ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

2 SFI

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Delta Inconel 718 δ» ¼

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

Base Metal + Alloying Elements

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

p din,j = p tot,j p stat = ρ 2 v2 j,

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

S i L L I OUT. i IN =i S. i C. i D + V V OUT

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Σπανό Ιωάννη Α.Μ. 148

Blowup of regular solutions for radial relativistic Euler equations with damping

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Ανώτερα Μαθηματικά ΙI

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

High order interpolation function for surface contact problem

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Biodiesel quality and EN 14214:2012

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

Conductivity Logging for Thermal Spring Well

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Transcript:

Ñ 45 µ Ñ 5 Å Vol.45 No.5 2009 Ü 5 Ñ 585 591 Ò ACTA METALLURGICA SINICA May 2009 pp.585 591 ØSrÚCa Mg 12Zn 4Al 0.3MnÜ Ú º± 1) ¼µ 1,2)» ² 1,2) 1,2) ¹³ 3) 1) ÙÓ Ä¼ Ź, Ó 211189 2) Đ ½ Ä Ð ÔÀ Ì, Ó 211189 3) Đ Å Ä¹ Ð Â, Ó 211224 Ø Mg 12Zn 4Al 0.3Mn( À, %) Æ,  6 Æ. Á ½ Á, Mg 12Zn 4Al 0.3Mn Æ Û α Mg Đ ³ Ç Q. Æ À Sr Í, Ç Ã Mg 32(Al, Zn) 49 Ê Ø Mg 51Zn 20 ¼. Æ Æ Sr «Ca Í, Û Á  Al 2Mg 5Zn 2 ¼. ÔÉ Sr À, Æ Í Â» ÝÐ, µ ÈÙ» ; Sr «Ca Æ ÄÆ ¹ Ý Ȼ, ÝÐ. 175 /70 MPa ß», Mg 12Zn 4Al 0.2Sr 0.4Ca 0.3Mn Æ Á ¹µ ÈÙ. ÖÞ Æ,, ÈÙ, ¹µ ÈÙ ÒÕ Ù TG146.2 Å A Ù 0412 1961(2009)05 0585 07 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg 12Zn 4Al 0.3Mn ALLOY CONTAINING Sr AND Ca WAN Xiaofeng 1), SUN Yangshan 1,2), XUE Feng 1,2), BAI Jing 1,2), TAO Weijian 3) 1) School of Materials Science and Engineering, Southeast University, Nanjing 211189 2) Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189 3) Jiangsu Engineering Research Center for Magnesium Alloys, Nanjing 211224 Correspondent: SUN Yangshan, professor, Tel: (025)52090689 20, E-mail: yssun@seu.edu.cn Supported by National Key Basic Technology R&D Program of China (No.2006BAE04B07) and Special Program for the Commercialization of Key Science and Technology Achievements Financed by Jiangsu Science and Technology Department (No.BA2005004) Manuscript received 2008 05 06, in revised form 2008 10 24 ABSTRACT Magnesium alloys have emerged as potentially good candidates for numerous applications, especially in automotive industry. Although the commonly used magnesium alloys, such as AZ91 and AM60 based on Mg Al system have excellent castability, good room temperature mechanical properties and low cost, the application of these alloys has been limited to temperatures below 120 because of their poor heat resistance, especially creep property at elevated temperatures. Recent development reported that magnesium alloys with high zinc and low aluminum concentrations (Mg Zn Al based alloys) exhibit better creep properties than Mg Al based alloys at temperatures above 150 and small amounts of alkaline earth element (Sr and Ca) additions to the Mg Zn Al ternary alloys lead to further improvement of their mechanical properties. The purpose of the present paper is to describe the effects of calcium and strontium additions on the microstructure and mechanical properties of Mg 12Zn 4Al 0.3Mn based alloy. The results indicate that the as cast microstructure of Mg 12Zn 4Al 0.3Mn alloy consists of the α Mg matrix and a quasicrystalline Q phase at grain boundaries. Small amounts of Sr addition to the master alloy result in the transition of metastable Q phase to the equilibrium * սѲ Ò 2006BAE04B07  ½Ñ Ã Â Ë BA2005004 Ë ² «: 2008 05 06, Ë ² «: 2008 10 24 ÜÆ :, Õ, 1980 Ý, È

586 Ñ 45 µ Mg 32 (Al, Zn) 49 phase and the formation of binary eutectic phase Mg 51 Zn 20. Another lamellar eutectic phase Al 2 Mg 5 Zn 2 is observed in the as cast microstructure when Ca combined with Sr is added to the base alloy, and its volume fraction increases with increase of Ca addition. The single addition of Sr causes the increase of tensile strength, but decrease of creep resistance at elevated temperatures. However, the creep properties are significantly improved if Sr is added in combination with Ca to the master alloy due to the formation of ternary eutectic phase Al 2 Mg 5 Zn 2, which shows the high thermal stability at elevated temperatures. The alloy with composition of Mg 12Zn 4Al 0.2Sr 0.4Ca 0.3Mn exibits good creep resistance at 175 and 70 MPa. KEY WORDS magnesium alloy, microstructure, mechanical properties, creep resistance Ð ß Ç Û Mg Al ¹ Æ, AZ91 à AM60. Ç Ô«½Ú ¼ Ü, º Þ 120 Î, Ç Þú ÉÚ Þ¼. 20 Þ, Mg Al ¹ Ç Ø RE, Ca à Si Æ Ç Ò ÉÚ, ÃÉÀ À. ± Ç À ÉÚ Ã Ø, Ã Ç Â [1,2]. ÝÇ ³ ÀÎÇ ÉÚ Ò Ç, ÊÐ Ç È Õ. Zn Ç (Mg Zn Al ¹) ³, À Ã Ò ÉÚ Õ, ³ À Ãß [3 6]. Zhang [7] Đ Zn Á 8% 14%( Á, ¼ ), Al Á 2% 6% Ç Ã ¹,»Â Al Á 4%, Ç ³ À ÎÇÉ Ú., Ù ÃÛ Ca عÎĐÇ ÉÚ [8]. Zhang º Å, Ù Mg 12Zn 4Al 0.3Mn( Á, %) Ç, ÜØ ¹Æ Sr, Ù ÇØ¹ Sr à Ca Æ, ¹ à 2 Û Æ ĐÇ Ã ÉÚ. 1 ÓÑ Â ½ à 6 Ç ( 1). No.1 Ç (ZA124, Mg 12Zn 4Al 0.3Mn) Ç, Ú 5 Ç Ê ÙÇ Mg 27%Sr à Mg 30%Ca Ç Ø¹± Á Sr à Ca. ¹ Æ Ì², Å Ç Æ ² Î, Å ÆÃÔØ Î. ² à Á ¹ 99%CO 2 +1%SF 6 ( ) ÇÆ Ï. ² Î, ÓÜÇ 700 ¼ 10 min Î, ¹ Cu.  WD 10A ÖÌ Ú 1 Ã È Table 1 Compositions of the alloys prepared (mass fraction, %) Alloy Mg Zn Al Sr Ca Mn No.1 (ZA124) Bal. 12.0 4.0 0.3 No.2 (ZAJ12402) Bal. 12.0 4.0 0.2 0.3 No.3 (ZAJ12406) Bal. 12.0 4.0 0.6 0.3 No.4 (ZAJ12408) Bal. 12.0 4.0 0.8 0.3 No.5 (ZAJX1240202) Bal. 12.0 4.0 0.2 0.2 0.3 No.6 (ZAJX1240204) Bal. 12.0 4.0 0.2 0.4 0.3 Æ, Æ ³ ¹ ÉÀ Á, Î 18 mm 3.2 mm 1.8 mm. Å Ö È (GB/T 2039 1997) غ, ¹ à 10 à 100 mm.  RD2 3 Ã È Æ, 175 /70 MPa, 100 h. à 2 3  ² º. ¹ 4% Ñ ³Ó. Ç Olympus BHM à Sirion ½ Ö (SEM) Æ ¾. ¹ SEM Ú (EDXS) Ã Ö (TEM) Ø. (DSC)  ³ ËÚ Ar Ï NET- ZSCH STA449C à ǽ Á Ö Æ, Þ«30 700, Î 20 /min. 2 ß 2.1 ÝÐÐ ««1 ØÇ Ç. No.1 Ç α Mg Ã Ê ÆÒ («1a). Sr عÎ, Ç Ã,  à 2 ± Å Ù ( «1b A à B ØÇ). 2 Ù Ã Å Ç, A Æ Ç É, Þ, ÖÙ Â Ù, B Æ Ù Þ No.1 Ç Ù, Ú Å Ç, α Mg Æ, ÉÅ ÉÖ ØÚÊÑ Åß ². Ca Sr ÇØ¹Î,  à ƽ («1c C ØÇ), Õ Ca Á Ø, ½ («1d). «2a No.1 Ç SEM. «¾Þ, Ù Ê, Å ±. Ç Ù TEM «2b Ø Ç, ¼«ß ÖÌ (SAED), Ú³ 5 È ÄĐ, ¾Ù Ø Ù ÊÔ È, Ú Q. EDXS ( 2), Q Mg, Zn à Al, Mg Zn Al»Æ¹ Mg 32 (Al, Zn) 49 [9]. «3a Ê No.3 Ç ÀÜ SEM. Æ («3a A Æ) Ê ¾ Þ Ç («1b A Æ), Å ½ ². 2 EDXS Ç,»Æ½ Mg, Zn à Á Al Æ. «3b à c ÊÚ TEM Ã

Ñ 5 Å : Sr Á Ca Mg 12Zn 4Al 0.3Mn Å µá ÇØ 587 Æ 1 Æ Û Fig.1 As cast microstructure of alloys No.1 (a), No.3 (b), No.5 (c) and No.6 (d) Æ 2 No.1 Æ SEM Ä Â Q TEM ½ Fig.2 SEM micrograph (a) and TEM micrograph of Q phase in alloy No.1 and corresponding SAED pattern (the insert) taken from the Q phase (b) 2 Ú Û µå Table 2 Results of EDXS analyses obtained from intermediate phases in the alloys studied (atomic fraction, %) Phase Mg Zn Al Ca Sr Q (Fig.2a) 51.3 33.7 15.0 ε (A in Fig.3a) 73.4 22.1 4.4 τ (B in Fig.3a) 38.9 32.5 25.7 2.8 ϕ (C in Fig.4a) 60.3 15.9 20.9 1.2 1.4 ß SAED. Ø, ØÇ Mg 51 - Zn 20, ¹ ( Ù Immm, a=1.4083 nm, b=1.4486 nm, c=1.4025 nm) [10], Ô«ε. «3a ¾ ÉÔ Ç («1b B Æ), EDXS ( 2), Æ Ù Mg, Zn à Al Ç È Q, Á Sr. SAED, Úʳ bcc ¾ Mg 32 (Al, Zn) 49 ( Ù T 5 h, a=1.416 nm)[11], ß SAED Ç «3d, Ô«τ. ¾Þ, È Q Ê Ë τ ±Ü. τ ÃÈ Q Å Æ, ÝDZÚÐà Sr Ç Ñ Á Q Í ¾ÚÉ. No.6 Ç ÀÜ SEM Ç «4a. ¾ ƽ («1c C Æ)

588 Ñ 45 µ Æ 3 No.3 Æ SEM  TEM ½Ø SAED Fig.3 SEM micrograph (a) and TEM bright field image (b) taken from No.3 alloy, and SAED pattern of α Mg matrix and ε (c) and SAED pattern of τ (d) Æ 4 No.6 Æ SEM  TEM ½Ø SAED Fig.4 SEM micrograph (a) and TEM bright field image (b) taken from No.6 alloy, and SAED pattern of α Mg matrix and ϕ (c) SEM. 2 EDXS Ç, ½ Ò Ð Mg, Zn à Al, Ù Á Sr à Ca. «4b à c Ç ½ TEM ß SAED, Ø, ؽ ¹ ¾ Al 2 Mg 5 Zn 2 ( Ù Pbcm, a=0.90 nm, b=1.70 nm, c=1.97 nm) [12], ϕ. Ç ¾ ¼: (1) ZA124 Ç Ð α Mg ó È Q (2) Ç Ø¹ Á Sr Î, Ç È Ä Ë τ, Ú ÃÅ È Q Æ. Ç,»Æ ε ½ (3) Ca Ø¹Î Â Ã Æ ½ ϕ, ÕÊ Ca عÁ Ø, ϕ. 2.2 ÝÐÐ Ç ÀÜ Î Ã (200 ) ß É ÚÆ 3. Đ Sr Ç (No.2 4), Õ Sr ع Á Ø, Î º Þ σ b Ã Î δ ¾ μ É. Sr ÁÏ 0.6%(No.3 Ç ), Ç σ b à δ Ï º, 199 MPa à 2.4%. Ç (No.1), σ b à 23%; ± Ôµ Ø Sr عÁÎ, Ç σ b Å ¼. 200 ¼, Ó Ç σ b ÑÕ Sr Á Ø ¾ Ø ÎÝ É, ÐÉ ÐÝ. Sr عÁÏ 0.8% (No.4 Ç ), Ç ÉÚ ¾ Ç. Sr عÁ 0.2% ¼, ع Á Ca(No.5 à No.6) Î, Ç Î Ã ¼ σ b à δ Û Ø¼, Þ (σ 0.2 ) Ï. ÜØ Sr Ç, Ca Sr ÇÇ Î, Ç

Ñ 5 Å : Sr Á Ca Mg 12Zn 4Al 0.3Mn Å µá ÇØ 589 à ÉÚ ¼ É. 2.3 ÝÐÐ «5a ØÇ Ê Ç 175 /70 MPa ¼, «5b ÆÂà 100 h Î Ç ÎÃß Á. Àܼ, No.1 Ç ±Ü ÎÃß 1.01 10 8 s 1 à 0.57%, º ÉÚ º ¼ AZ91 à AM60 Mg Al ¹ Ç [13]. 100 h Î, Ç ÛÍ Ò 2, ÜØ Sr 3 Ç (No.2 4) ÎÉ, Îà 100 h Îß Á Ç (No.1). ع Sr à Ca 2 Ç (No.5 à No.6) À º ÉÚ, Õ Ca عÁ Ø, Ç ÎÃ ß ÏÁ Ý, ع 0.2%Sr 3 È Ï Ä± ÊÛ Table 3 Tensile properties of alloys at room temperature and 200 Alloy Room temperature 200 No. σ b σ 0.2 δ σ b σ 0.2 δ MPa MPa % MPa MPa % 1 162 140 1.3 133 114 3.4 2 171 149 2.1 167 135 4.6 3 199 147 2.4 170 142 4.1 4 170 138 1.4 148 129 1.9 5 173 151 1.3 158 140 2.0 6 161 154 1.0 158 146 1.6 Creep strain, % Minimum creep rate, 10-9 s -1 1.2 0.8 0.4 0.0 30 25 20 15 10 5 (a) No.1 No.2 No.3 No.4 No.5 No.6 0 20 40 60 80 100 120 Time, h 3.0 (b) 23.3 2.5 10.1 Minimum creep rate 100 h creep strain 0.57 13.0 0.84 11.8 0.72 1.00 7.41 7.13 0.42 0.35 0 0.0 No.1 No.2 No.3 No.4 No.5 No.6 Sample Æ 5 175 /70 MPa»µÆ µ Ø µ Í Â Þ Í Fig.5 Creep curves (a) and minimum creep rate and 100 h creep strain (b) of alloys at 175 /70 MPa 2.0 1.5 1.0 0.5 100 h creep strain, % à 0.4%Ca Î No.6 Ç ±Ü Î (7.13 10 9 s 1 ) Ç ¼ à 30%, 100 h ß Á (0.35%) Ñ Ç ß Á 60%, Ï Ã 6 Ç Ôº. 3 Ô 3.1 ¹ Vogel [14] ¾, À ¼ ZA85 Ç ³ ¾ È, [15,16], Đ Mg Zn Al ¹Ç, ½ ß ¼ Å È. Cu À ZA124(No.1) Ç, Ñ Ã È, Ô µ±âã ZA ¹Ç È Æ ß ¼ÑÚ Å, Vogel [14] Ô. ²Đ No.1 Ç ( Ç ) Æ DSC, DSC («6) 2 («I à II), Đß ³ ² ÃÒ Ä. Ç Mg Zn Al»ÆÓ «[9,17], ¾Ù ÐÇ ZA124(No.1) Ëß ¼Åß: (1) 590 Å À α Mg ; (2) 350, ½ Åß: L 1 α Mg+ϕ+L 2, ϕ ; (3) ÕÎ ϕ Ó L 2 Åß: L 2 +ϕ α Mg+τ+L 3 ; (4) Ó ½ Åß: L 3 α Mg+τ. ÝǾ٠ÐÇ Î ß α Mg à τ. Åß (3) à (4) Þ, Åß Á, ØÙ DSC Ç [7]. Henley [18], Q Ê τ Đß Æ Ëß ². Bergman [11], τ ¾ ÆÊ ÌÆ, Ú Ù bcc Æ. Wang [19], Mg Zn Al ¹Ç È ÑÍ ÌÆ, ± 2 Ʊ. Ç º, Æ Ëß ¼, ZA124 Ç Á ÌÆ¾Ú Å Æ ÐÆ È. Zhang [7] Đ Zn Á 14%, Al Á 2% 6% ZA ¹Ç ß Ò Ä Ã Î, ± Zn/Al Ç ³ ± Ä ², 4 ØÇ. Heat flow, mw 250 200 150 100 50 0 Phase transformation point I Phase transformation point II 0 100 200 300 400 500 600 700 Temperature, o C Æ 6 ZA124 Æ DSC Fig.6 DSC heating curves of ZA124 alloy

590 Ñ 45 µ Zhang, Zn/Al, Ë Ã ε Å. Sr ÉÆ, Ç ß, Sr Û À, Å Ô», à Zn à Al Ì Ôµ ¼, É Ó Zn/Al, ËÅà ε Å. É 2 ¾³, Á Sr ³¹ τ Î, ¾Ú Ù ÌÆ ÐÆ Æ, É É ±ÜÈ (Q) Ë (τ) Ä. Ca Sr ÇØ¹Î, Ç Â ϕ ½, ² Zhang, Ca Ø¹Ý ÃÓ Zn/Al Þ, É Ë Ã ϕ Å. 2 EDXS, Ca Ç (No.5 à No.6) ϕ Í Ca. ¾ ϕ Æ 152 Ì, Mg Ì 84, 68 Ê Zn à Al (Zn à Al Ì ) ² ÞÓÒ»Æ: K = nv/v (, n Ê Æ Ì ; v ÊÔ Ì ; V Æ ) à Mg, Al, Zn 4 ² Zn/Al ZA ºÈ Ó Å Ä ³ [7] Table 4 Second phase transformations and final intermetallic phases of ZA alloys with different Zn/Al ratio [7] Alloy Second phase Final intermetallic transformation phase ZA142 L α Mg+ε+τ ε, τ ZA144 L 1 α Mg+ϕ+L 2 τ L 2 +ϕ α Mg+τ+L 3 L 3 α Mg+τ ZA146 L 1 α Mg+ϕ+L 2 ϕ, τ L 2 +ϕ α Mg+τ Ì, ¾ÓÒÂ Þ (K) 73.7%. τ bcc Õ, Æ ÌÏ 162, Mg Ì 64, Ê Zn à Al, Þ K 78.3%. Ca Ì Mg, Mg Ì Al à Zn. Ca à Mg Ì, ØÙ³¹ Ca ¾Ú 2»Æ Mg Ì. ² ÞÃ Ì Î Àß º, Ca ϕ ³ÞÐ τ ³ Þ, ÝÇ, ÕÊ Ca عÁ Ø, Ñ ÛË ϕ Å, Ú τ Å. 3.2 Û 3 ØÇ  ²¾Þ, عËÁ Sr ¾± ÞÐ Ç Ã ÉÚ, ع Sr Î. ZA ¹Ç È ³ ÐÞÃÌÉ [14], Sr عÎ, ÚÄ τ à ε, É ÃÈ ĐÇ ÉÚ. ² Ë Mg Zn «, ε Ê 330 350 Å. Wei [20] ¼Ú «: Mg 51 Zn 20 α Mg+MgZn, MgZn ²Õ, ĐÇ ÉÚ±.  ß, ± Ù ² «, ØÙ Ç Â Î MgZn, Ñ ÚĐ ÉÚ ±. Ca à Sr ÇØ¹, Ç Þ Ø, ¾Ú Ca ³¹ à ±ØÉ. Ç º ÉÚ Ç ±ØÉ, ÔµÝ߯ Sr à Ca ĐÇ, SEM ¾ Ã Ç Î. É Ç («7a) ¾Ù Â, Î ÆÈ  ÃÎ Ç Æ 7 Æ µ Í SEM Fig.7 SEM micrographs of alloys No.1 (a), No.3 (b), No.5 (c) and No.6 (d) after creep test at 175 /70 MPa

Ñ 5 Å : Sr Á Ca Mg 12Zn 4Al 0.3Mn Å µá ÇØ 591, Ç, È Ì Ù Ç º, ÌÉ, [14] Ô. «7b ع 0.6%Sr Î Ç (No.3) Î. «¾Þ, Î Ù (τ ε)  ÃÉ Ç, ± Ö, Sr عÎÅ Ù º Ú. [20], ε ÔØ Þ (330 350 ) ¼ «. Ó Â Þ 175, ε «Þ, ¼  Æ, ß ¾Ú Ë ε «, ÝÇ ÃÇ ÉÚ. «7c ع Sr à Ca No.5 Ç Î. ÀÜ, Î ½ Å, Æ Ù ÁÇ Â, Ca عÙÎ ÃÇ ±ØÉ. Õ Ca Á Ø, No.6 Ç Å Ã ±ØÉ ½ ϕ («7d), Ú ÀРñØ, ¼ Õ, Ç Â Ç. 4 ß (1) Mg 12Zn 4Al 0.3Mn Ç ÀÜ α Mg à ÆÈ Q, Ú»Æ Ë «Mg 32 (Al, Zn) 49 (τ). (2) Sr عΠMg 12Zn 4Al 0.3Mn Ç, ÀÜ ÆÈ Ä Mg 32 (Al, Zn) 49 (τ),  à α Mg+Mg 51 Zn 20 (ε) ½. Ca Sr Ø¹Ç Î, ÀÜ Â Ã ±ØÉ α Mg+Al 2 Mg 5 Zn 2 (ϕ) ½, Ú Õ Ca ع Á Ø Ø. (3) Sr Ø ÃÇ Î Ã 200 Þ ¼ ÉÚ, º Þà ÞÕ Sr عÁ Ø ¾ ÎÝ É. Ca Sr ÇØ¹ÅÇ º Þ, ÞÏ. (4) Mg 12Zn 4Al 0.3Mn Ç Ü Ø Sr Ç º ÉÚ, Ca ÇØ¹Î, ÉÚ, Ca عÁÏ 0.4%, Ç À º ÉÚ. Đ [1] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259 [2] Li P J, Zeng D B, Guo X T. Chin Rare Earths, 2002; 23(2): 63 (Đ,, ÏÞ., 2002; 23(2): 63) [3] Luo A A. Int Mater Rev, 2004; 49: 13 [4] Zeng R C, Ke W, Xu Y B, Han E H, Zhu Z Y. Acta Metall Sin, 2001; 37: 673 ( ±,», Í, Ì, ÍĐ., 2001; 37: 673) [5] Zhang Z, Couture A, Luo A. Scr Mater, 1998; 39: 45 [6] Zhang J, Guo Z X, Pan F S, Li Z S, Luo X D. Mater Sci Eng, 2007; A456: 43 [7] Zhang Z, Tremblay R. Canad Metall Quart, 2000; 39: 503 [8] Zhang Z, Tremblay R, Dubé D. Mater Sci Eng, 2004; A385: 286 [9] Liu C M, Zhu X R, Zhou H T. Magnesium Phase Diagram. Changsha: Central South University Press, 2006: 256 (ÊÄ, ̱, Þ. Æ Å. ¾: Ô Á, 2006: 256) [10] Higashi I, Shiotani N, Uda M, Mizoguchi T, Katoh H. J Solid State Chem, 1981; 36: 225 [11] Bergman G, Waugh J L T, Pauling L. Acta Crystal Logr, 1957; 10: 254 [12] Bourgeois L, Muddle B C, Nie J F. Acta Mater, 2001; 49: 2701 [13] Sun Y S, Zhang W M, Min X G. Acta Metall, 2001; 14: 330 [14] Vogel M, Kraft O, Dehm G, Arzt E. Scr Mater, 2001; 45: 517 [15] Takeuchi T, Murasaki S, Matsumuro A, Mizutani U. J Non Cryst Solids, 1993; 914: 156 [16] Niikura A, Tsai A, Nishiyama N, Inoue A, Masumoto T. Mater Sci Eng, 1994; A1387: 181 [17] Petrov D V, Petzow G, Effenberg G. Aluminum Magnesium Zinc Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams. Weinheim: VCM, 1993: 57 [18] Henley C L, Elser V. Philos Mag, 1986; 53B: 59 [19] Wang S Q, Ye H Q. Philos Mag, 1991; 64B: 551 [20] Wei L Y, Dunlop G L, Westengen H. Metall Mater Trans, 1995; 26A: 1947