Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Σχετικά έγγραφα
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Oscillatory integrals

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Finite Field Problems: Solutions

Homework 4.1 Solutions Math 5110/6830

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PhysicsAndMathsTutor.com

The Simply Typed Lambda Calculus


Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

IIT JEE (2013) (Trigonomtery 1) Solutions

Solutions_3. 1 Exercise Exercise January 26, 2017

Orthogonal polynomials

Presentation of complex number in Cartesian and polar coordinate system

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

2 Composition. Invertible Mappings

C.S. 430 Assignment 6, Sample Solutions

Srednicki Chapter 55

Homework 3 Solutions

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Differential equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CRASH COURSE IN PRECALCULUS

On Generating Relations of Some Triple. Hypergeometric Functions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

derivation of the Laplacian from rectangular to spherical coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

Notes on the Open Economy

Solve the difference equation

ECON 381 SC ASSIGNMENT 2

Quadratic Expressions

Math221: HW# 1 solutions

ST5224: Advanced Statistical Theory II

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

A study on generalized absolute summability factors for a triangular matrix

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Section 9.2 Polar Equations and Graphs

Degenerate Perturbation Theory

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order RLC Filters

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework for 1/27 Due 2/5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Trigonometric Formula Sheet

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Statistical Inference I Locally most powerful tests

PARTIAL NOTES for 6.1 Trigonometric Identities

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Matrices and Determinants

Lecture 13 - Root Space Decomposition II

Bessel function for complex variable

EN40: Dynamics and Vibrations

Lecture 22: Coherent States

B.A. (PROGRAMME) 1 YEAR

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Math 6 SL Probability Distributions Practice Test Mark Scheme

Transcript:

Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil ( + + + + f + is lled rel polyomil of rel vrile with rel oeffiiets Emple: + 5, + et re rel polyomils () Comple polyomil f( + + + + + is lled omple polyomil of omple vrile with omple oeffiiets Emple: ( + i) + (5i ), 5i + ( + i) + et re omple polyomils () Degree of polyomil : Highest power of vrile i polyomil is lled degree of polyomil Emple: f ( + + + + + is degree polyomil f ( + 7 + 5 is degree polyomil A polyomil of seod degree is geerlly lled qudrti polyomil Polyomils of degree d re ow s ui d iqudrti polyomils respetively () Polyomil equtio : If f( is polyomil, rel or omple, the f( is lled polyomil equtio Types of qudrti equtio A equtio i whih the highest power of the uow qutity is two is lled qudrti equtio Qudrti equtios re of two types : Purely qudrti +, where, C d, Tle : 5 Adfeted qudrti + +, where,, C d, Roots of qudrti equtio : The vlues of vrile whih stisfy the qudrti equtio is lled roots of qudrti equtio Solutio of qudrti equtio () Ftoriztio method Let + + ( )( β) The d β will stisfy the give equtio Hee, ftorize the equtio d equtig eh ftor to zero gives roots of the equtio Emple : + ( )( + ) ;, / () Sri Dhrhry method : By ompletig the perfet squre s + + + + Addig d sutrtig, + ± whih gives, Hee the qudrti equtio + + ( ) hs two + roots, give y, β Every qudrti equtio hs two d oly two roots Nture of roots I qudrti equtio + +, let us suppose tht,, re rel d The followig is true out the ture of its roots () The equtio hs rel d distit roots if d oly if D > () The equtio hs rel d oiidet (equl) roots if d oly if D () The equtio hs omple roots of the form ± i β,, β R if d oly if D < () The equtio hs rtiol roots if d oly if,, Q (the set of rtiol umers) d D is perfet squre (of rtiol umer) (5) The equtio hs (uequl) irrtiol (surd form) roots if d oly if D > d ot perfet squre eve if, d re rtiol I this se if irrtiol root, the p + q, p, q rtiol is p q is lso root (,, eig rtiol) (6) + iβ ( β d, β R ) is root if d oly if its ojugte iβ is root, tht is omple roots our i pirs i qudrti equtio I se the equtio is stisfied y more th two omple umers, the it redues to idetity + +, ie, Reltios etwee roots d oeffiiets () Reltio etwee roots d oeffiiets of qudrti equtio : If d β re the roots of qudrti equtio + +, ( ) the Coeffiiet of Sum of roots S + β Coeffiiet of Costt term Produt of roots P β Coeffiie t of () Formtio of equtio with give roots : A qudrti equtio whose roots re d β is give y ( )( β) ( + β) + β ie (sum of roots) + (produt of roots) S + P () Symmetri futio of the roots : A futio of d β is sid to e symmetri futio, if it remis uhged whe d β re iterhged

Qudrti Equtios d Iequtios For emple, + β + β is symmetri futio of d β wheres β + β is ot symmetri futio of d β I order to fid the vlue of symmetri futio of d β, epress the give futio i terms of + β d β The followig results my e useful (i) + β ( + β) β (ii) + β ( + β) β ( + β) (iii) + β ( + β )( + β) β( + β ) 5 5 (iv) + β ( + β )( + β ) β ( + β) (v) β ( + β) β (vi) β ( + β)( β) (vii) β ( β)[( + β) β ] (viii) β ( + β)( β)( + β ) Higher degree equtios The equtio p + + + + (i) ( Where the oeffiiets,,, R (or C) d is lled equtio of th degree, whih hs etly roots,,, C, the we write p ( )( )( ) ( { ( Σ ) + ( Σ ) + ( ) } Comprig (i) d (ii), Σ + + + Σ + + d so o d ( ) (ii) Cui equtio : Whe, the equtio is ui of the form + + + d, d we hve i this se + β + γ ; d β + βγ + γ ; βγ Biqudrti equtio : If, β, γ, δ re roots of the iqudrti equtio + + + d + e, the σ σ σ + β + γ + δ β + γ + δ + βγ + βδ + γδ βγ + βδ + γδ + βγδ d e σ βγδ Formtio of polyomil equtio from give roots : If,,, re the roots of polyomil equtio of degree, the the equtio is + + σ + σ σ ( ) σ where σ r r Cui equtio : If, β, γ re the roots of ui equtio, the the equtio is σ + σ σ or ( + β + γ ) + ( β + γ + βγ ) βγ Biqudrti Equtio : If, β, γ, δ re the roots of iqudrti equtio, the the equtio is or σ + σ σ + σ ( + β + γ + δ ) + ( β + γ + δ + βγ + βδ + γδ ) ( βγ + βδ + γδ + βγδ) + βγδ Coditio for ommo roots () Oly oe root is ommo : Let e the ommo root of qudrti equtios + + d + + + +, + + By Crmmer s rule : or, The oditio for oly oe root ommo is ( ) ( )( ) () Both roots re ommo: The required oditio is Properties of qudrti equtio () If f() d f() re of opposite sigs the t lest oe or i geerl odd umer of roots of the equtio f ( lie etwee d () If f ( ) f( ) the there eists poit etwee d suh tht f ( ), < < () If is root of the equtio f ( the the polyomil f ( is etly divisile y ( ), the ( ) is ftor of f ( () If the roots of the qudrti equtios + + d + + re i the sme rtio i e the β β / / The qudrti epressio () Let f ( + +,,, R, > e qudrti epressio Sie, f ( + (i) The followig is true from equtio (i)

Qudrti Equtios d Iequtios (i) f ( > ( < ) for ll vlues of R if d oly if > ( < ) d D < (ii) f ( ( ) if d oly if > ( < ) d D I this se ( D ), f ( if d oly if (iii) If D > d > (<), the < ( > ), f ( > ( < ),, for lyig etwee the roots of f( for ot lyig etwee the roots of f( for eh of the roots of f( (iv) If >,( < ), the f ( hs miimum (mimum) vlue t d this vlue is give y [ f( ] mi (m () Sig of qudrti epressio : Let f ( + + or y + + Where,, R d, for some vlues of, f( my e positive, egtive or zero This gives the followig ses : (i) > d D <, so f ( > for ll R ie, f ( is positive for ll rel vlues of (ii) < d D <, so f ( < for ll R ie, f( is egtive for ll rel vlues of (iii) > d D, so f ( for ll R ie, f( is positive for ll rel vlues of eept t verte, where f ( (iv) < d D, so f ( for ll R ie f( is egtive for ll rel vlues of eept t verte, where f ( (v) > d D >, let f ( hve two rel roots d β ( < β), the f ( > for ll (, ) ( β, ) d f ( < for ll (, β) (vi) < d D >, let f ( hve two rel roots d β ( < β) The f ( < for ll (, ) ( β, ) d f ( > for ll (, β) () Grph of qudrti epressio We hve y + + f( y D + D Now, let y + Y d X + D y + + Y X X Y (i) The grph of the urve y f( is proli (ii) The is of prol is X or + ie (prllel to y-is) (iii) () If >, the the prol opes upwrd () If <, the the prol opes dowwrd >, D < -is -is <, D < (iv) Itersetio with is () Itersetio with -is : For is, y ± D + + For D >, prol uts -is i two rel d distit poits ie ± D For D,prol touhes -is i oe poit, / <, D > -is >, D > -is For D <, prol >, D does ot ut -is (ie imgiry vlue of >, D < () Itersetio with is y-is : For y is, y Wvy urve method ( ) ( ) Let f( ( ) ( ) ( ) (i) where,,, N d,,,, re fied turl umers stisfyig the oditio < < < < First we mr the umers,,,, o the rel is d the plus sig i the itervl of the right of the lrgest of these umers, ie o the right of If is eve the we put plus sig o the left of d if is odd the we put mius sig o the left of I the et itervl we put sig ordig to the followig rule : Whe pssig through the poit the polyomil f( hges sig if is odd umer d the polyomil f( hs sme sig if is eve umer The, we osider the et itervl d put sig i it usig the sme rule Thus, we osider ll the itervls The solutio of f ( > is the uio of ll itervls i whih we hve put the plus sig d the solutio of f ( < is the uio of ll itervls i whih we hve put the mius sig Positio of roots -is -is () If f ( is equtio d, re two rel umers suh tht f ( ) f( ) < hs t lest oe rel root or odd umer of rel roots etwee d I se f () d f () re of the sme sig, the either o rel root or eve umer of rel roots of f( lie etwee d () Every equtio of odd degree hs t lest oe rel root, whose sig is opposite to tht of its lst term, provided the <, D <, D < -is -is

Qudrti Equtios d Iequtios oeffiiet of the first term is +ve eg, + hs oe rel egtive root () Every equtio of eve degree whose lst term is ve d the oeffiiet of first term +ve hs t lest two rel roots, oe +ve d oe ve eg, + + + 5 hs t lest two rel roots, oe +ve d oe ve () If equtio hs oly oe hge of sig, it hs oe +ve root d o more (5) If ll the terms of equtio re +ve d the equtio ivolves o odd power of, the ll its roots re omple Desrte's rule of sigs The mimum umer of positive rel roots of polyomil equtio f ( is the umer of hges of sig from positive to egtive d egtive to positive i f( The mimum umer of egtive rel roots of polyomil equtio f ( is the umer of hges of sig from positive to egtive d egtive to positive i f( Rtiol lgeri iequtios () Vlues of rtiol epressio / for rel vlues of, where d re qudrti epressios : To fid the vlues ttied y rtiol epressio of the form + + + + for rel vlues of, the followig lgorithm will epli the proedure : Algorithm Step I: Equte the give rtiol epressio to y Step II: Oti qudrti equtio i y simplifyig the epressio i step I Step III: Oti the disrimit of the qudrti equtio i Step II Step IV: Put Disrimit d solve the iequtio for y The vlues of y so otied determies the set of vlues ttied y the give rtiol epressio () Solutio of rtiol lgeri iequtio: If d re polyomil i, the the iequtio >, <, d re ow s rtiol lgeri iequtios To solve these iequtios we use the sig method s eplied i the followig lgorithm Algorithm Step I: Oti d Step II: Ftorize d ito lier ftors Step III: Me the oeffiiet of positive i ll ftors Step IV: Oti ritil poits y equtig ll ftors to zero Step V: Plot the ritil poits o the umer lie If there re ritil poits, they divide the umer lie ito ( + ) regios Step VI: I the right most regio the epressio ers positive sig d i other regios the epressio ers positive d egtive sigs depedig o the epoets of the ftors () Lgrge s idetity If,,,, R the, + + )( + + ) ( + ) ( + ) + ( ) + ( ) ( Equtios whih e redued to lier, Qudrti d Biqudrti equtios Type I : A equtio of the form ( )( )( )( d) A, where of vrile ie, < < < d, d, e solved y hge ( ) + ( ) + ( ) + ( d) y ( + + + d) y Type II : A equtio of the form ( )( )( )( d) A where d, e redued to olletio of two qudrti equtios y hge of vrile y + Type III : A equtio of the form ( ) + ( ) A lso e solved y hge of vrile, ie, mig sustitutio ( ) + ( ) y Some importt result () For the qudrti equtio + + (i) Oe root will e reiprol of the other if (ii) Oe root is zero if (iii) Roots re equl i mgitude ut opposite i sig if (iv) Both roots re zero if (v) Roots re positive if d re of the sme sig d is of the opposite sig (vi) Roots re of opposite sig if d re of opposite sig (vii) Roots re egtive if,, re of the sme sig () Let f ( + +, where > The (i) Coditios for oth the roots of f ( to e greter th give umer re ; f( ) ; >

Qudrti Equtios d Iequtios (ii) Coditios for oth the roots of f ( to e less th give umer re, f ( ) >, < (iii) The umer lies etwee the roots of f (, if > ; f( ) < (iv) Coditios for etly oe root of f ( to lie etwee d is f ( ) f( ) <, > (v) Coditios for oth the roots of f ( re ofied etwee d is f ( ) >, f( ) >, d < <, where < (vi) Coditios for oth the umers d lie etwee the roots of f ( is > ; f( ) < ; f( ) <