Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

Σχετικά έγγραφα
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Parts Manual. Trio Mobile Surgery Platform. Model 1033

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ITU-R P (2009/10)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Quantitative Finance and Investments Core Formula Sheet. Spring 2016

HONDA. Έτος κατασκευής


Το άτομο του Υδρογόνου

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Homework 8 Model Solution Section

(... )..!, ".. (! ) # - $ % % $ & % 2007

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Advanced Subsidiary Unit 1: Understanding and Written Response

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

On the Galois Group of Linear Difference-Differential Equations

m 1, m 2 F 12, F 21 F12 = F 21

Ax = b. 7x = 21. x = 21 7 = 3.


Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Empirical best prediction under area-level Poisson mixed models

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Points de torsion des courbes elliptiques et équations diophantiennes

m i N 1 F i = j i F ij + F x

#%" )*& ##+," $ -,!./" %#/%0! %,!

Homework for 1/27 Due 2/5

The ε-pseudospectrum of a Matrix

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Jeux d inondation dans les graphes

Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A.

Ηλεκτρονικοί Υπολογιστές IV

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Alterazioni del sistema cardiovascolare nel volo spaziale

Mesh Parameterization: Theory and Practice

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Υπόδειγµα Προεξόφλησης

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)


Note: Please use the actual date you accessed this material in your citation.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Appendix A. Stability of the logistic semi-discrete model.

Geodesic Equations for the Wormhole Metric


Solutions - Chapter 4

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Math221: HW# 1 solutions

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Lecture 12 Modulation and Sampling

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Vers un assistant à la preuve en langue naturelle

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Approximation of the Lerch zeta-function

Matrices and Determinants

ω = radians per sec, t = 3 sec

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!"!# ""$ %%"" %$" &" %" "!'! " #$!

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

rs r r â t át r st tíst Ó P ã t r r r â

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Analiza reakcji wybranych modeli

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Approximation of distance between locations on earth given by latitude and longitude

Answer sheet: Third Midterm for Math 2339

STANDARD LED LAMPS (ROUND TYPES)

6.4 Superposition of Linear Plane Progressive Waves

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο


TeSys contactors a.c. coils for 3-pole contactors LC1-D

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

Mantel & Haenzel (1959) Mantel-Haenszel

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Transcript:

Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe ha by providing many key formula, candidae will be able o focu more of heir exam preparaion ime on he applicaion of he formula and concep o demonrae heir underanding of he yllabu maerial and le ime on he memorizaion of he formula. The formula hee wa developed equenially by reviewing he yllabu maerial for each major yllabu opic. Candidae hould be able o follow he flow of he formula package eaily. We recommend ha candidae ue he formula package concurrenly wih he yllabu maerial. No every formula in he yllabu i in he formula package. Candidae are reponible for all formula on he yllabu, including hoe no on he formula hee. Candidae hould carefully oberve he omeime uble difference in formula and heir applicaion o lighly differen iuaion. Candidae will be expeced o recognize he correc formula o apply in a pecific iuaion of an exam queion. Candidae will noe ha he formula package doe no generally provide name or definiion of he formula or ymbol ued in he formula. Wih he wide variey of reference and auhor of he yllabu, candidae hould recognize ha he leer convenion and ue of ymbol may vary from one par of he yllabu o anoher and hu from one formula o anoher. Weruhayouwillfindheincluionofheformulapackageobeavaluableudyaide ha will allow for more of your preparaion ime o be pen on maering he learning objecive and learning oucome. Change from Spring 2014 are: Addiion of formula from Chaper 69 and 71 of Fabozzi Addiion of a formula from Chaper 6 of Bluhm Deleion of Chaper 3 and 8 of Tay 1

Inere Rae Model - Theory and Pracice, Brigo and Mercurio Chaper 3 Table 3.1 Summary of inananeou hor rae model Model Dynamic r > 0 r AB AO V dr = k[θ r ]d + σdw N N Y Y CIR dr = k[θ r ]d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r [η a ln r ]d + σr dw Y LN N N HW dr = k[θ r ]d + σdw N N Y Y BK dr = r [η ³ a ln r ]d + i σr dw Y LN N N MM dr = r hη λ ln r d + σr dw Y LN N N γ 1+γ CIR++ r = x + ϕ, dx = k[θ x ]d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x [η a ln x ]d + σx dw Y* SLN N N *rae are poiive under uiable condiion for he deerminiic funcion ϕ. (3.5) dr() =k[θ r()]d + σdw(), r(0) = r 0 (3.6) r() =r()e k( ) + θ k( ) + σ R e k( u) dw (u) (3.7) E {r() F } = r()e k( ) + θ k( ) Var{r() F } = σ2 2k( ) 2k (3.8) B(,T )r() P (, T )=A(, T )e (3.9) dr() =[kθ B(, T )σ 2 kr()]d + σdw T () (3.11) dr() =[kθ (k + λσ)r()]d + σdw 0 (), r(0) = r 0 (3.12) dr() =[b ar()]d + σdw 0 () (3.13) r() =r()e a( ) + b a( ) + σ R a dw 0 (u) (3.14) ˆα = n P n r ir i 1 P n r P n i r i 1 n P n r2 i 1 (P n r i 1) 2 P n (3.15) ˆβ = [r i ˆαr i 1 ] n(1 ˆα) (3.16) V c 2 = 1 P h n r i ˆαr i 1 n ˆβ(1 i 2 ˆα) (3.19) E {r() F } = r()e a( ) and Var{r() F } = r 2 ()e ³e 2a( ) σ2 ( ) 1 (3.20) P (, T )= rp R in(2 r inh y) R f(z)in(yz)dzdy + 2 π 2 0 0 Γ(2p) rp K 2p (2 r) (3.21) dr() =k(θ r())d + σ p r()dw (), r(0) = r 0 (3.22) dr() =[kθ (k + λσ)r()]d + σ p r()dw 0 (), r(0) = r 0 2

(3.23) E {r() F } = r()e k( ) + θ k( ) Var{r() F } = r() σ2 e k( ) e 2k( ) + θ σ2 k( ) 2 k 2k (3.24) B(,T )r() P (, T )=A(, T )e (3.25) 2kθ/σ 2 2h exp {(k + h)(t )/2} A(, T )= 2h +(k + h)(exp {(T )h} 1) B(, T )= 2(exp{(T )h} 1) 2h +(k + h)(exp {(T )h} 1), h = k 2 +2σ 2 (3.27) dr() =[kθ (k + B(, T )σ 2 )r()]d + σ p r()dw T () (3.28) p T r() r() (x) =p χ 2 (υ,δ(,))/q(,)(x) =q(, )p χ 2 (υ,δ(,))(q(, )x) q(, ) =2[ρ( )+ψ + B(, T )] and δ(, ) = 4ρ( )2 r()e h( ) q(, ) Page 68 R(, T )=α(, T )+β(, T )r(), B(,T )r() P(, T )=A(, T )e (3.29) σ f (, T )= B(, T ) σ(, r()) T Page 69 dr() = b(, r())d + σ(, r())dw () b(, x) =λ()x + η(), σ 2 (, x) =γ()x + δ() B(, T )+λ()b(, T ) 1 2 γ()b(, T )2 +1=0, B(T,T)=0 [ln A(, T )] η()b(, T )+1 2 δ()b(, T )2 =0, A(T,T)=1 Page 69/70 Vaicek λ() = k, η() =kθ, γ() =0, δ() =σ 2 Page 70 CIR λ() = k, η() =kθ, γ() =σ 2, δ() =0 b(x) =λx + η, σ 2 (x) =γx + δ µ θ Page 71 lim E{r() F } =exp a + σ2 4a µ µ 2θ (3.31) lim Var{r() F } =exp a + σ2 σ 2 exp 1 2a 2a (3.32) dr() =[ϑ() a()r()]d + σ()dw () (3.33) dr() =[ϑ() ar()]d + σdw() (3.34) ϑ() = fm (0,) + af M (0,)+ σ2 T 2a ( 2a ) (3.35) r() =r()e a( ) + R e a( u) ϑ(u)du + σ R e a( u) dw (u) = r()e a( ) + α() α()e a( ) + σ R e a( u) dw (u) (3.36) where α() =f M (0,)+ σ2 2a 2 ( a ) 2 3

(3.37) E{r() F } = r()e a( ) + α() α()e a( ) Var{r() F } = σ2 2a( ) 2a (3.38) dx() = ax()d + σdw(), x(0) = 0 Page 74 x() =x()e a( ) + σ R e a( u) dw (u) (3.47) E{x( i+1 ) x( i )=x i,j } = x i,j e a i =: M i,j Var{x( i+1 ) x( i )=x i,j } = σ2 2a i =: V 2 2a i r 3 (3.48) x i = V i 1 3=σ 2a [ 2a i 1 µ Mi,j (3.49) k =round x i+1 (3.50) p u = 1 6 + η2 j,k + η j,k 6Vi 2 2,p m = 2 3V i 3 η2 j,k,p 3Vi 2 d = 1 6 + η2 j,k 6Vi 2 2 3V i (3.64) dx α = μ(x α ; α)d + σ(x α ; α)dw x (3.65) P x (, T )=Π x (, T, x α ; α) (3.66) r = x + ϕ(; α), 0 h (3.67) P (, T )=exp R i T ϕ(; α)d Π x (, T, r ϕ(; α); α) (3.68) ϕ(; α) =ϕ (; α) :=f M (o, ) f x (0,; α) (3.69) h exp R i T ϕ(; α)d = Φ (, T, x 0 ; α) := P M (0,T) Π x (0,,x 0 ; α) Π x (0,T,x 0 ; α) P M (0,) (3.70) Π(, T, r ; α) =Φ (, T, x 0 ; α)π (, T, r ϕ (; α); α) (3.71) V x (, T, τ, K) =Ψ x (, T, τ, K, x α ; α) dϕ(; α) (3.74) dr = kθ + kϕ(; α)+ kr d + σdw d Page 100 ϕ VAS (; α) =f M (0,)+(e k 1) k2 θ σ 2 /2 k 2 η j,k σ2 2k 2 e k ( k ) x 0 e k Page 101 P (, T )= P M (0,T)A(0,)exp{ B(0,)x 0 } P M (0,)A(0,T)exp{ B(0,T)x 0 } A(, T )exp{ B(, T )[r ϕ VAS (; α)]} (3.76) dx() =k(θ x())d + σ p x()dw (), x(0) = x 0, r() =x()+ϕ() (3.77) ϕ CIR (; α) =f M (0,) f CIR (0,; α) f CIR 2kθ(exp{h} 1) (0,; α) = 2h +(k + h)(exp{h} 1) + x 4h 2 exp{h} 0 [2h +(k + h)(exp{h} 1)] 2 h = k 2 +2σ 2 4

Chaper 4 (4.4) r = x()+y()+ϕ(), r(0) = r 0 (4.5) dx() = ax()d + σdw 1 (), x(0) = 0 dy() = by()d + ηdw 2 (), y(0) = 0 (4.6) E{r() F } = x()e a( ) + y()e b( ) + ϕ() Var{r() F } = σ2 2a( ) + η2 2b( ) +2ρ ση (a+b)( ) 2a 2b a + b (4.7) r() =σ R 0 e a( u) dw 1 (u)+η R 0 e b( u) dw 2 (u)+ϕ() (4.8) dx() = ax()d + σdfw 1 () dy() = by()d + ηρdfw 1 ()+η p 1 ρ 2 dfw 2 () where dw 1 () =ddfw 1 () and dw 2 () =ρdfw 1 ()+ p 1 ρ 2 dfw 2 () ) ) a(t b(t (4.9) M(, T )= x()+ y() a b (4.10) V (, T )= σ2 T + 2 a 2 a e a(t ) 1 2a e 2a(T ) 3 2a + η2 T + 2 b 2 b e b(t ) 1 2b e 2b(T ) 3 2b +2ρ ση ab (4.11) P (, T )=exp T + e a(t ) 1 a ½ R T + e b(t ) 1 b ϕ(u)du a(t ) x() a e (a+b)(t ) 1 a + b ) b(t y()+ 1 ¾ b 2 V (, T ) (4.12) ϕ() =f M (0,T)+ σ2 at 2 + η2 bt 2 + ρ ση 2a 2 2b 2 ab ( at )( bt ) n (4.13) exp R o T ϕ(u)du = P M (0,T) ½ P M (0,) exp 12 ¾ [V (0,T) V (0,)] (4.14) P (, T )= P M (0,T) exp {A(, T )} P M (0,) A(, T ):= 1 ) ) a(t b(t [V (, T ) V (0,T)+V(0,)] x() y() 2 a b (4.15) P (, T )=A(, T )exp{ B(a,, T )x() B(b,, T )y()} (4.16) σ f (, T )= p σ 2 e 2a(T ) + η 2 e 2b(T ) +2ρσηe (a+b)(t ) 5

Page 152 Cov(df (, T 1 ),df(, T 2 )) d = σ 2 B T (a,, T 1) B T (a,, T 2)+η 2 B T (b,, T 1) B T (b,, T 2) B +ρση T (a,, T 1) B T (b,, T 2)+ B T (a,, T 2) B T (b,, T 1) = σ 2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) +ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) Corr(df (, T 1 ),df(, T 2 )) = σ2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) σ f (, T 1 )σ f (, T 2 ) + ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) σ f (, T 1 )σ f (, T 2 ) Page 153 f(, T 1 T 2 )= ln P (, T 1) ln P (, T 2 ) T 2 T 1 df (, T 1,T 2 )=...d + B(a,, T 2) B(a,, T 1 ) σdw 1 () T 2 T 1 + B(b,, T 2) B(b,, T 1 ) ηdw 2 () T 2 T 1 σ f (, T 1,T 2 )= p σ 2 β(a,, T 1,T 2 ) 2 + η 2 β(b,, T 1,T 2 ) 2 +2ρσηβ(a,, T 1,T 2 )β(b,, T 1,T 2 ) where β(z,, T 1,T 2 )= B(z,, T 2) B(z,,T 1 ) T 2 T 1 Cov(df (, T 1,T 2 ),df(, T 3,T 4 )) d σ 2 B(a,, T 2) B(a,, T 1 ) B(a,, T 4 ) B(a,, T 3 ) T 2 T 1 T 4 T 3 +η 2 B(b,, T 2) B(b,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) T 2 T 1 T 4 T 3 B(a,, T2 ) B(a,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) +ρση T 2 T 1 T 4 T 3 + B(a,, T 4) B(a,, T 3 ) B(b,, T 2 ) B(b,, T 1 ) T 4 T 3 T 2 T 1 Page 160 σ 3 = dz 3 () = σ 2 1 + σ2 2 (ā b) 2 +2 ρ σ 1σ 2 b ā σ 1 dz 1 () σ 2 ā b dz 2(), σ 4 = σ 2 σ 3 ā b Page 161 a =ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 6

ϕ() =r 0 e ā + R 0 θ(v)e ā( v) dv ā = a, b = b, σ1 = p σ 2 + η 2 +2ρση, σ 2 = η(a b) ρ = σρ + η p σ2 + η 2 +2ρση, θ() =dϕ() + aϕ() d Managing Credi Rik: The Grea Challenge for Global Financial Marke, Caouee, e. al. Chaper 20 P (20.2) R p = N X i EAR (20.3) V p = N P j=1 (20.5) UAL p = N P Page 403 NP X i X j σ i σ j ρ ij j=1 NP X i X j σ i σ j ρ ij 1 CV ar(cl)=ead LGD µ µ ρφ 1 (CL)+Φ 1 (PD) Φ PD 1 ρ 1+(M 2.5) b(pd) 1 1.5b(PD) Liquidiy Rik Meauremen and Managemen: Guide o Global Be Pracice, Maz and Neu A Pracioner Chaper 2 Page 33 Page 33 log V () =α + β + σε log V q () =α + β σφ 1 (q) Bond-CDS Bai Handbook: Meauring, Trading and Analying Bai Trade, Elizalde, Docor, and Saluk Page 13, Equaion 1 S = PD (1 R) Page 15, Equaion 2 FR = U AI RA + FC Page 18, Equaion 3 PV[c + p] BP SS = RF A Page 25, Equaion 4 BTP1 =CN (100 R U CP F C)+BN (R+CR BP FC) Page 25, Equaion 5 BTP2 =BN (100 + CR BP FC) CN (U + CP + FC) Page 43, Equaion 7 CN = BP R 100 R U BN 7

A Survey of Behavioral Finance, Barberi and Thaler (1) (x, p : y,q) =π(p)v(x) +π(q)v(y) (2) P i π i v(x i ) where v = xα if x 0 λ( x) α if x<0 and π i = w(p i ) w(pi ), w(p )= P γ (P γ +(1 P ) γ ) 1/γ (3) D +1 D = e g D+σ D ε +1 (4) (5) C +1 = e g C+σ C η +1 C µ µµ µ ε 0 1 w N, η 0 w 1 P (6) E 0 ρ C1 γ =0 1 γ " µc+1 γ (7) 1 = ρe R +1# C, i.i.d.over ime (8) R +1 = D +1 + P +1 = 1+P +1/D +1 D +1 P P /D D (9) r +1 = d +1 +con. d +1 d +con. (10) E π v[(1 w)r f,+1 + wr +1 1] P (11) E 0 ρ C1 γ 1 γ + b 0C γ ˆv(X +1 ) =0 (13) R +1 = P +1 + D +1 P P P (14) p d = E ρ d +1+j E (15) E 0 P =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽ(x +1,z ) ρ r +1+j + E lim ρ j (p +j d +j )+con. j (16) r i r f = β i.1 (F 1 r f )+...+ β i,k (F K r f ) (17) r i, r f, = α i + β i,1 (F 1, r f, )+...+ β i,k (F K, r f, )+ε i, (18) R f = 1 ρ eγg C+0.5γ 2 σ 2 C (19) 1 = ρ 1+f e g D γg C +0.5(σD 2 +γ2 σc 2 2γσ Cσ D w) f (20) R +1 = D +1 + P +1 = 1+P +1/D +1 D +1 = 1+f P P /D D f e g D+σ D ε +1 8

CAIA Level II: Advanced Core Topic in Alernaive Invemen, Black, Chamber, Kazemi Chaper 16 (16.1) P repored (16.2) P repored (16.3) P rue (16.4) P rue = α + β 0 P rue = αp rue =(1/α) P repored = P repored 1 + β 1 P rue 1 + β 2 P rue 2 + + α(1 α)p rue 1 + α(1 α) 2 P rue 2 + [(1 α)/α] P repored 1 +[(1/α) (P repored P repored 1 )] (16.5) R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue + (16.6) P repored (16.7) P repored =(1 ρ)p rue =(1 ρ) P rue + ρp repored 1 + ρ P repored 1 (16.8) R,repored (1 ρ)r,rue + ρr 1,repored (16.9) R,rue =(R,repored ρr 1,repored )/(1 ρ) (16.10) ˆρ = corr(r,repored R 1,repored ) (16.11) ρ i,j = σ ij /(σ i σ j ) (16.12) R repored Chaper 21 Page 262 = α + β 1 R repored 1 + β 2 R repored 2 + + β k R repored k + ε Y = S I E H where Y = yield, S = oal olar radiaion over he area per period, I = fracion of olar radiaion capured by he crop canopy, E = phooynheic efficiency of he crop (oal plan dry maer per uni of olar radiaion), H = harve index (fracion of oal dry maer ha i harveable) Managing Invemen Porfolio: A Dynamic Proce, Maginn, Tule, Pino, McLeavey Chaper 8 Page 523 TRCI = CR + RR + SR Page 553 RR n, =(R + R 1 + R 2 +...+ R n )/n Page 554 rp n DD = i r, 0)] 2 n 1 Page 555 ARR rf SR = SD Page 556 ARR rf SR = DD 9

The Secular and Cyclic Deerminan of Capializaion Rae: The Role of Propery Fundamenal, Macroeconic Facor, and "Srucural Change," Chervachidze, Coello, Wheaon (1) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, )+a 4 RTB + a 7 Q2 (1.1) RRI j, = RR j, /M RR j +a 8 Q3 + a 9 Q4 + a 10 D j (2) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, )+a 4 RTB (2.1) DEBTFLOW = TNBL /GDP +a 5 SPREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j (3) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, )+a 4 RTB +a 5 SPREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 (4) Log(C j, )=a 0 + a 1 yearq + a 2 log(c j, 1 )+a 3 log(c j, 4 )+a 4 log(rri j, )+a 5 RT B +a 6 SPREAD + a 7 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyi of Financial Time Serie, Tay Chaper 9 (9.1) r i = α i + β i1 f 1 + + β im f m + i, =1,...,T,,...,k (9.2) r = α + βf +, =1,...,T (9.3) R i = α i 1 T + Fβ 0 i + E i (9.4) R = Gξ 0 + E (9.5) r i = α i + β i r m + i, i =1,...,k =1,...,T (9.11) Var(y i )=wiσ 0 r w i, i =1,...,k (9.12) Cov(y i,y j )=wiσ 0 r w j, i, j =1,...,k (9.13) kp P Var(r i )=r(σ r )= k P λ i = k Var(y i ) (9.14) ˆΣ r [ˆσ ij,r ]= 1 T 1 (9.15) ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 TP =1(r r)(r r) 0, r = 1 T TP r =1 (9.16) r μ = βf + (9.17) Σr = Cov(r )=E[(r μ)(r μ) 0 ]=E[(βf + )(βf + ) 0 ]=ββ 0 + D (9.18) Cov(r, f )=E[(r μ)f]=βe(f 0 f)+e( 0 f)=β 0 (9.19) ˆβ [ ˆβ i ij ]= hpˆλ1 ê 1 pˆλ2 ê 2 pˆλm ê m (9.20) LR(m) = T 1 16 (2k +5) 23 m ³ ln ˆΣ r ln ˆβ ˆβ 0 + ˆD 10

Handbook of Fixed Income Securiie, Fabozzi Chaper 69 (69 4) Ae Allocaion P (w P w B ) R B (69 5) Securiy Selecion P w P (R P R B ) (69 12) α P k f P k αb k f B k = P α P k, f P k, P α B k, f B k, Chaper 70 (70 1) Ae Allocaion w P P µ w P w wb (TR B P w B TR B ) (70 2) Secor Managemen P w P (TR P TR B ) (70 3) Top-Level Expoure (w P w B ) TR B (70 4) Ae Allocaion w P P µ w P w wb (ER B P w B ER B ) (70 5) Secor Managemen P w P (ER P ER B ) (70 6) Top-Level Expoure (w P w B ) ER B Chaper 71 Page 1737 R P R B = P A = β (R P R B ) (R P R B )/T (1 + R P ) 1/T (1 + R B ) 1/T C = RP R B A P T =1 (RP R B ) P T =1 (RP R B ) 2 β = A + C(R P R B ) Inroducion o Credi Rik Modeling, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 Page 237 M n = M1 n 11