Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Σχετικά έγγραφα
Higher spin gauge theories and their CFT duals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

AdS black disk model for small-x DIS

Non-Gaussianity from Lifshitz Scalar

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Relativistic particle dynamics and deformed symmetry

UV fixed-point structure of the 3d Thirring model

Solutions to Exercise Sheet 5

Probability and Random Processes (Part II)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

D Alembert s Solution to the Wave Equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Srednicki Chapter 55

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Aspects of the BMS/CFT correspondence

Parametrized Surfaces

Homework 8 Model Solution Section

D-term Dynamical SUSY Breaking

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Second Order RLC Filters

Lecture 21: Scattering and FGR

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Hartree-Fock Theory. Solving electronic structure problem on computers

Part III - Pricing A Down-And-Out Call Option

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Aspects of the BMS/CFT correspondence

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Solutions - Chapter 4

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Finite Field Problems: Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Graded Refractive-Index


Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Neutrino emissivities in quark matter

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Differential equations

Second Order Partial Differential Equations

1 String with massive end-points

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Space-Time Symmetries


ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Hadronic Tau Decays at BaBar


Higher Derivative Gravity Theories

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Contents. 1.1 Quantum Spin Liquids Sachdev-Ye model Out-of-time-ordered correlator... 28

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

6.4 Superposition of Linear Plane Progressive Waves

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

On the Galois Group of Linear Difference-Differential Equations

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Example 1: THE ELECTRIC DIPOLE

The Pohozaev identity for the fractional Laplacian

Elements of Information Theory

Derivation of Optical-Bloch Equations

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Markov chains model reduction


Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Exercises to Statistics of Material Fatigue No. 5

Non-Abelian Gauge Fields

Mean-Variance Analysis

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Solar Neutrinos: Fluxes

An Inventory of Continuous Distributions

Gaussian related distributions

Dark matter from Dark Energy-Baryonic Matter Couplings

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Chapter 9 Ginzburg-Landau theory

Variational Wavefunction for the Helium Atom

Geodesic Equations for the Wormhole Metric

Local Approximation with Kernels

Zero-Mode Anomalies and Related Physics in Graphene

( y) Partial Differential Equations

High order interpolation function for surface contact problem

Section 8.3 Trigonometric Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Supplementary Appendix

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Computing the Macdonald function for complex orders

BandPass (4A) Young Won Lim 1/11/14

Transcript:

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon, South Korea, September 5-9, 06

J ijkl χ χ Ν χ This talk Sachdev-Ye-Kitaev model χ Ν - infra-red emergent conformal symmetry - soft-mode action & mapping to Liouville quantum mechanics - IR universal assymptotics of correlation functions Holographic principle & NAdS /NCFT correspondence χ i

Sachdev-Ye-Kitaev model S. Sachdev, PRX 5 (05) 0405 A. Kitaev, talks at KITP, Spring 05 Hˆ N = 4! ijkl J χ χ χ χ ijkl i j k l χ Ν J ijkl χ χ - Couplings J s are quenched random Gaussian variables: χ Ν χ i ( ) 3 J J J ijkl = 0; ijkl = 3! N Class D Majorana wire {χ i, χ j }=δ ij

Effective action S. Sachdev 05; J. Maldacena & D. Stanford 05 (R-times) replicated Matsubara action NJ exp exp ' R R 4 ˆ a ab H dτ = Gττ ' dτ dτ a= 8 a, b = ab a b -point Green s function: G ( τ ) ( τ ') ττ ' χi χi N i

Effective action S. Sachdev 05; J. Maldacena & D. Stanford 05 (R-times) replicated Matsubara action NJ exp exp ' R R 4 ˆ a ab H dτ = Gττ ' dτ dτ a= 8 a, b -point Green s function: Gττ = χ χ ( τ ) ( τ ') ab a b ' i i N i Resolution of identity ab a b T = δ NGττ ' + χi ( τ ) χi ( τ ') DG = exp tr N G χi χi D( G, ) i Σ Σ Σ i

Effective action S. Sachdev 05; J. Maldacena & D. Stanford 05 - integrating out Majoranas Self-energy N J ab 4 ba ab S[ G, Σ ] = tr ln ( τ + Σ) + Gττ ' dτ dτ ' + Στ ' τgττ ' dτ dτ ' 4

Effective action S. Sachdev 05; J. Maldacena & D. Stanford 05 - integrating out Majoranas Self-energy N J ab 4 ba ab S[ G, Σ ] = tr ln ( τ + Σ) + Gττ ' dτ dτ ' + Στ ' τgττ ' dτ dτ ' 4 Emergent conformal symmetry in the IR limit - reparametrization of time: τ = f ( t) - Green s function: G% f G f - Self-energy: [ ] / 4 [ ] / 4 t t = '( t) τ τ '( t) Σ% Σ τ τ [ ] 3/ 4 [ ] 3/ 4 t t = f '( t) f '( t) τ f(t) t

Saddle point Self-consistent Dyson equation (S. Sachdev, J. Ye 993) ( ) ab ab 3 =, Σττ ' J Gττ ' + Σ G = τ Mean-field solution G δ τ τ ' ab ab τ τ ' / J (!) breaks IR conformal symmetry down to SL(,R)

Conformal symmetry (d=) A. Kitaev 05 Infinitesimal reparametrization transformation τ = t + a + a t + a t + a < < g τ = 0 g( t) + ( ) k ( ) k = 0..., + a t g t + k t k... Virasoro algebra (d=) [ Lˆ, Lˆ ] = q p Lˆ, Lˆ : = t p, p 0 ( ) + p q p q p t Subgroup H=SL(,R) at + b τ = h ( t) - spanned by generators with p=0,, ct + d

IR soft-mode action J. Maldacena & D. Stanford 05 Goldstone s action on G/H S ( ) log [ f ] = N tr ˆ [ ] ˆ ' [ ] {, tgtt f t G N N tt f f τ } dτ 4 J 0 ' ' symmetry breaking term + ε+ω/ - the Schwarzian derivative is defined by { f, τ } f ''' 3 f '' f ' f ' - SL(,R) invariance of the soft action at + b h f, τ =, τ if h( t) = SL(,R) ct + d { o } { f } ω ε ω/

Green s function DB, Altland, Kamenev 06 Q: What is the IF limit of Green s function? / 4 / 4 [ f '( τ ] [ ] ) f '( τ ) S0 G( τ τ ) m Df ( τ ) e / G / H f ( τ) f ( τ ) - average the mean field result over Goldstone s soft modes - orthogonality catastrophe is expected Phase representation f(τ ) [ f ] S 0 + N log N [ ϕ] ϕ ', ' J ( τ ) dτ f ( τ ) non-compact phase = ( ) e ϕ τ τ

Green s function DB, Altland, Kamenev 06 Q: What is the IF limit of Green s function? dα G( τ τ ) m Dϕ [ τ ] e e e α + G / H 0 τ ϕ ( τ ) ϕ ( τ ) S0 [ ϕ ] α exp[ ϕ ( τ )] dτ 4 4 τ Liouville potential Phase representation f(τ ) S 0 + N log N [ ϕ] ϕ ', ' J ( τ ) dτ f ( τ ) non-compact phase = ( ) e ϕ τ τ

Liouvillian QM Effective Hamiltonian ϕ k ˆ ϕ ϕ H = + αe, M ~ N ln N M J αe ϕ effective mass Green s function k + R ϕ + dα ϕ ϕ 4 τ k M 4 G( τ ) m 0 e k e k e 0 α 0 k

Green s function G ( ε ) / ε ε / - mean field Julia code N=4 ε J ~ J N ln N ~ M G( ε ) ( π ) ( i ) / sin 4 J M 0 + iε + k k Γ + k ( k M ) ε 4 dk

Green s function G ( ε ) / ε ε / - mean field Julia code N=4 Time domain: ε J ~ J N ln N ~ M G( τ ) / τ, τ < / ± 3/ J τ, τ > /

Zero-bias anomaly ε Yu. Nazarov, JETP 89; L.Levitov & A.Shytov, JETP 97 A.Kamenev & A.Andreev, PRB 99 I ε G ( ε ) + G ( ε ) T > < tunneling conductance S( t) + iε t G> ( ε ) = t e dt ~ ν 0 exp ln 8gπ ε S t = 8gπ ln ( ) t - electron s action of tunnelling under Coulomb barrier

Four-point Green s function G N τ, τ, τ, τ = χ ( τ ) χ ( τ ) χ ( τ ) χ ( τ ) ( ) 4 3 4 i i j 3 j 4 N i, j Time ordering: τ, τ 0 4 τ, τ τ ± ± 3 G ( τ ) τ, τ < / τ, τ > / 4 / 3/ ~ J N ln N single-partilce level spasing universal long-time decay

(p)-point Green s function p,0 = ( ) ( 0) G ( τ ) χ τ χ p α β α = β = p 3 τ 3 p p ϕ ( τ ) ϕ ( 0) 4 4 ( p 3) / 3/ p( τ ) S[ ϕ ] ~ τ, τ / G < e e > > universal long-time decay

Random mass Dirac model L. Balents & M.Fisher 97, D. Shelton & A. Tsvelik 98 Hˆ iu x m( x) = m( x) iu x m( x) m( x ') δ ( x x ') Quantum Majorana wire at criticality Statistics of zero-energy wave functions dis ψ ( x) ψ ( ) ~ 0 0 0 p dis L x 3/ universal (p-independent) decay

Holography principle: Outlook - SYK model is dual to nearly AdS gravity S. Sachdev 05; Kitaev 06; J. Maldacena, D. Stanford & Yang 06; K. Jensen 06; - The Schwarzian action naturaly (?) emerges in nearly AdS gravity Quantum chaos: out-of-time-order 4-point correlator χi ( 0) χ j ( t) χi ( 0 ) χ j ( t) ~ exp ( π β ) t β N maximal Lyapunov exponent Q: what happens at low T<?