1 θβ1.ββη.7 И И А ИА - И А И , 2015.

Σχετικά έγγραφα
θβ1.0γθμθ81.β0 (07η.8) - - -, , 2015

!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,

# # % % &! # /) ) 0 %0. ( ) + ), .! ) % 0& 20 # 0. 3 #


67 & Ε < 9 & ΕΕ Ν 4 6 & ΕΕΕ 9 & Ε1 Ε Φ

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )!


! # %& & ( )# ( % )# & (( +,. % % & / ) % 0112

! " #$ %& '! () * +,- *!. /0 1 23)

! # % & ( ) ++ ,. / 0 & % 4,. / 0 & 0 0 / 0 5/ 0 / # 6 3.

692.66:

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7

! # # %!! & % ( ) +,! &! + (. /+( 0 #

2 (4! ((2 (5 /! / Β ;! + %ΧΑ + ((5 % # &

,, 2015

# % & % ( ) + ),, .//0

# # %& ) & +,& & %. / / 6 & / 7 / 8 8 # 3/ 6 & / 7 /

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.

β β

# % % % % % # % % & %

!"#$ % &# &%#'()(! $ * +

ITU-R P (2012/02) &' (

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U

(! ( (! ) ) ) + ) +, #., /! 0 1 ) 1 2 ) 1 # 3 4 # / 4 %, #! / ( + + ( % & %! )

! % & % & ( ) +, & %!4 % / % 5

К К 31.4 :.. К,,. И ;.., -, - ( ): А.. /..,... :, ,. И К, - -,. К К 31.4 ISBN..,.. 2

Θ+!& ;/7!127# 7 % :!+9. + %#56 /+.!/;65+! 3# 76. +!+ % 2&/ :2!,Γ 0 :9#+ #2:.2 #+Ι 7#+.&/ #2:.2 / /&7 + < & /!! Ω 6. Α./& /& #. 6!

(... )..!, ".. (! ) # - $ % % $ & % 2007

) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι

,.., Є.. 2 я. я. ь ь ь

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Το άτομο του Υδρογόνου


Recommended purity level >4 m(c) / >6 m(c) / >14 m(c) 15/13/10. Type of system/area of application/ Components

,. # # & # /# # & # /# & & 0 # /# # & # 1 ) 2# ) 3% ) 4 5 % # & 3 C ) +:;7 <5;97 ;79<=;8 ) +:;7> = <;<5;97 ;79<=;8 ) 4 6

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

!! # % & % % () % +,# % ) ) %.) /01/.) ) 2 3 % 4 % 5# 6 3 3

Buried Markov Model Pairwise

! #!!! % %%& () +, +. + /! / 0 1 %+2 +

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

%5Φ=Β9(ΦΧ 9 9Φ,<ΦΙΓΗ ΓΗ=Α5Η=ΧΒ=Β


CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Design Method of Ball Mill by Discrete Element Method

Two-mass Equivalent Link

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

7 ο Γυμνάσιο Κερατσινίου

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê


ВцІцСцНцИцК. ц7 (154)

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

= # & < # #, 1 & & # 2 # 5 > # &? = 4Α # # ( 6 4 7? & # = # 6 4 > 6 4 Β 1 = Β (.

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

!# & () +,!!! #! #./! # #! 0112

Β Χ! Χ ( # %! Δ % ) %

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M

Klausur Strömungslehre

Inflation and Reheating in Spontaneously Generated Gravity

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Livro Eletrônico. Aula 00. Português p/ MAPA (nível superior) Professor: Fernando Pestana DEMO

Κλασσική Θεωρία Ελέγχου

Τεχνολογία Γ Γυμνασίου

m i N 1 F i = j i F ij + F x

Fourier Analysis of Waves

!! viii) Αν λ α = μα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Ax = b. 7x = 21. x = 21 7 = 3.

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

ITU-R P ITU-R P (ITU-R 204/3 ( )

Homework 8 Model Solution Section

..,..,..,..,..,.. $#'().. #*#'!# !" #$% &'( )*%!"( %+

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

ϕϥ ϣϛ ϥϡϼϧϥ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

! # ( ) +!,!!!,!!, ## % & ( ,, ( (!, ) #! + ) #, ( %%&

Example 1: THE ELECTRIC DIPOLE

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

! # % #! # & (! )!! & # # &! # +,!& #. # # & / 0!& # / 12 2 # 3 # 2 ,!& 4556

( () () ()) () () ()

! # %# %# & &! ( # # )

AXDR Double-Row Angular Contact Roller Bearings

Na/K (mole) A/CNK

Convex Games, Clan Games, and their Marginal Games

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

! # %&& () ( ) +,! # ) ) &...

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ITU-R P (2009/10)

d 2 y dt 2 xdy dt + d2 x

Επίπεδα Γραφήματα (planar graphs)

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

! # % & ( % # ) # + +, / / + % ) +

! #! # %&!(&!( ) ( ) + # #! # ) &, #!. ) / (

) 0 ) 2 & 2 & 0 + 6! ) & & & & & ), Γ , Γ 8 (?. Κ Ε 7 ) ) Μ & 7 Ν & & 0 7 & & Γ 7 & & 7 & Ν 2 & Γ Γ ( & & ) Η ++. Ε Ο 9 8 ) 8& & ) & Ε

MICROMASTER Vector MIDIMASTER Vector

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

. / )!! )! +! ) + 4

Transcript:

θβ.ββη.7 И И АИА- ИАИ 05.0.0, 05.

5 6. - (). 4.. 4. 0... 8.γ.. 3.4 35.η... 37.θ.. 4 β - () 44 β..... 44 β.β -... 49 β.γ... 55.4.. 63

3.5 β.θ.. β.7 β.... γ.... γ. γ.β. γ.γ.. γ.4. γ.η. γ 4... 4.... 4.β 4.3... 4.4 4.4. 4.4.β. 4.η 4. 74 79 85 86 85 94 07 5 7 9 9 3 33 38 38 45 48

4 η. η...... η.β....... η.γ....... η.4....... η.η η........ 49 49 54 56 59 64 67 69

5 - ; - ; ; ; ; ; ; - ; ; ;.

6,,,,,,,.,. - - (),,.,,,,,,. (),,. - М βη. А. -

.,,.,,,. (, ),,., γ0.,,.,, -. θ00, -,,,..,,,. 7

я,,. μ «,» ( 0U00θ7βλ); «,» ( 00U00κλλ), ηβλ / γ «- 40γ.β, 30.»,... μ -,,, ; -,,, ; 8

- - (),, ; -,, ; -,. ъ я,,,,,. я. я.,,,,.,,. 9

я.,,,,,,. μ,,,, ;,,, ;,,, () ;, ;,, ;. 0

я., -,, μ ;, ;, ;,., 0%.,,,., 40γ.β, γ0.β,,., -. я.,,.,

.,, μ,, ; Д3, 33, 37, 38, 39, 4, 35], Д3, 34, 35, 36, 09Ж, Дλ7, 09Ж, Д30, 0, 34Ж, Д40, 99]. Ая. μ - (, β04), - «σergia β00λ» (, β00λ), - «,» (, β00κ), IБ -.. (, 009), 9- - (, β00λ), - «-» (, β00λ, β0γ), β- -, 40- (, β00). (., β0η).. β0 μ 0,,

ULRICHSWEB, β, opоnтcus, κ..,,,. 84, 86, 5 ; 37 6 ;. 3

-. - 4,,,,.,.,, [9].,,, -, (, ), (, ), ( ), (, ),,.., κ0. μ «Rexoth» (), «Eaton», «Cessna», «Vickes», «Pake» (), «Danfoss» (), (), «SAI» (), «HAGGLUNDS» () «POCLAIN» (),» (, ), (, ), «-» () [48, 49, 3, 9,, 6, 9, 33]. βη 4 [].

γ00 ( ) μ ββ -, θη β4 (), 4θ -, β γγ Д, 89].,, 4θ%, 9%, - κ%, 7% [5]. 3 [9,, 74]: ( ), ξ = κ ββ (.., ); (.., ); () ( ξ ), ξ = 0 4η (.., ). ( γ0 () 0 γβ... 40 ),. -.,, (β0%), [94]. Д60, 05]. 5

6. [6],[9]: ; ; «TЫТЦШЭ»,. μ () Д64, 65, 66], Д8Ж, Д73Ж, Д9]., [8]. -., ()..

- (), ( = 0...38 ) Д4]., (),. () «Timot», γ00, γ0γ γγ (.., ) [, ]. μ () α max α min,,..,.., μ,.. ( ), ( ). [9, 45]..,, 7

,. z c, г m, Д9Ж (...). κ β%, () -.., z c 5 7 9 z m 3/ 4/3 5/4 6/5 8, 0 000 γβ, 3 000. κκ λ0%, λ0 λβ%., - [85].,.,,, [8]. (. ) μ γ.ββ4... γβ.ββ4.., 40γ.β.-00, μ 40.ηθ; 40.β; γ0.ββ4 [49]. (. ) S H - PVSλ0 PVHβ (λ0, β), [48]

,,., 0,λ 0,κ 0,λλ 0,λ7, 0,λη 0,λ,, 0,λλ 0,λη, 0,λη 0,λ, 0,λλ 0,λη Д7, 59].,. 30.5.0.37,.,. [66]...,..,..,..,..,.,..,..,... [9, 5, 9, 46, 5, 53, 6, 9, 36, 37]. -. -β, -, (, ).. 9

.., βη... γ0% [5]., -ββ00..,,η...β [6]...,ββ. γγ.γ,,4 [9]. - ( AVEδUS, SСОХХ TОХХЮЬ S4 VX 3, Shell Natuelle Fluid HF-E 46).,β..,η [, 3, 55, 69, 9]....,..,.,..,.,..,..,..,..,.,.,.,, [9, 5, 53, 66, 70, 7, 73]..,,,,. 0

. μ,.,,. (0,λη 0,λκ)..,,, β-γ [46]., (.., ). (.., ).,,,., [77, 78].,. β, (..γ) [5].,, η (..3). - ( z = 7),

,..β μ ; ; ; 0βη β74 H. 4 (..γ)., β0, 4000.

, Д3]. 3.γ 0.5 [5]: ; β ; γ ; 4, η,,. -, - (..4). «Timot» ( βθ4βλ00).,. μ, «Timot»,. (..4, ).

4.4 μ ; ; ; (R, R μ ; R 3, R 4 μ ; b 0, b, b μ ; t 0 ). b = R R, b.,.,,,

,.,,,, [3, 4]., μ ) ; β) ; γ) ; 4) ; η), [9].,,,,. -..,... (..β) [44, 84, 4].. 5

.,. 6.β -,η 3 - *,, 5965 8707 3698 7500 783 57 4068 0000** * ** Д],,., μ,.,. ;

-, ; -,,,.,.. μ 40 0 ( β0η4λθθ, βγηκκγ0, γ7θ0θλβ) 4,θ η,β, 0, 0,β /; ( βγγη7η, β40γγ, βθ47γλ) 0,β 0,βη / β β,η / 3.,,.,. [6].,,,. 7

. 8,,,, [36]. (),, z c = λ (..5).5 μ ; (, Х, Y ),, [37].,, h, (..6). -64, (..7,..κ) [7, 75].

9.6 p min h.. -θ4 λθ /,.. -5 (Q = β0 /)..7 η00 - : 0,κ; 4; 7; λ.8

AЮЭШНОЬФ IЧЯОЧЭШЫ PЫШПОЬЬТШЧКХ β00λ [6]. t 0 d, μ t 0 = 7,η, d = 40,5 (..λ).. 30.9 μ ;, μ ; () ; [86, 87].., AЮЭШНОЬФ IЧЯОЧЭШЫ PЫШПОЬЬТШЧКХ β00λ (..0, ) ;

;,. μ t 0, h, d 6 d 4. μ t 0 = 7, h = 4, d 6 = 46,5, d 4 =., βη (..0, ). Autodesk Simulation Myltiphysics [87]. μ,,,, γη 40. 3.0 Д86]:,. z = 9,..

(). 3.γ,, Дη, 6].,, ДηγЖ.,,.,,,....., Д53]. d μ d, (.) d b b, (..).

33. μ q p max, (.) q p, ; ДЖ ; ε μ, : d q max, (.3) E E,., [60]. ( ) (..β).

34.β, 0 h. : f 3 qxl x x, 4 EJ l l (.4) х, ; l, ; J,. μ h > R z, R z. -. (...)., В,,

q ( ) [60].. 35.4..,..,..,..,..,..,..,..,..,..,..,..,..,..,.. μ,,,,, [, 46, 56, 57, 66, 7, 76, 79, 94]. []: ( 0,04... 0,0θ): k f M kp gml nt xap, (.5) M 0, 59V p, ; Δ kp, ; n Q / V, - ; Q V n, 3 ;, ; m, ; Lxap D L (.6) D L,, ;

k M ( m, M ), ( 0,λγ η,θ), 36 k m/ M M kp. (.7) k p (, ) ( 0,0κ 0,4γ): k P m P, (.8) P Q pm kp / 600, ; ; k v (, ) ( 0,9 0,336); k m V k, (.9) V = nг(πd /4), 3 ; k p/v (, ) ( 0,λη γ,4γ); P V /. (.0) k p V

n ( θ,η βγ,7). 37 / 3 C n nv. (.),......η,,.,,. q i, j, n [0, 0, 03]. i q j

, - [0].. (),. Q(Y),., Q n (Y), [, 3, 04].,,,,,, -. [4, 5].. μ ), 38

, ; β),, - ; γ),..., μ...,..,..,..,..,..,.., F.J. Alexande, J.R. Nelson, P.P. Saviotti, T. Saati. [3, 0, 04]...,..,..,..,..,..,..,..,.. () [, 56, 66, 0, ].,,. U Q [0] 39

U n Q f q..., q,..., q i n, q (.) i i 40 (), ( q i Q ).....,,,, - [3, 4, 5, 3].,, q 0 0 0 0 q q 0 0 0 q q q 3 3 33 0 0 q q q q 4 4 34 44 0 q q q q q 5 5 35 45 55 0 0 0 3, (.3) 0 4 0 5 0 U q i ; U ;,..., 5,,.

4,,,, ()... ЭСy = (e y )/(e y +). - y i i, n, дyж (0,; ) [3, 4].,,.....θ.,, μ,,.,, μ,.,...,,

.,,. - М,. (),,.,,.., AσSВS, SШХТНАШЫФ, IЧЯОЧЭШЫ, [0, 5, 30].,.,., AЮЭШНОЬФ IЧЯОЧЭШЫ,, (,,.). 4

,,.,,, Д, 7, 33, 37Ж.. γη 40 γ0.β, 40γ.β (. ),,. μ,, ;,,, ;,, ;,, 43

; ;,. 44

β - (). 45,,.,, [9], (.) M O M O. μ,,,. (). O Q Q. (.)

γ00 ( O = 0,λ), 40 γηv, APβDγθ ( O = 0,λβ). Дθ, 9].,., (ηη %) βη, 35% 40, 0% θ0. ( η0 ) λ0ε4β «Danfoss», A6VM «Rexoth», V4 «Pake» [, 6]. (. ) (. ) β0 βη Д48, 49]., (,η ) p max = 70. 46 Q,,,,., Дβ, 9]. Q V n, (.3) V ; n. μ θγ 700 / ДЖ.

47 V = nг(πd /4), (.4) d, z., f k nz. (.5),,., ДЖ M R 0, 59V p, (.6) p,. P Q p 600. (.7) M R,

η00 β000,. (. β.), Д48, 49, 6, 8, 84, 85, 89, 93, 05, 9,, 6]. 48 β. 3 0,78... M O 0,907 0,86 0,886 0,8 0,87...0,9 M 4 0,95 0,96 0,9 0,9...0,96 O Q Q 5 0,95 0,94 0,94 p H, θ ηκ 5 5 4 p max, 40 70 40 40 45 Q V n, / θγ 700 39 06 39,6 ё, 3 V =nг(πd /4) βκ βκ0 4 0,8, f k nz /60 β40 βηγ0 099 099 83,, M R 3,5...,,08 4,095 5,885, 59V p 0 7...5565 33 688 84 Q pm R, P 5...95 4 84 99,8 600, -, ( ), Q n V T β00 6900 η00 000 500 500 500 5000 5000 000 m 5...30 40 86 85

49. β. -, L D L xap, D, L 7η 60 9 68 303 μ 40γ.β, ; β, «; γ β,., μ ; ;. (. β.) μ, β (βη ) (4,η ); γ (β000 ) (βκ4 ). μ,.,.,. AσSВS Autodesk Invento.

50.. -,, ()... AσSВS (AσSВS IЧМ.). AσSВS,.,,. ANSYS -, ISτ λ000, λ00, λ000-3. AσSВS, D [8]. Autodesk Invento AЮЭШНОЬФ,. IЧЯОЧЭШЫ μ βd/3d-, - (), [8]. γd.

IЧЯОЧЭШЫ,, γd [7]., γd-.,. Autodesk Invento Pofessional. AЮЭШНОЬФ IЧЯОЧЭШЫ,. ANSYS 00..,,,,.,..,,,,,.. [5, 74, 76].,,,. 5

. (...4).. AЮЭШНОЬФ IЧЯОЧЭШЫ.,. - (. β.). SτδIDλβ, - Д8Ж., β, γ, 4. μ I, J, K,, Q ( X, Y Z (. β.β). -. - AσSВS/εЮХЭТЩСвЬТМЬ (. β.γ). 5 β.β SτδIDλβ Д8]

(. β.γ). 53 β. μ ; ;,

. -.. 54.3 - ( )μ β044γ, βγβ7; γθ7βλ, βκ04; η00γ, βκκ4, μ,

, (. β.γ, ) (. β.γ, ).,,,.,.,,.....,,..,, 0,η(z ) 0,η(z +). z c 7, γ 4 (..). z c = 7, (. β.4). 55 β.4 μ 4- ; γ- ; γ-

(), η 0%. γ η,. 56 β.γ 40γ.β ( 40, 3 ) [37]., (. β.η). θγ γηλ (. β.θ). γκβ (. β.β) [43Ж,. = βη. β.η μ, ;,

β.β γκβ,,, E, 09,, / 3 770,, 780, 0,3,, 80 480 N = 0 6, -, 57 β.θ - μ, ;, (. β.8,. β.λ,. β.β).,.,,,.,. (...β).

. (. β.7) Д35]. X Z Y 58.7 3D- μ, ; θ0000. η% κ% (. β.7),. β.γ. β.γ Autodesk ANSYS Invento, 58 78,, 0,0064 0,0076, 54,5 66, 0,0067 0,0070 AσSВS AЮЭШНОЬФ IЧЯОЧЭШЫ, (. β.κ.).

59 NODAL SOLUTION STEP= SUB = TIME= SEQV (AVG) DMX =.00643 SMN =.45 SMX =58.46 OCT 9 009 :38:07 MX MN Z Y X.45 7.97 35.533 53.094 70.656 88.7 05.778 3.339 40.9 58.46 NODAL SOLUTION STEP= SUB = TIME= SEQV (AVG) DMX =.00643 SMN =.45 SMX =58.46 OCT 9 009 :37:53 MX Y X Z MN.45 7.97 35.533 53.094 70.656 88.7 β.κ μ 05.778 3.339 40.9 ; 58.46

60 NODAL SOLUTION STEP= SUB = TIME= USUM (AVG) RSYS=0 DMX =.00643 SMX =.00643 MN OCT 9 009 :38:8 MX Z Y X 0.75E-03.0049.0044.00859.003573.00488.005003.00577.00643 NODAL SOLUTION STEP= SUB = TIME= USUM (AVG) RSYS=0 DMX =.00643 SMX =.00643 MN OCT 9 009 :38:5 MX Y X Z 0.0049.75E-03.0044.00859.003573.00488.005003.00577.00643 β.λ μ, ; ;,

6 β.0 μ, ;, β. μ, ;,

( ),. 0,0064, - 0,0043, γγ% (..)., ().. μ,. AσSВS ηκ, ηβ. 54. η4. η 0%,. max 6,.,. [83] [ ] n, (.8) n (.. ) ; ( ), (.. β.β).

μ ;,,,.,,,.,, -...,,. [68]. [88]: 63 n = n n n 3 (.9) n,.,β,η, β γ;

n,,. n ( ).,β...,5; n 3,,,η. μ n =,β,4,β =,06 780/,06 386, 905. max 58 387. /., = βη = 40 max 66 40/ 5 66.,, -. 64.4,,,.,,...

,., -,. (R, R 3, R 4 ),, (. β.4). t 0 (. β.β). t 0,. 65. μ, ;,

γ0θ. ( γ0, 3 /, z c 7), (. β.γ)., 40. 3.70 306. 300.4.00 R 0,55 3 3 4 R 70/ 08/ / 40/ R 3 4,5 37,5 37,5 48,6 R 4 5,5 4 4 30,75 t 0 6,3 6,96 6,7 3,4 t 7 6,9 6 8 5,05 8 8 0,5 66 β.4 p (. β.γ,, ). (. β.γ). / z, α 0, α Д38]. c.3, μ

γ- ; 4- ; γ- γ0θ., SτδIDλβ, (.. β.β,. β.4). (. β.β). (. β.η,. β.θ) [4].. 67 Z Y X.4 - μ AσSВS, Autodesk Invento (,. β., ). AЮЭШНОЬФ IЧЯОЧЭШЫ β00. 0,0ββ, 0,0βκ, 0,0ββ.,.

, 0,00λ7 -. 68 β.η, μ AσSВS; Autodesk Invento β.θ μ AσSВS; Autodesk Invento,

i i i 87. 3 i 65, 83 i, 50 i. 3, 4β, 4. 87 46.,,,,.,.,.,.. ( )., μ 69 (. β.7, ). β,κ 4,β,. (. β.7), AσSВS [39].

. λ7ββ4. 70.7 μ ; ; (. β.β),, (. β.4). (.. β.γ)., ( ) μ А В [37].,,,, (. β.κ,. β.λ,. β.η) Д34]..

7 - - - - ( ) - ( ) β.η %, 66 48, 78,75 58,63 8, θ,λ7 0-4 θ,β4 0-4 0,07 0,03 5 NODAL SOLUTION STEP= SUB = TIME= USUM (AVG) RSYS=0 DMX =.07349 SMX =.07349 DEC 4 007 09:57: NODAL SOLUTION STEP= SUB = TIME= USUM (AVG) RSYS=0 DMX =.03473 SMX =.03473 JAN 008 8::38 Y Z X MX Y X Z MX MN MN 0.003039.006078.0096.055.0594.0833.07.043.07349 β.κ μ ;. 0.00608.0056.00784.0043.0304.05648.0857.00865.03473 NODAL SOLUTION STEP= SUB = TIME= SEQV (AVG) DMX =.07349 SMN =.0776 SMX =88.7 DEC 4 007 09:56:56 NODAL SOLUTION STEP= SUB = TIME= SEQV (AVG) DMX =.03473 SMN =.039795 SMX =58.63 JAN 008 8::5 MN MX MN Y Z X Y X Z MX.0776 0.98 4.947 6.95 83.883 04.85 5.89 46.787 67.755 88.7.039795 7.66 35.8 5.903 70.54 88.45 05.766 3.387 4.009 58.63

β.λ μ ;. (.), (.3), (..6). 7 β.6 %, 0,07 0,08, 0,0406 50 y, 75 67,5 55,..,. t 0, (. β.β0). β.0, μ ; β ; γ

βθ θ β0 (. β.β),, t 0 β,. 73 β. β В: ; β θ, (. β. ββ). ANSYS, Autodesk Invento 00 PЫШПОЬТШЧКХ (..3,.4). Е b 0 (. β.βη).

74. γ0θ.β NODAL SOLUTION STEP= SUB = TIME= SY (AVG) RSYS=0 DMX =.00739 SMN =-.959 SMX =07.06 AUG 6 008 :07:44 MX Y MN X Z -.959-88.507-64.056-39.604-5.5 9.99 33.75 58.03 8.654 07.06.3 AσSВSμ - ;.4 AЮЭШНОЬФ IЧЯОЧЭШЫ: ;

75.5 b 0 : Е;,, 4,..5 7- (,. ) S H PVSλ0 PVHβ (λ0, β) [48].. β β = λ, βα=γ0,η ; λ0 β = θ,θθ, βα=γκ,η (. β.βθ). λ0, β γd- AЮЭШНОЬФ IЧЯОЧЭШЫ PЫШПОЬЬТШЧКХ β00. SτδIDλβ (.. β.β). μ, p. η---,, B = 650, E = β, 0 5 К [58].

t 0 = 7,λ4, = 4η, R 4 = 45,65 (. β.βθ). 76.6, p = 36, (. β.β7,. β.βκ,..9)., (. β.β7, ), 90,4 βκλ λ0 β (. β.7). (. β.β7, )., b 0. : n =,β,4,β =,06.

77 a.7 λ0μ ;

650/,06 3, 4. 90 3., t 0 ±(θ κ %),.. (. β.βκ). Autodesk Invento λ0, 90,4 β, 89 λ0, 0,0898 β, 0,035 78 β.7.8, p = γθ = βλ0. = 4η... 4θ (. β.βλ,. β.γ0).

= γη... γθ, = (30... β40), κ... β0%. < γ7,. 79.9 λ0 (, β )..30 β (, β ).

R 4 (. β. γ). R 4 = 4η. 80.3 R 4.. β.θ,,.,..,

.,. AσSВS ( ),,, (β.0) []., μ 8 ( [K] ω [M] ){u} = 0, (.0) ω ; {u}. [M], [K]. λ-.. (. ) AЮЭШНОЬФ IЧЯОЧЭШЫ (. 4.4). [86, 87]. (n = 500 - = 4 ) F m = 4,3.,,..,, [76].

,,..,,,,..,.,.,, [7, 7]....,.,,,,... Autodesk Invento 0 8

(. β.γβ,. β.γγ). γ0θ.β (.β.γβ 5 6), ().,.,,,. μ γ00.ββ4.00, γ0θ.β, γ.70., 40γ.β, λ0, β. 83 β. γβ μ, 4, 7 μ 40γ.β; γ00.ββ4.00; γ.70.; γ0θ.β; β; 5, 6 γ0θ.β β ; 8 ;

84 β. γγ μ 306., t 0 = 6 ; β, βφ = γθ ; 3 306. ; 4 40γ.β ; 5 γ0θ.β ; 6 3.70. ; 7 40 θ0, 0 βκ0. 40γ.β μ ω = ηκ,λ, ω β = 7,β, ω 4 = βγ4,4 ДθγЖ.,,.,..

. 85 β.7 β. AσSВS, AЮЭШНОЬФ IЧЯОЧЭШЫ β00 PЫШПОЬТШЧКХ,.,,.. 40.β, 306., 3.70., γ00.ββ4.00,.,,,. 3. λ0, β.,. 4.,..

γ γ. 86,,, Д5, 9]., 0,8, : 0,99;,,, 0,9; 0,95. (. γ.). 0 μ 0., 0.β 0.4 ; 0.5, 0.6. ; β 4 ; η ; θ., θ.7 ( 7 ); 7 ; κ ; λ ; 0 [5]: = -7 8 9 0 (3.)

87 μ 7 = - (- 5 6 6 7 )(- -4 ) 0 = - [(- 0. 0. 0.3 0.4 )(- 0.5 0.6 )]., (.. ) Д50]. a n i / N, i a 0,...0, 5.,,. a L G, L, G. G... [50] n~ u p, (3.) ~ n v v n~ ; v = 0,3 v S ( 0 ) l ( l). ( l),

88 = 0,5, ; ; l 88,3 L G v ; S = 0,047 ( - u); u ; L = t ; G. [0] K. d 0 = 7,η, d, : 0,55 0, 000,,, d,. K K K d K F KvK A,

v K v -v ; α =,4; K 0,5 d θ 89 ; K F 0,lg Rz lg 0 ; K v =,3 ; K А = 0,86. d, d 7,5. d 4A А. v 0, 0,00043 [50]. n,.. G,.

. (. γ.β, ;. γ.γ, ;. γ.4, ;. γ.η, ;. γ.θ, ;. 3.7, ;. 3.8, ), 90 Аl Al... 5 i + B l 5 j + B l 4 i 4 j + C + C l l 3 i 3 j D D l l i j + E + E l l i j + F + F = i = ; j ; (3.3) l i, j,. A, B, C, D, E, F.,. 40γ.β, γ.70., 40.β, γ0θ.β. Autodesk Invento, (. γ.β, ;. γ.γ, ;. γ.4, ;. γ.η, ;. γ.θ, ;. γ.7, ;. γ.κ, ). 3. 403.: ;

9 3.3 3.70.: ; 3. 4 40.: ; 3.5 306. μ ; l,

9 l, γ.θ γ0θ.β μ ; 40γ.β. μ v 0, 0,00043800 0,0957 d 465/ 4,5 K d K K F 4.5 7,5 0,5 3,735 0.0957 3,735 0, 94 0,934 0,934 0.095 0.095,4 0,0877 800 0,lg,8 lg 0,6 0 0,08775 K 0.94 0,6,3 0,86 0,65 0,55 0,000 400400 04 - = 04/0,65 = 3,6.

93 n = 3,6/78 =,76 L = β 0 = β0 G = θβ / = 70 0.0957 0,5 0 l 0,535 0,5 88,3 6 0,047 ( 0 )0,535 v 0,063 ( 0,535) 0,5 400( 0,535) 77 77 n ~,63 70,63 u p,63 0,063 v,98 = 0,97 [90]. μ 9 = - [(- 0,97 0,96 0,λ6 0,96)(- 0,9 0,9)] = 0,96. γ.. γ., 403. 306. β 5 5 36 n ~,63,9,5, 78 46 89 G 40,8 8, 95 u p -,88 -,576 -,4 P 0 0,97 0,995 0,9 А, 65 530 4

, γ0θ.β, β. 94 γ.β, ( )., Д7]. (. β.4),,.., (. β.β, )., (. β.β, ).,.,.

μ, N c, М (. γ.λ, ) Д3]. N; Q, М,.,,,.,, (. 3.9, ). μ N 0, М 0,, q [39]. 95 α В α B max M 0 = X N 0 = X R 0 A q R C R R N C R A q φ C γ.λ μ ;. (R i, ; α ) C M C R 0,, АВ (. γ.λ, )μ

96 X X X X q q 0, (3.4) 0,,, Х i ; Х, Х ; Δ q, Δ q. [83]: M M M N i N M N N q i q q i q i ds ip l EA R EA R E A 0 o o, (3.5) і =, ; M 0, N 0 ; А 0 = ОА Σ ; l, А Σ ;, = R 0 n ; n ; R 0, ; n AΣ AΣ da Σ. μ AΣ daσ i i, R i = t 0 ln 3 ; i = R t R t R R t ln R R R 3 t ; t = R R tg t 3 3 3 ; = 7.

,, φ, s = R 0 Нγ, γ (. γ.0). 97 γ.0 N M :. dn φ = dq sin(φ γ) ;dq= pt 0 s= qs; 0 d cos N q qr sin qr ; (3.6) dm φ = dqr 0 sin(φ γ); 0 d qr cos M q qr R sin R 0 0 ; (3.7) γ ; dq α μ 80 z c. (3.8) (γ.η), :

98 eea qt R qt R R qt0r 0 EA 0 EA e ; q q qr EA 3 qr0 eea 0 0 0 0 o cosd cosd sin 0 0 cos d cos cosd cos 0 cos qr EA 0 qt R R 0 0 R cosd c EA e qr EA 0 d sin sin ; 4 R R0 sin o d, cos d ; c eea 0 eea EA 0 EA 0 cosd cosd sin sin eea 0 EA 0 EA e R o R ; (3.9) 3 sin sin 4 c. А Σ (. γ.) ( А А ): А Σ = А + А, t t A ( R R ) ; 3 A ( R R ) t. 3 0 γ.

99 y o μ A y A y y o A A, (3.0) y i. y R R t t 3 ; y ( R R ) ( R R ) 3 3. 3( t t ) (γ.4) (γ.5), X = M 0, X = N 0.. μ А, В,., А, В, [83]:, A A p B B p,, (3.) c C p X y ; A A er X y М; B A er M y q o М C q ; y, y, y 0 A er 4 ; y y 0 e ; y ( R R ) y ; y0 y0 e ; R R

00 ; M q X X R ( cos) qr ( cos ). 0 N А В [83]: N C N A p ; N C A p, N C X cos qr( cos ),. А.,,, (. β.β).,, (. γ.β) [83] i 3 3 i, (3.) i,,.,, (. γ.) 40. 3.70 306. 300.4.00 А 37 37 39 38,3 В 7,4 73,6 55 6,6 68,4 69,6 33 45,9 γ.β

, β0%., [67]. γ0θ. (. γ.β),,,. 0 γ.β,., C D., (. 3.3), : q = t 0 p, t 0,.. [3Ж.

., (. γ.γ, ).,, Q = 0,,. (γ.4). 0 В A R D 0 α P=Х 3 N 0 = X M 0 = X R 0 q R C N C M C R R 0 q R γ.γ μ ; (R i ; α ) N c, Q, М, M X, N X (. γ.3, ). 0 0 Д83]: M i M M M k q i ds ik ; ds iq. (3.3) EAeR EAeR l 0 0 l 0 0

(і, k) =, ; Х, Х ; Е ; l = αr 0 03 ; А ; ; R 0, R. Х,, Х, M =, M = R 0 ( МШЬφ); N = 0; N = МШЬφ M q PR qr cos, P qr cos sin 0 0 R N q sin. (γ.5) μ q R 0 R R 0 0 cos qr l qr l sin q ; EAel EAl 0 cos 3 qr l 4qR sin leae ; eea 0 0 R 0 c ; EAe 0 cos qr l sin R0 ; EAel R0 sin, (3.4) EAe 0 0 0 3 4sin sin c. (γ.5) μ X i. (3.5) i Х Х ( А). (γ.η) Х w =, y (. γ.4). M = R 0 ЬТЧφ, PR qr R cos X X cos M q sin R. 0 0 0

04 γ.4,, P Et dy 0 b( y) P l, n, ; t b(y). y, l =.,, E E μ ~ ~ ( b ) tg P n b ~ (4 ~ ~ ~ actg (3.6) Et b (4 b ) b b ) β, = π/7; ~ b b 0 ; ; b 0. μ

05 l P n. (γ.θ), P l. N 0, М 0, n,. M ( ), (3.7) J A z y0 Nz i ) X qr R X cos 0,5 sin ( 0 PR0 M z ; cos P sin cos N z ( ) qr X, ; 0, (γ.0); J, μ J = J 0x + J 0x, (3.8) J 0xi = J xi +А i a i ; R R t 4t t t 3 8t t A J x ; J x A R R 3 ; = - 0 ; = 0 -. γ, μ γ J ( A R y 0 o 0. y0 Ro )

06 P n. (3.9) E b t 0 (. γ.η) 3 4 5 X X X X X 3 4 5 X X X X X 3 3 33 43 53 X X X X X 3 3 3 3 3 4 4 34 44 54 X X X 4 X X 4 4 4 4 5 5 35 45 55 X X X 5 X X 5 5 5 5 q q 3q 4q 5q 0 0 0. 0 0 α α N 0 = X A q R 0 R R C C N C M C D R P=Х 3 q R 0 X 4 X 5 M 0 = X γ.η μ ;. (γ.λ), (γ.3). cos M qr R, q 0 N q qr cos, N N 0, N cos ; N sin( ) 4 3 ; 5 cos( ) M M, cos 4 M ; R cos( ) R 0 5 0 M. N ; О, μ

07 M C X 5 X qr R cos R X cos 0 0 R cos( ; 0 X R sin( ) X cos X R sin( ) X cos( ) N C qr sin X 3 0 5. 3 0 4. γ.γ. γ.γ γ0θ.β,,, % = α = α/β = π/7 = α = α/β = π/7. А 75 65 58 57,6 35,4 48 β0 4θ. В 3 3 48,8 6 βγ. Е 08 3 33 99,6 4..3. 33 04 40 90 7,7 θ γ0 -. D 0 0 0 0 0 4 0,,. γ.γ,,,..

..,,,,.,. μ,., (. γ.θ.) [36].,.. μ 08 + P = Q, (3.0) Q = pа f ; p ; А f. Y..

09 a - γ.θ μ, ;, ; ; (. γ.θ, ) ) ( i i i i L I P E, (3.) Δ i ; ) ( i i L I Д07].. ; ; cos d cos 0 0 b L b L L L actg L L L L I i i i i i i y

0 b y) b ( cosφ); b ( y) b ( cosφ). 0( 0 (γ.), P paf paf, P. (3.) t ( ) I L ti( L ) ti( L ) ( ) ti L А f А f = А 3 А А, А i,. (. γ.7) t 3 R R R s s R s ; γ.7 μ ;

μ t, 4 R R R c c R c. μ t = t 0 t 4, t 0. t. s c (. γ.7, ) A t t b. (. γ.7, ) A 3 t t 0 R. (. γ.κ)

b b 0 0c A t 4 b 0c = b 0 + β ; = ЭР t. t t 0 t 3 t 4, t 4 ; t 3. γ.κ,., (γ.0) μ A na,

3 I L I n. L b 0 (γ.λ), (γ.β),, = 0, 3 = p. 40γ.β, μ p = βη, ; α = 4γ ; R 3 = 37,5 ; R = γβ ; = 8 ; = κ ; b 0 = 0 ; t c = η,η ; t s = γ ; R s = 75 ; R c = η0 ; t 0 = 7., 7 47. 0%.,.,,, Д33].,,,, А А,,, z z, (. γ.λ)...

= (z z ) Q,.. 4 t 0 z z γ.λ (, ),., 40 (. γ.4). γ.4,, t 0, 403. 7 45 699 4 5 50 97 306. 7 33 90 68 5 53 00 7 75 5 9 30 65 5

,, t 0 = β7.,.,θ,κ. 5 γ.4. D O D O D D, OY, (. γ.β0, ). p, N c, N c N (. γ.β0,.) 3.0 μ D D,

N N β D D. N (. γ. β0, ) 6 N = 0,5pt 0 (l. b 0 ) N c ЬТЧ(φ/β), l, l = βφ R 6, R 6 = (R - R )/+ R, R = R 4 + ; N c, A sin φ sin c N = p t, 0 A A sin φ А, А β, А = (R R )t 0, А β = (R R 5 )t 0. (γ.λ), (γ.β), =, = 3 =. μ b 0 = η,γγ, R = 64,77, R = η0,4. 9,8 βλβ,η λ0 β. β% (. γ.5)., c c, % λ0 90,4 9,8 70 - - 80 - - β 89 9,5 80,5 - - 98,8 - - γ.5

(.9) : n =,β,4,βη =,, 730, 347. 7 : 9,5 347, 5,7%,., 40 360 347... 3.5 γ.,,.... 3.,,.. 4.,.. 5. 40γ.β

.,. 0%. 6.,.,,,,. 8

4 4. 9,.,.,.,.,.. (R R )/βαr 0 = μ4,β (М. γ.λ, ).,.. ( ) φ. LL К, К α, LК (. 4.). LL К μ ( ( p)tg; p)tg ptg, (4.)

0 R4 acsin sin ; acsin R 4 actg R 4. ; 0 ; ; 0 actg R 4 φ φ 4. φ α min α max,.. ξ = 0º κº, (. 4., )., φμ M N. (4.) W ( ) A ( ) А В μ X X, (4.3) A, B W A A, B

J W, А i y x W A J В y e 0 W B J R R y e J (γ.4)., φ = α, (4.γ), Х = M C qr0 R (( cos) X XR0 ( cos) ; X N qr( cos) X cos. C 0 4 ;. 4 ; 3 = p. (4.4) ( ),, Δφ = º, (. 4.). 4.β

(. 4.) (γ.η), μ M cos; cos q M ; cos R 0 qr R 0 M ; N 0 ; N cos. N q qr ; 4.,,, 40. 3.70 306. 300.4.00 / ( ) А 8,/37,5 6,/3,4 / 8/ 58/38 6,/39,3 В 50,8/4 6,/75,8 38/39 49/49 49/55,5 6,/60,7 96/60 58/77,8 48/4 66/40 67/77,8 58/83,8 (3) * (0) * (5) * (8) * (37) *. α max = ηηº,, (. 4.)., β0%, γ.β., K,β. φ (. 4.β).

= 5,. β.β.,. k [9]: 3 k max n om, (4.5) max nom,. k,...,5. А,, -.,,,,,. (. β.7). 4.β.. Д96Ж,, М (ч ); Q (ч ); (ч 3). (. 4.γ) s (b-a) [09].

4 4.γ, M = const. θ Φ = ХЧ + ϑ ln + χ, (4.6) 4M M a b b M ln ; a b a b ln b a ln a ; 0 b a ; (4.7) ( a )ln( b / a b b a 0 ) b b ab. ; a ln a, ϑ, χ 0, 0, d M. (4.8) a b b 0 a 0; ln ; ln 3, θ θ (4.9)

5 ; ; ln 4 a b M a b b a M ) ln ln ( a a b b a b M. М, (ч ), [96]. ln ln ln 4 ; ln ln ln 4 0, θ θ a b a b b a b b a a s M a b b a b b a a s M (4.0) ч Q,, ЬТЧθ, μ Φ = f()ьтчθ, μ f() = (κ 3 + ϑ - + χ ln). (4.),,, ϑ, χ, 0 a, 0 b, Q d b a 0. 0 0 0,, b a Q a b Q Q. (4.) Q: cosθ. sin θ; 3 sin θ; 3 0 θ 3 0 θ 3 0 b a b a s Q b a b a s Q b a b a s Q (4.3)

6 ч 3,, M МШЬθ, Φ = ) ln ( 3 МШЬθ. (4.4). sin ; cos 6 ; cos 3 3 3 (4.5), ϑ, χ 0 a ; 0 b ; p d b a 0. (4.6) (4.θ) (4.η) 0 0 0 ; ; b a K P b a K P K P. (4.7) θ = 0, M = P,., () М = P(a+ b)/.

7 (4.η), (4.7), ч 3: sin θ; ; ln ln ln ) ( cos θ 3 ; ln ln ln ) ( cos θ 3 0 θ 3 0 θ 3 0 b a b a s P a b a b b a b b a a s b a P b a b a s P a b b a b b a a s b a P b a b a s P (4.8) = 0,5(a+b)., [8],, [96]., q = a, (4.7) f() = κ 3 + ϑ 3 / + χ 3 ln (. 4.4). κ 3, ϑ 3, χ 3. p a ; 0 b ; 0 0 d b a. (4.9) 4.4 q

8 μ. sin ; cos 6 ; cos 3 3 3 3 3 3 3 3 3 3 3 3 (4.0), (4.λ).,,, θ max = α МШЬθ. 0 θ α, sin cos p. (4.) (4.λ) (4.β) (4.β0) ; ln ; ln ; ln 3 3 3 3 3 3 a b a b b a b b a a b a b b a a b a a b a a b U (4.) sin cos pa U ; ς = b/a. κ 3, ϑ 3, χ 3,

9 3 ln P ( b a ) 3 3 3 ; (4.3) a b b a 3 3 3 3 a b 3 0,5 3 4 ln. 3 3 M b ab a b a (4.4) a b (4.β0) М. q,,.. = (a+b)/β (. 4.5). ч, P. θ = φ ё dp q 0,5( a b) sdφ. q 0 φ θ, θ (. 4.6). 4, ϑ 4 χ 4, 0, 0, d 0. (4.5) a b b a 0

30 4.5 q 4.6 Н НN НM dn = Н s, d a b N M b a b a s dn N d ) (, b a b a a b s M M d ) ( d. cosθ). ( ) ( φ) sin(θ 3 0 θ 0 3 0 b a b a s b a q b a b a s dp (4.6) sin θ. ) ( cosθ), ( 3 ) ( 3 0 θ 3 0 θ b a b a s b a q b a b a s b a q (4.7), (4.βη). q, (4.6), (4.β7). =, (a+b)/β a. (. 4.θ). = 00, b = 5, μ М = 00 000 (. 4.8, ),

3 Q = 000 (. 4.8, ), P = 000 (. 4.8, ), q = (. 4.8, ). (4.0), (4.3), (4.8), (4.6), (4.7) = b, θ = λ0 (. 4.7) (. 4.κ).,, η% (. 4.β). βη (b = η0 ), (. 4.γ). θ, 3 4 b, 4.7 θ, μ q, M, 3 P, 4 Q 4.β,, = b = βη, θ = λ0 = a = b M Q P q M Q P q -07-3,9-0,95 50 06 00 0,6-0 -03,7-0,9-6,7 4,8 89,4 96,7 00,6 -

.. 93,5 () -96-6 -08 4 96 08 08-78 3, %.., %.4.β 4,6 7 4 7 7 3 6 3, 3 3,6 4 4 0 4

4.8, μ M, Q, P, q (, β- ),, = b = η0, θ = λ0 33 4.γ = a = b M Q P q M Q P q -8, -36, -35,3 58 5 6,4 9,3-48.. (), %.., % 7,7-36,9-34,7 7, 4,6 6,5-49, -4-34 -30 64 6 30 30 5 8 8 0 4 8 3 5 5 7 0 b,... 4.γ Д4],,.

,,.,,,,..,,, (. 4.9).,, ( ).,, μ 34 a ( a )cos( ) ( a ) cos ( ) ( a ) 0 0, (4.8) acsin 0 a, х., 0 < φ < φ 0 4.9

.., μ = 00, b = βη, s = 0, = βη, α = π/β, θ = 0 = η000. μ 35 4. 4 ; 3 = 0; (4.9) φ 0 = θº = 58, = 40κ. AЮЭШНОЬФ IЧЯОЧЭШЫ AσSВS (. 4.0). 4.0 μ Q, P

36,, η%,.,,.,. / θ /. (4.βλ). (. 4.0). γ0θ., = βη (. 4.). μ = R = 3, b = R = ηθ, s = t 0 =6, = κ, α = θ4º. 4. μ (, ;, )

, (. 4.)., (θ = ± α).,,,. 37 4. μ q = s μ N 0, М 0,.. (. 4.). μ N 0 = κγθ0, М 0 = - 7670.... μ М = М 0 = 7θ70, (4.0); = N 0 = κγθ0, (4.κ); (4.β0), (4.βθ), (4.β7). = 8. γ0θ.β = 40

φ = λº.. = 4κ, η,4%.... 38 4.4 4.4.,. (. 4.3), μ ) (. 4.4, ); ) (. 4.4,, ); ) (. 4.4, ). 4. 3 ( ) θ,,

.,,,.,.,, θ.,.,. b/h = γ,βθ,. Autodesk Invento Pofessional 009 [30]. 39 4. 4 - ( ) SτδIDλβ

(. β.β)д40ж. (. 4.4). 40 4.4. 4.3.4.4,.4.4,.4.4,.4.4, 7000 76000 6400 0000 30000 μ,.,,. ( ) (. 4.5) 40. 4. 5 :,.

,,. (. 4.η).,.,,.. (.. 4.4, )., (.. 4.β, ). 40. 4 4.η,. 45 699 4 5 50 97 (. 4.3), 70 35 30 0 C 9 75 40 307 (. 4.4, ) (. 4.4, ) 70 55 348 55 40 80 80 80 (. 4.4, ) 33 3 4 43, (. 4.4, ) 05 50 96 44

4 (,..).., μ ) (. 4.6, ); ). h e e 0 e х b z 4. 6 μ ( ), z.,

,,, А А, (. 4.6,, )., e 0 = z - z, z А, z А.,,, (. 4. 6, ).,, μ 43 x b + y b + x x b y y b = 0. (4.3) - (х, y ). (х, y ) : x 4x c (4x c) 4[(4y 4x )( c 4yb R )] b b b b, (4y 4x ) b b y,(4.3) R x c y b x, y y y x x x b b b, y b, 3 h, h, b.

44 N R (, ) N y b b y N Q 97 5 4 50 y, 4. 7 μ, e 0, 40.,, -. А (. 4.7, ), μ N + N Q e = 0, (4.33), ; N, N, Q,, (. 4.βθ, ). 40, (. 4.θ). 4.θ

, 300 5 386 7 70 55 348 55 87 80 33 80 C 70 35 30 0,,. μ.,,. 45 4.4.β,.,..,,. (. 4.8) (.4.7).,, 4.7

, - - b 0 = γ b 0 = η. А 80 40 50 70 55 В 50 30 0 30 30 6 75 70 60 87 Е - 53 99 7 3 46.,,..

47 4. 8 μ,,,. (. 4.λ,. 4.β0) (γ.β). 4.9 γ0θ.β М μ ;

48 4.0 γ0θ.β М : ;, G,,. 4.η 4., γ.γ,., 0%...,.

η η. 49 -,, Д0, 0, 7]. μ -, -,. 0,007 0,0β / Дθ, ].,,.,,,. η..

η.... β. β.. β.β. 3. γ.. γ.β. γ.γ. 4. 4.. 4.β. 4.γ. 4.4. η. η.., η.β. η.γ. η.4. η.η. k k n f 60M gml n V Q nv k P P k p k M H / 3 m V O 0 kp xap f k nz /60 k M / m k k M ext kp nt f m n p T ncpl0 k T cp P P C T cp z/ 60 х n T /([ n ] p ) T 0 50 μ M kp ;

n, ; T,.; m ( ; f m =0 8 ; V, 3 ; p H, ; V 0,, 3 ; ω, ; n cp, - ; [ n ] ; L 0,, ; T 0. μ 5 k f MkpnT (5.) gml f xap m k n / 3 n V. (5.) k P k k, k P P m; kk ph V. (5.3) k M, k M Mkp / m. (5.4)

5,, k nz 60. (5.5) () k ext p /([ n ] p ). (5.6) х μ T cp, P, P C. μ,.,., t t T f tf dt P dt, 0 0 t ; f t. P t ;

.,,,, ё. 53 t Tcp t M, t,. n L n, (5.7) T cp 0 n n cp ; L 0,,.,,.,. 0 T 0 k T T (5.8)

μ T cp, 54 P C. P, η.β η μ,,,,. (,. η.β). (. η.γ) ( k = 0,η) ( k ext = 0,).,. AσSВS Autodesk Invento [38, 4]., ().

, (. η.). 55.- β.- γ. - 4. - η... k.. f k n m η.β 306., 60MkpnT 0,0β κ,η,4 gml f n V.. Q nv 3 xap, / 4κηκ,η 4540 788, 3 / θγ 700 69 k P, / γ,λκ,05 3.. P m 3.. k k p V0, / 3 4η ββθ 3.3. M O 0,83...0,95 0,9 4.. f k nz/ 60, βγλ ηκ0 4095 4.. k Mkp m, /,γ β4,β 8 4.3. nz/ 60 k 0.0η 0,4 0,5 4.4. k p /([ n ] p ) ext х 0,0η 0,η 0, 5.. n L n, 500...3000 5000 T cp 0 5.. k T T T 0 0,γ 0,λ 0,65 5.3. T cp, 00 0000 3000 5.4. P 0,λ 0,λλη 0,96 5.5 P C 0,λ 0,λλη 0,995 (η ) ( μ, -,,, ).

, (. η.). 56 η. η.γ (,. ) μ

k k ext 57. μ., (t 0 = βθ ) ( = βη ),. k ( nz / 60) f k ( ), t 0., k. (. 5.3, ) k.,,,. (. η.γ, ) k ext., k, k. ext.

k 58 k ext ( - ) (,, ). (. η.β, ) - θ ββ. k k ext (0,; 0γβ). - (. η.β, ). 5. - k k ext : 306.; β (. η.β) μ k ω n, - : η00, β000, 3 βη00, 4 γ000, 5 γη00; k ext, μ 6 βη, 7 γη, 8 40, 9 4η. -,.,

59 μ k = 0,; k ext = 0,; 0 t = β0 ; H p = 5 ; n = βη00 - ; n =. η.4,, μ..,..... U(Q) U,, (5.) [3]. (.3),,,,,,,, ( )., U(Q), (,,,, ),

,. (. η.γ),.. Д]: 60 q i = 0, +,8th[(y i y i )/(y i + y i )], (5.9) q i =,8th[(y i y i )/(y i + y i )], (5.0) y i, y i +. (.3) ДQЖ,0 > q k j q, > k j, > 0, k, j j, 5. (5.) γ0θ.β (. ),, (η.9) (5.0) η.γ, η.4.

(. 5.4). γ0θ.β U = 0,θ. (. 5.4, ) (q 4 = 0,4β) (q 5 = 0,θ4) (q 34 = 0,54; q 44 = 0,ηλ) (q 45 = 0,88; q 55 = 0,9). 6 η.γ, 306.,. β. - γ. - 4. -.. 60M k f gml kp xap nt f m 0,0β 8,5 -,4 0,7 3.. k n n V, 4κηκ,η 788 0,65 / 4540.. Q nv, 3 / θγ 700 69 0,73 3.. k P P m, γ,λκ,05 0,7 / 3.. k k p V0, 4η 0,79 / 3 6 3.3. M O 0,83...0,95 0,886 0,87 4.. 0,4 f k nz/60, βγλ 700 580 4.. k Mkp m,,γ / 4, 8 0,47 4.3. 0.0η 0,4 0,5 0,54

6 k nz/ 60 5. 4.4 k ext p х 0,0η /([ n ] p ) 0,5 5.. T ncpl0 n 500..., 3000 5.. 0,γ 0, k T T T 0 9 5.3. T cp, 00 0000 5.4. P 0,λ 0, 995 5.5 P C 0,λ 0, 995 η.γ 0, 0,59 5000 0,64 0,65 0,66 3000 0,7 0,94 0,88 0,93 0,9 η.4 ( / ) 0,7 0,65 0,7 0,58/0,4 0,74/0,64 0,73 0,79 0,6/0,47 0,7/0,66-0,87 0,65/0,54 0,75/0,7 0,69/0,59 0,88/0,76. 0,9/0,88 (q 34 = 0,65;

q 44 = 0,7η) (q 45 = 0,95; q 55 = 0,λκ), (q 4 = 0,ηκ) (q 5 = 0,74) (. η.γ)., U = 0,69. 63 a η.γ ( ) ( ) γ0θ.β μ ( ); c ;

64, (q = 0,θη) (q 4 = 0,ηκ),. η.4,.,,, ;. η.η η.,. β.,, μ (),,,. γ. ( η ) (, -,

,, ). 4.. μ (,,, ). η. - k k ext θ ββ. (0,; 0γβ). -. θ. γ0θ.β U = 0,6. (q 4 = 0,4β) (q 5 = 0,θ4) (q 34 = 0,54; q 44 = 0,ηλ) (q 45 = 0,88; q 55 = 0,9). 7. (q 34 = 0,65; q 44 = 0,75) (q 45 = 0,95; q 55 = 0,λκ), (q 4 = 0,ηκ) (q 5 = 0,74) 65

., U = 0,69. κ., (q = 0,65). λ.,, ;. 66

67 -,,., μ., -,.. η η,,. γ.,.,,,. 4.,,

. η., ( 0%). θ. βη 40 %. - βθ κ. 7.. γ0θ.β %.,, -. ββθ.. 68

69... /..,..,.. //, β00γ. 4 (γ0).. γ-6..... - //, ее, β0γ, C.5-54. 3... /..,....μ -, λ7γ. ηθ. 4... /..,....μ, λκθ. 7θ. 5... μ /.., І..,.... μ «І»,, 03. 4κ. 6... - μ /... μ ''.. '', β00β. β. 7.. AЮЭШНОЬФ IЧЯОЧЭШЫ /.,.,..μ, β007. 7ηβ. 8... AσSВS /...μ, β00η. θ40. 9... /...μ, λ74. θ0θ. 0... /... μ -, β000. ηη.

. -.. μ. /.. -,..,....μ -, β004. γη.... - /..,... Д Ж. μ.μ http://mogomash.com/publications/pov_nad.html 3.., /.,. //. θ/β007. Д Ж. μ.μ http://www.os.u/aticle/sevice/007_06_a_008_0_-0_7_54. 4... μ /....μ, λκγ. γ0. 5... /..,..,...:, 999. λβ. 6... ё - μ.. μ 0η.0β.0β ;.; β00κ. 40. 7... /..,..,...μ, λθκ. η0β. 8... /...μ -. -, λ7γ. κ0. 9... /..,.. //,.μ. γ, 004..4β-44. 70

0. βη.η04-κβ..... μ... μ 0η.0η.04, 007 8 c.... /.. //.. -., λλ7.... 77-83. 3... /.. //....μ, λλθ.. γ4γ-347. 4... /.. //. -., β00.. β(4)..γθ-39. 5... - - /..,..,.. / 3, 00 70. 6... /., β0γ..βκ. 7., μ.. /..,..,.. є;......μ «І», β04. γ0κ. 8... / μ...-.., λκ7,. 5,. 63-66. 9. Є.. - -,..... μ : 0η.0β.04. 003. 30. 7

30.. - /..,..,.. //., β0β.. θγ.. λθ-00. 3... /..,..,.. // -., β00. (γγ) (34).. γλ-45. 3... /..,..,.. //. -..., 007. λ (η),. β.. θη-70. 33... - /.., І..... // '. - μ. ; ІІ. 009.. γκ- 39. 34... /..,.. //...,, β007.. ββ. 4κ-54. 35... - /..,..,.. // -., β0γ.. η0. 36... - /..,.. //. -..., 007. γ (0λ),. β.. 65-70. 7

37... - - /..,.. //., β007. γ (7).. 47-50. 38... - - /..,.. //. -., β007. η.04-08. 39... - /..,..,.. // ετtrτδ., β00λ. V.A.. 6-68. 40... - /..,..,.. // -. - ;, β00λ. C. 48-5. 4... - /..,..,.. //..μ, β00λ.. κβ..βλβ-95. 4..., - /..,.. // μ. μ, β00λ.. β0-. 43. ё.. /.. ё,... μ, λκ, γλ. 44. «.,,» (λ)/ β00θ »» θθ.. [. ] μ 73

.μ http://www.mmz.u/aticle/v66/aticle.htm... 45... /..,......μ.. λ70. 3. 46... - /...μ.., λκ.. λβ. -. γ-3. 47... AσSIS μ /..,..,...μ, β00γ. 7β. 48.... http://www.hydosila.com/poducts/. 49. (. ). Д Ж. μ http://stoygidavlika.com.ua/files/catalog.pdf 50... μ.μ, 985. ββ4. 5...,, /...μ, λκ4. θβ4. 5... -.... μ 0η.04.04.., 983. κ7. 53... /..,..,..,....μ, λθκ. γλλ. 54... -. μ /..,..,..,.. μ, β00θ. 47η. 74

55... /..,.... η4-θ0 Д Ж. http://khntusg.com.ua/files/sbonik/vestnik_3/0.pdf 56... /...μ, λ70. λ40. 57... /..,.. //...... - 008. - 4. -. 30-4. 58. /..,..,.........μ, λκλ. θ40. 59.,.. -..... μ 0η.0η.04,. β00η,. 60... - /..,... //......, 0. C.0-5. 6.. β. /..,..,.. //, β0γ, 4,. 5-3. 6. - S H - PVSλ0 PVHβ (λ0, β),. Д Ж. μ. http://kiovogad.pom.ua/p7374-nasosy-aksialno-poshnevye.html... 63... - /.., 75

..,.. //, 0.. κ-90 64... - /...... -,.μ 003.. (λ).. 4η-49. 65... - /...,, 000.... θβ4-67. 66... - μ... μ 0η.0β.0β., β00θ. 400. 67... /..,..,.. //, μ..-.., β00κ. μ, β00κ.. 4β-48. 68. ( -7 00 86)..μ, λκλ. ηβη. 69. /..,.,..,.. //., β β00θ.. 94-0 70... /..,....μ. β00η. 4 (θ). c.04-09. 7... /...μ... -. λλγ. βηβ. 76

7... - // μ...-.. 988.. β4.. 0-. 73... -, /.. //,,, β00η. C.4-9. 74... - /.. //.. 983.. λκ. -. 47-50. (.8). 75... /.. //..:, λκ7,.3..β47-50. 76... /.. //. 99. γ.. 0 -. 77.. γη4γθ4λ US γη43649 A. Axial piston pump o moto device.. β.04.λθλ;. η.0θ.λ7. β. 78.. γηκ4η4γ. EХКЬЭТМ СШХННШаЧ ЦОЦЛОЫ ПШЫ ЭСО МвХТЧНОЫ ЛХШМФ ШП К fluid pump/moto US 3584543 A.. λ.0κ.λθκ;. 0.β.λ70. γ. 79. /..,..,..,..,.. //,., β0β,. 4β, I..θ-68. 80.. /..μ, λ77. γ04. 8.....μ, λκκ. 48. 8... /.. // θη- 77

- () «-β00λ»..μ, β00λ... β4θ-54. 83... /..,..,....μ., λκκ. 7γθ. 84. -..., AGA GЫШЮЩ, IЧМ,..,. [ ]. μ http://mogomash.com/publications/pov_nad.html. 85. - /..,..,..,..... β0β....β0-5. 86... AНЯКЧМОН Simulation Technology Peview /.. // θ. 009. C.70-74. 87... AЮЭШНОЬФ SТЦЮХКЭТШЧ εвхэтщсвьтмь.,, 0.. [ ]. μ.μ ааа.кюэшноьф.ыю/кю. 88... /....μ, λθγ. 4ηθ. 89. -. [ ]. μ.μ http://www.vneshgidomash.u/poducts/gidavlik/gidonacoci/./index.php. 90... /..,..,........μ, λκκ. β40. 78

9... /..,.І...μ, λ7θ. 4β. 9... - μ... μ 0η.β0.0γ.., β0β, 4. 93...., AGA EЧРТЧООЫТЧР & TЫКНТЧР, USA...,...,. β00β. μ μ http://www.miningmedia.u/u/aticle/goobo/73-sistemy-obespecheniya-nadezhnostigidopivoda-instument-vnedeniya-sovemennoj-kaenoj-tekhniki-na-gonykhpedpiyatiyakh-ossii 94... - μ /... μ, 990 β4λ. 95... -.... μ 05.0.03., β00λ, 86. 96... /..,...μ, λ7η. η7θ. 97... /..,..,.. // -. μ -, β04..7κ-79. 79

98... - /..,..,.. //, β04. γ (4η).. 70 74. 99... - /.. μ,, λκ. γ44. 00.... /....μ -, β00. γθ. 0.... /....μ, β004. γγβ. 0... /....μ, λκ4. ββ4. 03... /..,..,..., λκκ. θ.. γ-. 04... /..,..,..,.. //, λλγ. γ.. γ-. 05.. [.] μ http://canes-today.u/otkazy 06... μ /..,..,..,..μ, λλ0. γκ4. 07... - /..,.. // μ...-...μ, λκγ..γθ.. λ4-97. 80

08... /..,.., І.. //, μ. μ І. 00.. κη-87. 09... /..,..,.. //.,, μ....μ -, β00.. 0.. γ-7. UХЫТМС. 0... AσSВS μ. /....,....μ, 004. ηβ.... AσSВSμ μ /..,..,..,... μ, β00β. ηβ.... М /..,....μ.. -... μ «І». 0. κ. C. 59-63. 3.... /....,, λλγ. 90. 4.... /..,... // // 6/00. μ http://mogomash.com/publications/st_st_sles_3.html... 5... /..,.. // μ..-...μ., β00κ.. βγη- 38. 8

6. Advanced Simulation Technology Peview (ASTP)... [ ]. μ http://www.cad.u/u/softwae/pojects.php?poject_id=07. 7. Akes A. Dynamic analysis of an axial piston pump with a two-stage contolle and swash plate position feed back // A. Akes, S. Lin / Fluid Powe: Poc. 8th Int. Symp. Bimingham, 988.. η47-564. 8. Cutis Waguespack. Masteing Autodesk Invento 00 / Cutis Waguespack, Loen Jahaus. Wiley Publishing Inc. USA, 009. 755 p. 9. Dive and contol system fo combaine havestes and foage havestes. Bosch Rexoth Goupe. RE9807, 00. 5 p. 0. Gabah-Aidoo Y. Solidwoks Ultimate Taining / Yoofi Gabah-Aidoo. Authohouse, USA, 0. 808 p.. Heisel U. Auslegung von maschinenkonstuktionen mit Gelenkstab- Kinematik-Gundaufbau. Tools, Komponentenauswahl. Methoden und Efahungen / U. Heisel, V. Maie, E. Lunz // Wt-Wekstattechnik, 884, 998. P. 75-78.. Hydaulic Motos Seies V, V4, T. Catalogue HY7-83/UK. [.] μ http://www.lifcohydaulics.com/catalog/pdf/pake-%8v,v4,t%9- Hydaulic-Motos,-Vaiable-Displacement.pdf 3. Khapak A. Contolled valve plate in bent axis hydaulic motos // Int. Jnl. of Fluid Powe. 00. VШХ. β, β. pp. 64 7. 4. Kobayashi S. Elastohydostatic Lubication of Piston Balls and Slippe Beaings in Swashplate Type Axial Piston Motos (nd Repot, Measu- ement of Flow Rate)). Jnl. Japan Hydaulics and Pnuematics Society. 990. Vol., 7. P. 7-78. 5. Makus Rokala. Analysis of Slippe Stuctue: Piston Pumps. peeen teknillinen ylk tampee univesity of techn. Tampee, 0. 97. 8

6. Seies 40 Axial Piston Motos. Technical Infomation, 007 Saue-Danfoss. 7. The duability test of tacto hydostatic pump type UD 5 unde opeating ХШКН / Š. DЫКЛКЧЭ, J. KШЬТЛК, J. JКЛХШЧТМФý, J. TЮХъФ. Res. Ag. Eng..Vol. 56, 00, No. 3: P. 6-. 8. Thomson L. Family of bent axis motos to meet today's equiement / L. Thomson, L.F Betz // SAE Techn. Pap/ Se. 99. No. 94480. P. -. 9. Vaiable Plug-In Moto A6VE RE 9 Bosch Rexoth. [ ]. μ http://www.boschexoth.com/rdseach/d/_965/e965_04-.pdf. 30. Wasim Younis. Up and Running with Autodesk Invento Pofessional 03: Pat Stess and Fame Analysis. Papeback, 0. βκ0. 3. Yaglinsky V.P. System citeia analysis and function optimization of industial obots / V.P. Yaglinsky, S.S. Gutyya // TKA. Commission of motoization and powe industy in agicultue. OL PAN. Lublin, 006.. 70-8. 3. Yaglinsky V.P. System Modeling of Geas Design Quality / V.P. Yaglinsky, K.I. Zablonsky, S.S. Gutyya // Intenational Confeence on Geas. VDI, Munich, Gemany, 005. P. 47-434. 33. Zhang Y. New swash plate damping model fo hydaulic axial-piston pump/ Y. Zhang, J. S. Cho Nai, N. Maning // Tans. ASME, Jnl. Dyn. Sys., Meas& Contol. Vol. 3. 00. P. 463-470. 34. Zheglova V.M. Analytical substantiation of geometical paametes of the valve plate volume hydomachine / V.M. Zheglova, I.V. Nikolenko // TKA. Commission of motoization and powe industy in agicultue. OL PAN. Lublin, 008. V.8.. γλ-35. 35. Zheglova V.M. Reseaches of geometical paametes of the otay allocato of vaiable displacement axial piston hydomachine / V.M. Zheglova, I.V. Nikolenko, S. Sosnowski // TKA. Commission of motoization and powe industy in agicultue. OL PAN. Lublin, 007. V.7. P. 86-9. 83

36.. Zloto. Analysis of the pessue distibution of oil film in the vaiable height gap between the valve plate and cylinde block in the axial piston pump/. Zloto, A. Nagoka. // Teka. Commission of motoization and powe industy in agicultue. Lublin, 007, Volume VII. C. 93-30 37.. Zloto. Impact of exploitation paametes on the hydostatic elief of the cylinde block in an axial piston pump / Tadeusz Zloto, Damian Sochacki // TKA. Commission of motoization and powe industy in agicultue 0, Vol., No.,. 85-90 84

85

86

87