50 0.001.0427514.1679798 lnopenness gini -.000424.0002449-1.73 0.085 -.000906.0000581 educ_gdp.0314102.0619479 0.51 0.612 -.0900053.1528258 cons 13.09068 1.271058 10.30 0.000 10.58894 15.59242 n

Lampiran 14 Matrik Pengujian Multikolinieritas Model Kedua lninhumcap lngdp_cap lnopenness gini educ_gdp 1.0000 lninhumcap lngdp_cap 0.0398 1.0000 lnopenness -0.0445 0.0686 1.0000 gini 0.0311 0.1566-0.1377 1.0000 educ_gdp -0.0278 0.1093-0.1366-0.0026 1.0000 Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) 411.67 Prob > chi2 0.0103 Autokorelasi (Wooldridge Test) F(13, 288) 2.52 Prob > F 0.0228 Lampiran 15 Arah dan Signifikansi Analisa Hubungan Perkembangan dengan Faktor-Faktor Determinasinya Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi lninhumcap Negatif Positif Signifikan ( pada α = 1%), arah tidak sama lngdp_cap Positif Positif Tidak signifikan, arah sama lnopenness Positif Positif Signifikan (pada α = 1%), arah sama gini Negatif Negatif Signifikan ( pada α = 10%), arah sama educ_gdp Positif Positif Tidak signifikan, arah sama _cons Positif Positif signifikan, arah sama o

Lampiran 16 Hasil Regresi Hubungan City Size dengan Human Capital dan Spillover Effect Tenaga Kerja Sektor Manufaktur (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Robust Method Number of obs 364 Group variable (i): thn Number of groups - R-Square Within: - per group: - min Between: - avg - Overall: 0.1285 max - F( 3, 360) 10.21 Root MSE 8.182 Prob > F 0.0000 (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop1.4919454.1914339 2.57 0.011.1154761.8684146 co_pop1.0434335.0342941 1.27 0.206 -.0240085.1108754 em_pop.051704.0331243 1.56 0.119 -.0134375.1168455 _cons 60.77534 1.02892 59.07 0.000 58.75189 62.79878 p

Lampiran 17 Matrik Pengujian Multikolinieritas Model Keempat (Fixed Effect dan Random Effect) se_pop1 1.0000 se_pop1 co_pop1 lnem_pop co_pop1 0.0492 1.0000 em_pop 0.5871 0.0282 1.0000 Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) 1092.68 Prob > chi2 0.0000 Autokorelasi (Wooldridge Test) F(25, 335) 35.02 Prob > F 0.0000 Lampiran 18 Arah dan Signifikansi Analisa Hubungan Human capital dan Spillover Effect terhadap City Size (Robust Method) Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi se_pop1 Positif Positif Signifikan ( pada α = 5%), arah sama co_pop1 Positif Positif Tidak signifikan, arah sama em_pop Positif Positif Tidak signifikan, arah sama _cons Positif Positif Signifikan ( pada α = 1%), arah sama q