ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Κυματοδήγηση



Σχετικά έγγραφα
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Κυματοδήγηση

Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

Εισαγωγή Στοιχεία Θεωρίας

ΟΠΤΙΚΕΣ ΙΝΕΣ, ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΙΝΩΝ

Διασπορά Ι ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

Περιεχόμενα διάλεξης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Τηλεπικοινωνίες οπτικών ινών

ΕΝΟΤΗΤΑ ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς.

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Πείραμα - 4 Σύζευξη Οπτικών Ινών με Laser

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών:

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

papost/

Πολύπλεξη μήκους κύματος Wavelength Division Multiplexing

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Εξέταση 17/2/2006

Λύσεις 2ης Ομάδας Ασκήσεων

Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή της

Διασπορά ΙI ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗ ΜΑΘΗΜΑ 1 Ο ΟΠΤΙΚΗ. Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ

Οπτικά Δίκτυα. Νόκας Γιώργος. Δρ.Ηλεκτρολόγος Μηχανικός & Τεχνολογιας Υπολογιστών

«Μικροοπτικές διατάξεις-ολοκληρωµένα οπτικά» EΙ Η ΟΠΤΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ

Τι είναι οι Οπτικές Ίνες

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

ΟΠΤΙΚΟΙ ΣΥΖΕΥΚΤΕΣ. ιαχωριστές Ισχύος Πολυπλέκτες/Αποπολυπλέκτες Μήκους Κύµατος (WDM) Πολλαπλές θύρες εισόδων-εξόδων

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

& Εφαρμογές. (εργαστήριο) Μικροκύματα

ΟΠΤΙΚΕΣ ΙΝΕΣ ΕΡΓΑΣΙΑ ΣΤΗ ΧΗΜΕΙΑ ΣΥΝΤΕΛΕΣΤΕΣ:ΝΙΚΟΛΑΣ ΚΙΜΠΙΖΗΣ ΝΙΚΟΛΑΣ ΠΑΞΙΝΟΣ

ΚΥΜΑΤΟ ΗΓΗΣΗ. «Μικροοπτικές διατάξεις-ολοκληρωµένα οπτικά»

T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km

1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

Εξελίξεις στις οπτικές επικοινωνίες

ΤΥΠΟΛΟΓΙΟ. (σ: εγκάρσια διατομή του στόχου, Κ: ο συντελεστής που εκφράζει το ποσοστό της ανακλώμενης ισχύος από το στόχο).

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

θ r θ i n 2 HMY 333 Φωτονική Διάλεξη 03 - Γεωμετρική Οπτική& Οπτικές Ίνες Εφαρμογή της γεωμετρικής οπτικής στις οπτικές ίνες

ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ. Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού

Περιεχόμενα διάλεξης

4η Διάλεξη Οπτικές ίνες

Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της

8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

Να αιτιολογήσετε την απάντησή σας. Μονάδες 5

Φίλιππος Φαρμάκης Επ. Καθηγητής. Δείκτης διάθλασης. Διάδοση του Η/Μ κύματος μέσα σε μέσο

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34

Περιοχές Ακτινοβολίας Κεραιών

Λύσεις 2ης Οµάδας Ασκήσεων

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ

Προκειμένου να δώσουμε τον ορισμό των μεγεθών που μας ζητούνται θεωρούμε έστω ισχύ P σε Watt ή mwatt και τάση V σε Volt ή mvolt:

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής

Περιγραφή των μέσων μετάδοσης

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

Κινητές επικοινωνίες. Κεφάλαιο 4 Διάδοση ραδιοκυμάτων

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης.

1. Μελέτη επίδρασης απωλειών 1.1. Γενικά για τις απώλειες, τα db και τα dbm

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Κεφάλαιο 3: Ερωτήσεις - Ασκήσεις. 1. Σε ποιες κατηγορίες διακρίνουμε τα μέσα μετάδοσης; 2. Ποια είναι τα ενσύρματα μέσα μετάδοσης:

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών

Τηλεφωνικό Σύστημα και Μετάδοση Δεδομένων Μάνος Ρουμελιώτης Πανεπιστήμιο Μακεδονίας

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

Μέσα Μετάδοσης. Επικοινωνίες Δεδομένων Μάθημα 7 ο

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί

Σύνθετη Άσκηση για Απώλειες και ιασπορά

Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ. = 500 nm όταν διαδίδεται στο κενό. Δίνονται: η ταχύτητα του φωτός στο κενό c 0

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ. a) Ομοαξονική γραμμή b) Γραμμή εδάφους c) Τρίκλωνη γραμμή d) Δισύρματη γραμμή (συνεστραμμένο καλώδιο)

max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά

Επαναληπτικό διαγώνισµα στα Κύµατα

Μέέσα µμετάάδοσης. 1. Τεχνολογία Δικτύων Επικοινωνιών, Βιβλίο Α τάξης 2 ου Κύκλου ΤΕΕ, ΥΠΕΠΘ

1η Οµάδα Ασκήσεων. Κόµβος Ν L 1 L 2 L 3. ηλεκτρονικής επεξεργασίας σήµατος km L N L N+1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

Λύσεις 1ης Ομάδας Ασκήσεων

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΥΠΕΡΗΧΟΓΡΑΦΙΑ

Κλασική Ηλεκτροδυναμική Ι

Transcript:

EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Κυματοδήγηση Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory

Διάρθρωση μαθήματος Η οπτική ίνα δομή μιας οπτικής ίνας διατομή οπτικής ίνας χαρακτηριστικά μεγέθη οπτικών ινών Κυματοδήγηση οπτικού σήματος θεωρία γεωμετρικής οπτικής εξισώσεις Maxwell κυματική εξίσωση και βήματα για την επίλυσή της ρυθμοί μετάδοσης ταξινόμηση ρυθμών μετάδοσης κυματοδηγούμενοι ρυθμοί στις ίνες γραφική επίλυση υβριδικών ρυθμών μετάδοσης

Διάρθρωση μαθήματος Είδη οπτικών ινών ίνα κλιμακωτού δείκτη διάδοσης ίνα βαθμιαίου δείκτη διάδοσης μονορυθμική ίνα Εξασθένηση στις οπτικές ίνες απώλειες οπτικής ίνας παράγοντες εξασθένησης ορισμός db Ασκήσεις εξασθένησης Βήματα κατασκευής οπτικών ινών

Οπτικό Σύστημα Μετάδοσης monitor Amp Fiber Add/Drop Tx Mux Demux Rx

Η οπτική ίνα κατεξοχήν ευρυζωνικός δίαυλος ~ εύρος ζώνης 5 THz μανδύας 5 ΤΗz πυρήνας εξωτερικό περίβλημα απώλεια μόλις 0, db/km σε εύρος ζώνης 5 THz χρήση πολλαπλών καναλιών με 50 GHz φασματική απόσταση ταχύτητα μεγαλύτερη από 10 Gb/s ανά κανάλι

σύγκριση μέσων μετάδοσης πληροφορίας ζεύγος καλωδίων - 10 Megabit/sec (Mb/s) - 1-10 χιλιόμετρα (km) ομοαξονικό καλώδιο - 100 Megabit/sec (Mb/s) - 1-10 χιλιόμετρα (km) ασύρματες ψηφιακές μικροκυματικές ζεύξεις - 100 Megabit/sec (Mb/s) - 10-100 χιλιόμετρα (km) ζεύξεις οπτικών ινών - 100 Megabit/sec (Mb/s) σε πολυρυθμικές ίνες - 10000+ Megabit/sec (Mb/s) σε μονορυθμικές ίνες 10-100-10000 χιλιόμετρα (km)

εμβέλεια και απώλειες ισχύος...μικρές απώλειες συνεπάγονται μεγαλύτερη εμβέλεια απόσβεση εύρος συχνοτήτων τυπική απόσβεση τυπική καθυστέρηση απόσταση αναμεταδότη ζεύγος καλωδίων (με φορτίο) ζεύγος καλωδίων (πολύζευγα καλώδια) ομοαξονικό καλώδιο οπτική ίνα Παράδειγμα: 0 db/km = παράγοντας εξασθένησης ίσος με 100 σε απόσταση 1 km 30 db/km = παράγοντας 1000 σε 1 km

δομή μιας οπτικής ίνας n 1 n Κυλινδρικός πυρήνας με δείκτη διάθλασης n 1 περιβάλλεται από μανδύα με οριακά μικρότερη τιμή δείκτη διάθλασης n (n <n 1 ). Η ίνα τοποθετείται σε προστατευτικό περίβλημα. Το φως συγκρατείται και κυματοδηγείται στον πυρήνα: μέσω ολικής ανάκλασης (Total Internal Reflection) στη διεπιφάνεια πυρήνα-μανδύα για πολύτροπη ίνα η μέσω εξισορρόπησης διάθλασης και περίθλασης στο πυρήνα για μονότροπη ίνα.

διατομή οπτικής ίνας μονότροπη ίνα πολύτροπη ίνα Διάμετρος: Μονότροπη ίνα: 8 μm πυρήνας, 15 μm μανδύας. Πολύτροπη ίνα: 50, 6.5 μm πυρήνας, 15 μm μανδύας.

χαρακτηριστικά μεγέθη οπτικών ινών Γεωμετρικά χαρακτηριστικά a = b = Ακτίνα πυρήνα Ακτίνα μανδύα είκτης διάθλασης n ταχύτητα φωτός n = ταχύτητα φωτος στο στο κενό μέσο n = ( ) 1 μ ε r r μr : σχετική μαγνητική διαπερατότητα εr : σχετική ηλεκτρική επιτρεπτότητα

χαρακτηριστικά μεγέθη οπτικών ινών Κανονικοποιημένη μεταβολή δεικτών διάθλασης Δ= n n 1 1 n Αριθμητικό άνοιγμα NA = n n 1 Εκφράζει ένα όριο για τη δυνατότητα συγκέντρωσης φωτός στον πυρήνα μιας οπτικής ίνας

κυματοδήγηση οπτικού σήματος μέσα στην ίνα Θεωρία γεωμετρικής οπτικής Εξισώσεις Maxwell Κυματική εξίσωση

θεωρία γεωμετρικής οπτικής θi θr Νόμος Snell n1 n θ = θ i r θt n sinθ = n 1 i sinθ t

θεωρία γεωμετρικής οπτικής ιαχωριστική επιφάνεια αέρα-πυρήνα n 0 sinθi = n1 sinθ r ιαχωριστική επιφάνεια πυρήνα-μανδύα n = 1 sinφ1 n sin φ Συνθήκη ολικής εσωτερικής ανάκλασης Αν φ > φ c = sin 1 n n 1

θεωρία γεωμετρικής οπτικής Μέγιστη επιτρεπτή γωνία διαθλώμενης ακτίνας θ π = max r φ c n n 0 1 Μέγιστη επιτρεπτή γωνία προσπίπτουσας ακτίνας sin cos θ φ max i c = = n 1 n 1 π sin φ c = 1 sin φ c sinθ i = n n = NA max 1

εξισώσεις Maxwell ur ur B Ε =, t ur uur r D H = J t ur D = p, ur B = 0 Βασικές σχέσεις, E H D B P Ένταση ηλεκτρικού πεδίου Ένταση μαγνητικού πεδίου Ηλεκτρική μετατόπιση Μαγνητική επαγωγή Ηλεκτρική Πόλωση D = ε E + P, 0 0 M Μαγνήτιση B = μ 0 H + M, ε 0 Διηλεκτρική επιτρεπτότητα κενού μ 0 Μαγνητική διαπερατότητα κενού

βήματα για την επίλυση των εξισώσεων Maxwell ΕΥΡΕΣΗ ΚΥΜΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ ΑΠΛΟΠΟΙΗΣΗ ΚΥΜΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ ΕΠΙΛΥΣΗ ΚΥΜΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ 1. Μέθοδος του χωρισμού των μεταβλητών. Επίλυση επιμέρους εξισώσεων 3. Εφαρμογή οριακών συνθηκών

Βήμα 1: εύρεση κυματικής εξίσωσης Η κυματική εξίσωση περιγράφει τη διάδοση του φωτός κατά μήκος των οπτικών ινών Απαλείφω το Β και το D από τις εξισώσεις Maxwell και καταλήγω στην κυματική εξίσωση 0 t P t E c 1 μ = Ε όπου 0 0 c 1 = ε μ

Βήμα : απλοποίηση κυματικής εξίσωσης Σχέση μεταξύ ηλεκτρικής πόλωσης P και ηλεκτρικού πεδίου Ε ur Prt (,) = ε + 0 χ (1) ur ( t t ) E( r, t ) dt + Γραμμικός όρος ε ur ur ur + (3) 0 χ ( t t1, t t, t t3) ME(, r t1) E(, r t) E(, r t3) dt1dtdt3 Μη Γραμμικός όρος

Βήμα : απλοποίηση κυματικής εξίσωσης ΠΑΡΑΔΟΧΗ 1 : Τα μη-γραμμικά φαινόμενα θεωρούνται αμελητέα στις ίνες πυριτίου ΑΠΟΤΕΛΕΣΜΑ : Ο μη-γραμμικός όρος στη σχέση μεταξύ P και Ε μηδενίζεται. Η κυματική εξίσωση απλοποιείται σε : Ε ω ( r, ω ) ε ( ω ) c Ε ( r, ω ) = 0 όπου ε α ( ω ) c ( ω ) = n ( ω ) + j ω

Βήμα : απλοποίηση κυματικής εξίσωσης ΠΑΡΑΔΟΧΗ : Οι απώλειες στις οπτικές ίνες είναι αμελητέες. ΑΠΟΤΕΛΕΣΜΑ : Ο όρος α(ω) της διηλεκτρικής σταθεράς ε φεύγει : ε ( ω ) = n ( ω ) ΠΑΡΑΔΟΧΗ 3 : Το n(ω) είναι ανεξάρτητο από τις χωρικές συντεταγμένες. ΑΠΟΤΕΛΕΣΜΑ : Η κυματική εξίσωση παίρνει την απλή μορφή : Ε + ω n ( ω ) c Ε = 0

Βήμα 3: επίλυση κυματικής εξίσωσης Κάθε λύση της κυματικής εξίσωσης που ικανοποιεί τις οριακές συνθήκες στη διεπιφάνεια μεταξύ πυρήνα και μανδύα ονομάζεται τρόπος ή ρυθμός διάδοσης Σε μια συχνότητα ω οι οπτικές ίνες μπορούν να κυματοδηγήσουν έναν πεπερασμένο αριθμό τρόπων διάδοσης Για την επίλυση της κυματικής εξίσωσης είναι πιο συνετό να εργαστούμε με κυλινδρικές συντεταγμένες ρ,φ,z. Η κυματική εξίσωση για τη συνιστώσα Εz είναι : E ρ z + 1 ρ E ρ z + 1 ρ E ϕ z + E z z + n k 0 E z = 0 Κατόπιν οι συνιστώσες Ερ και Εφ υπολογίζονται σε σχέση με το Εz

Βήμα 3: επίλυση κυματικής εξίσωσης 1. Μέθοδος του χωρισμού των μεταβλητών Για την επίλυση της κυματικής εξίσωσης χρησιμοποιείται η μέθοδος του χωρισμού των μεταβλητών Έτσι η κυματική εξίσωση μετατρέπεται σε τρεις ανεξάρτητες εξισώσεις Z ( z ) ) ( ) F ( z ),, ( E z ϕ Φ ρ = ϕ ρ 0 F ) m k n ( d df 1 d F d, 0 m d d, 0 Z dz Z d 0 = ρ β + ρ ρ + ρ = Φ + φ Φ = β + όπου m ένας ακέραιος αριθμός

Βήμα 3: επίλυση κυματικής εξίσωσης. Επίλυση επιμέρους εξισώσεων Οι δύο πρώτες εξισώσεις λύνονται απλά Z = exp( iβ z ), Φ = exp( im φ ) Η 3 η εξίσωση για το F(ρ) ικανοποιείται από τις συναρτήσεις Bessel. Έτσι : F ( ρ ) = A J [( n k β ) ρ )], ρ α, m 1 1 0 F ( ρ ) = C K [( β n k ) ρ )], ρ > α m 1 0 Άρα η γενική λύση για το Εz είναι : E z = AJ CK m m [(n 1 [( β k 0 β n ) k 1 0 ) ρ)] exp( jmϕ) exp( jβz); 1 ρ)] exp( jmϕ) exp( jβz); ρ ρ > α α

συναρτήσεις Bessel Κανονικές συναρτήσεις Bessel 1 ου είδους Τροποποιημένες συναρτήσεις Bessel ου είδους

Βήμα 3: επίλυση κυματικής εξίσωσης 3. Εφαρμογή οριακών συνθηκών Οριακές συνθήκες: Οι εφαπτομενικές συνιστώσες Ez, Eφ, Ηz και Ηφ πρέπει να είναι συνεχείς στη διεπιφάνεια μεταξύ πυρήνα και μανδύα (ρ=α). Εφαρμογή οριακών συνθηκών οδηγεί σε χαρακτηριστική εξίσωση : J m( u) K m( w) n1 J m( u) K m( w) 1 1 n1 1 1 + + m = + + uj m() u wkm( w) nuj m() u wkm( w) u w nu w όπου u ( ) 1 = a n 1 k β και ( ) 1 0 w = a β n k 0 Για κάθε τιμή του ακεραίου m η χαρακτηριστική εξίσωση έχει ένα πεπερασμένο πλήθος λύσεων. Κάθε τέτοια λύση χαρακτηρίζεται από μια σταθερά διάδοσης βmn και αντιστοιχεί σε έναν τρόπο (ή ρυθμό) που η ίνα μπορεί να κυματοδηγήσει

ταξινόμηση ρυθμών μετάδοσης Εγκάρσιοι ρυθμοί Οι ρυθμοί μετάδοσης ταξινομούνται σε ΗΕmn, όπου κυριαρχεί το διαμήκες ΗΠ και σε ΕΗmn στους οποίους κυριαρχεί το διαμήκες ΜΠ Στην ειδική περίπτωση όπου m=0 οι τρόποι αυτοί αντιστοιχούν στους εγκάρσιους ηλεκτρικούς ΤΕ0n και στους εγκάρσιους μαγνητικούς ΤΜ0n ρυθμούς διάδοσης. ΤΕ01 ΤΜ01

ταξινόμηση ρυθμών μετάδοσης Υβριδικοί ρυθμοί Όταν το m 0, οι ρυθμοί που κυματοδηγούνται στις ίνες δεν είναι ούτε ΤΕ ούτε ΤΜ ενώ όλες οι πεδιακές συνιστώσες τους είναι μη μηδενικές. Οι ρυθμοί αυτοί ονομάζονται υβριδικοί ρυθμοί μετάδοσης.

ταξινόμηση ρυθμών μετάδοσης Γραμμικά πολωμένοι ρυθμοί Οι ίνες με μικρή διαφορά στο δείκτη διάθλασης μεταξύ πυρήνα και μανδύα κυματοδηγούν ρυθμούς προσεγγιστικά ανάλογους με εγκάρσια ΗΜ κύματα. LP01 LP11 LP1 LP0

κανονικοποιημένη συχνότητα Ορίζουμε την κανονικοποιημένη συχνότητα V από τη σχέση : V = u + w V = k α n n 0 1 Η κανονικοποιημένη συχνότητα V εμπεριέχει πληροφορία που αφορά τα δομικά στοιχεία της ίνας (διάμετρος, δείκτης διάθλασης πυρήνα και μανδύα). Όταν για την κανονοκοποιημένη συχνότητα ισχύει V<Vc (Vc=.405) τότε έχουμε διάδοση μόνο του θεμελιώδους ρυθμού ΗΕ11 Από τη σχέση Vc=.405 μπορούμε να βρούμε το μήκος κύματος αποκοπής μιας ίνας λc. Μια ίνα κυματοδηγεί μόνο το θεμελιώδη ρυθμό μόνο όταν λ> λc.

κυματοδηγούμενοι ρυθμοί στις ίνες

γραφική επίλυση ρυθμών μετάδοσης Σε προηγούμενη διαφάνεια οδηγηθήκαμε με επίλυση της κυματικής εξίσωσης στη χαρακτηριστική εξίσωση : J m( u) K m( w) n1 J m( u) K m( w) 1 1 n1 1 1 + + m = + + uj m() u wkm( w) nuj m() u wkm( w) u w nu w Για την περίπτωση των εγκαρσίων ρυθμών ΤΕ0n και ΤΜ0n η χαρακτηριστική εξίσωση γίνεται : J J 1 0 ( u) ( u) = ( w) ( w) Ενώ για την περίπτωση των υβριδικών ρυθμών ΗΕmn γίνεται : u w K K Jm( u) w Km( w) J1( u) w K1( w) = = Jm 1( u) u Km 1( w) J0( u) u K0( w) 1 0 HE 1n

γραφική επίλυση εγκαρσίων ρυθμών μετάδοσης Εγκάρσιοι ρυθμοί : J1() u u K1( w) = J () u w K ( w) 0 0 Υβριδικοί ρυθμοί : J1() u w K1( w) = J () u u K ( w) 0 0 Σημείο αποκοπής των ΤΕ0n και ΤΜ0n ρυθμών δίνεται από την ασύμπτωτο της καμπύλης

γραφική επίλυση υβριδικών ρυθμών μετάδοσης Εγκάρσιοι ρυθμοί : J1() u u K1( w) = J () u w K ( w) 0 0 Υβριδικοί ρυθμοί : J1() u w K1( w) = J () u u K ( w) 0 0 J 1(u) Σημείο αποκοπής των ΗΕ1n ρυθμών αντιστοιχεί σε κάθε μηδενισμό της J 0(u) καμπύλης

ίνα κλιμακωτού δείκτη διάδοσης Ακτινική μεταβολή δείκτη διάθλασης n( ρ) = n n 1 ρ < ρ ιάμετρος πυρήνα 60 μm ιάμετρος μανδύα 15 μm Χαρακτηριστικά λειτουργίας: Αριθμός τρόπων διάδοσης α α Μεγάλο αριθμητικό άνοιγμα και μεγάλη διάμετρο πυρήνα Σύνδεση με πηγές με μεγάλο βαθμό ασυμφωνίας (LED) εν υπάρχει σύζευξη ισχύος Μεγάλη διασπορά τρόπων διάδοσης Μικρό διαθέσιμο εύρος ζώνης M = V

Βαθμιαία μεταβολή δείκτη διάθλασης α ρ α ρ < α ρ Δ = ρ x 1 n 1 n ) n( Χαρακτηριστικά λειτουργίας: Αριθμός τρόπων διάδοσης Περιορισμός διατροπικής διασποράς Εκμετάλλευση εύρους ζώνης α + α = V M ίνα βαθμιαίου δείκτη διάδοσης

μονορυθμική ίνα ιάμετρος πυρήνα 8 μm ιάμετρος μανδύα 15 μm Χαρακτηριστικά λειτουργίας: Σημαντική εκμετάλλευση εύρους ζώνης Σημαντική μείωση διασποράς\ Σύνδεση μόνο με μονοχρωματικές πηγές (Laser diodes) Κυματοδήγηση μόνο του ΗΕ11 ρυθμού Καμία σύζευξη ισχύος

ορισμός db Ο λόγος δύο μεγεθών μπορεί να εκφραστεί σε decibel (db) R (db) = 10 log 10 R π.χ. υπολογισμός απωλειών ισχύος κατά τη μετάδοση σήματος μέσα από μία γραμμή μεταφοράς μήκους L α (db) = 10 log 10 (P z=l /P z=0 ) όπου P z=l η ισχύς του σήματος μετά από μήκος L της γραμμής μεταφοράς, και P z=0 η ισχύς σε μήκος z=0.

γιατί σε db? H χρήση των μονάδων db είναι ευρέως διαδεδομένη στις τηλεπικοινωνίες, καθώς: επιτρέπουν τον υπολογισμό απωλειών/κέρδους μέσω απλών πράξεων πρόσθεσης/αφαίρεσης αντί για πολλαπλασιασμό/διαίρεση που θα χρειάζονταν αν χρησιμοποιούνταν γραμμικές μονάδες απωλειών/κέρδους η λογαριθμική συνάρτηση του db επιτρέπει την έκφραση μεγάλων διαφορών στις στάθμες ισχύος και τη σύγκρισή τους με πιο εύχρηστους αριθμούς

παράδειγμα χρήσης db θεωρούμε ενισχυτή με κέρδος G(σε γραμμική κλίμακα): P out (mw) = G P in (mw) ορίζουμε το κέρδος G σε db ως: G( db) = 10log10 P P out in ( mw ) ( mw ) αν π.χ. G=1000, τότε G(dB)=30 db Αν το σύστημα έχει απώλειες, τότε G(dB) είναι αρνητικό, π.χ. σήμα ισχύος 1 mw εισέρχεται σε ίνα, διανύει 100 km και εξέρχεται με ισχύ 1 μw, τότε συνολική απώλεια: 10log10(10-6 W /10-3 W) = -30 db

ορισμός dbm Στις τηλεπικοινωνίες χρησιμοποιούμε λογαριθμική έκφραση της απόλυτης τιμής της ισχύος σε κάθε σημείο της ζεύξης. Αυτή η έκφραση παρέχεται μέσω: της μονάδας μέτρησης απόλυτης ισχύος dbm, η οποία αναπαριστά τη στάθμη του σήματος σε db με αναφορά την τιμή ισχύος 1mW. P( dbm) = 10log10 P( mw 1 mw ) Η μονάδα dbm είναι χρήσιμη λόγω της άμεσης συσχέτισής της με τη μονάδα db. άρα 1 mw είναι ίσο με 0 dbm στην κλίμακα decibel ενώ 1 μw είναι ίσο με -30 dbm

παράδειγμα χρήσης dbm και db από πολλαπλασιασμό σε γραμμική κλίμακα......σε πρόσθεση στη λογαριθμική κλίμακα

ιδανική γραμμή μετάδοσης σε μία ιδανική γραμμή μεταφοράς (ιδανική οπτική ίνα) ό,τι εισέρχεται στην ίνα θα έπρεπε να εξέρχεται αναλλοίωτο τι θα συνεπάγονταν αυτό για τη συνάρτηση μεταφοράς της γραμμής μεταφοράς? (χρησιμοποιείστε μετ/μό Fourier)

απώλειες οπτικής ίνας στην πραγματικότητα καμία γραμμή μεταφοράς δεν είναι ιδανική στην ίνα το σήμα αλλοιώνεται λόγω απόσβεσης ίνας (απώλειες οπτικής ισχύος) διασποράς (αλλοίωση σχήματος παλμού) οι απώλειες οπτικής ισχύος δεν επηρεάζουν τη μορφή (σχήμα) του παλμού. Μειώνουν μόνο την οπτική ισχύ του

απώλειες γραμμής μετάδοσης οπτικός πομπός χαρακτηρίζεται από μία μέγιστη τιμή ισχύος την οποία μπορεί να παράγει, έστω P S οπτικός δέκτης χαρακτηρίζεται από μία ελάχιστη τιμή ισχύος την οποία μπορεί να αναγνωρίσει, έστω P R (ονομάζεται και ευαισθησία δέκτη, sensitivity) Tx οπτικός πομπός P S (mw) οπτική ίνα μέγιστη επιτρεπτή συνολική απώλεια οπτικής ζεύξης α link : α l ink = P P S R Rx οπτικός δέκτης P R (mw) (ευαισθησία δέκτη)

εξασθένηση οπτικής ίνας σε μία οπτική ίνα η εξασθένηση μετράται ανά μονάδα μήκους της ίνας, άρα όσο περισσότερο μήκος ίνας τόσο μεγαλύτερη είναι η συνολική απώλεια η εξασθένηση που εισάγει η οπτική ίνα προκαλεί εκθετική μείωση του φωτός κατά τη διάδοσή του: P( z) = P(0) e Az P(z): ισχύς σε μήκος z της ίνας P(0): ισχύς σήματος στην είσοδο της ίνας Α: συντελεστής εξασθένησης της ίνας (μονάδα 1/m)

εξασθένηση οπτικής ίνας άρα σε διάδοση μέσα από οπτική ίνα μήκους L σε km, η εξασθένηση σε db είναι: P(0) 10 log10 = 10 log10 P( L) ( AL e ) Με χρήση της log 10 x = lnx/ln10, προκύπτει: P(0) 10 log10 = 10 P( L) l 10 = 4, 343 AL = al { ( AL ln e )/ ln10} = { 10 / n } AL α είναι ο συντελεστής εξασθένησης της ίνας σε db/km

παράγοντες εξασθένησης Απορρόφηση: εξαρτάται από το υλικό και την καθαρότητά του ενδογενής απορρόφηση από άτομα υλικού της ίνας εξωγενής απορρόφηση από άτομα ανεπιθύμητων προσμίξεων απορρόφηση από ατέλειες ατόμων γυαλιού Σκέδαση: λόγω ανομοιογένειας υλικού σκέδαση Rayleigh σκέδαση Mie Ακτινοβολία: λόγω ασυνεχειών, π.χ. καμπύλωση ίνας, ή κατασκευαστικών ατελειών καμπυλότητα αυξάνει το ποσοστό διαφυγέντος πεδίου

παράγοντες εξασθένησης Υπέρυθρη απορρόφηση (Απορρόφηση φωνονίων- Ταλάντωση πλέγματος) Απορρόφηση ΟΗ - (40 db/km για 1ppm στα 1390 nm) Υπεριώδης απορρόφηση (ηλεκτρονικές αλλαγές μεταξύ ζώνης αγωγιμότητας και σθένους) Ατέλειες κυματοδηγού Σκέδαση Rayleigh (μικροαλλαγές του δείκτη διάθλασης)

απώλειες κατά την καμπύλωση οριακή ακτίνα κάμψης είναι συνήθως 3-4 cm για SMF ίνα

απώλειες ίνας & αντιστάθμιση ισχύος εξασθένηση οπτικής ισχύος Ρ για διάδοση σε οπτική ίνα μήκους z και απώλειας a: P(z)=P (z=0) e -Αz απώλειας ασε db/km: α 10 P( z = L) = 10 4, 343 L log P( z = 0) αντιστάθμιση απωλειών ζεύξης με περιοδική τοποθέτηση οπτικών ενισχυτών Α z=0 οπτική ίνα L (km), α (db/km) in G out οπτικός ενισχυτής

απώλειες ίνας & αντιστάθμιση ισχύος απώλεια ίνας απώλεια: ομοαξονικό: εύρος κέρδος κέρδος ενισχυτή G(dB): = 10 log G 10 P P out in χρήση ενισχυτή με κέρδος 0 db σχεδόν κάθε 100 km, όπου συνολική απώλεια ίνας~0db

ασκήσεις Άσκηση 1: Σε ένα πείραμα μέτρησης του συντελεστή εξασθένησης μίας οπτικής ίνας, η οπτική ισχύς μίας πηγής εισάγεται στην ίνα και μετράται στην έξοδο αυτής μετά από μήκος L. Αν L=0 km, τότε η λαμβανόμενη ισχύς είναι -3 dbm. Σε ίδιες συνθήκες, αν L= 40 km αντί για 0 km, τότε η λαμβανόμενη ισχύς είναι -9 dbm. α) ποια η τιμή του συντελεστή εξασθένησης της ίνας σε db/km? β) αν οι απώλειες σύνδεσης πηγής-ίνας είναι 3 db, οι απώλειες σύνδεσης ίνας-δέκτη είναι 1 db, και δεν υπάρχουν άλλες απώλειες,ποια είναι η ισχύς εξόδου της πηγής σε mw?

ασκήσεις Λύση : α) έστω α db/km η τιμή του συντελεστή εξασθένησης της ίνας και P S η ισχύς εξόδου της πηγής σε dbm και για τις δύο περιπτώσεις μήκους ίνας. Τότε η λαμβανόμενη ισχύς είναι: P R = P S α L, άρα ΔP R = ΔP S α ΔL = α ΔL α = -ΔP R /ΔL επομένως, ΔP R = -9 dbm (-3 dbm) = -6 db και ΔL = 40 km 0 km = 0 km Άρα α = - (-6 db)/ 0 km 0,3 db/km

ασκήσεις Λύση : β) έστω, επίσης α s σε db οι απώλειες σύνδεσης πηγήςίνας, και αντίστοιχα α r οι απώλειες σύνδεσης ίνας-δέκτη. Τότε η λαμβανόμενη ισχύς σε dbm είναι: P R = P S α L α s - α r P S = P R + α L + α s + α r, άρα P S = -3 dbm + 6 db + 3 db + 1 db = - 13 dbm P (dbm) = 10log{P(mW)/1mW} {P(mW)/1mW} = 10 P (dbm)/10 P = 0,05 mw

ασκήσεις Άσκηση : - Οπτικό σύστημα μετάδοσης χρησιμοποιεί οπτικό πομπό ισχύος 1 mw, συνδεδεμένο με οπτική ίνα με συντελεστή απωλειών 0,5 db/km. Στο τερματικό άκρο του συστήματος χρησιμοποιείται οπτικός δέκτης με ευαισθησία -16 dbm. α) Ποιό το μέγιστο μήκος της ζεύξης; Οι απώλειες των συνδέσεων πομπού-ίνας και ίνας-δέκτη είναι 1 db η καθεμία. β) Στη συνέχεια, θεωρείστε διαθέσιμο έναν EDFA που παρέχει κέρδος G = 3 db για ισχύ σήματος στην είσοδό του ίση με 10 dbm. Υπολογίστε ξανά το μέγιστο μήκος της ζεύξης αν χρησιμοποιηθεί ο ενισχυτής.

ασκήσεις Λύση : συνδέσεις Tx οπτικός πομπός οπτική ίνα Rx οπτικός δέκτης α) η ισχύς που φτάνει στο δέκτη είναι: P R (dbm) = P S (dbm) 1dB - α L 1dB, όπου P S (dbm) η ισχύς του πομπού σε dbm, δηλ. 1 mw = 0 dbm -16dBm = 0dBm 1dB 0,5 L 1dB 0,5 L = 14dBm L = 8 km

ασκήσεις συνδέσεις Tx οπτικός πομπός L 1 P in,edfa EDFA β) P in,edfa (dbm) = P S (dbm) 1dB - α L 1 0,5 L 1 = 0dBm 1dB (-10dBm) L 1 = 18 km G οπτικός δέκτης P out,edfa (dbm) = P in,edfa (dbm) + G P out,edfa = 13 dbm P R (dbm) = P out,edfa (dbm) - α L 1dB 0,5 L = 13 dbm -1dB (- 16 dbm) = 8 dbm L = 56 km άρα μέγιστη απόσταση L = L 1 + L = 74 km L P out,edfa Rx

Βήματα κατασκευής οπτικών ινών Κατασκευή προφόρμας-preform fabrication Τροποποιημένη Χημική Εναπόθεση Αερίων (Modified Chemical Vapor Deposition-MCVD) Χημική Εναπόθεση Αερίων με Ενεργοποίηση πλάσματος (Plasma Activated Chemical Vapor Deposition-PACVD) Εξωτερική Εναπόθεση Αερίων (Outside Vapor Deposition-OVD) Αξονική Εναπόθεση Αερίων (Vapor Arial Deposition- VAD) Κατασκευή Ίνας και Επικάλυψη-Fiber Drawing and Coating

Τροποποιημένη Χημική Εναπόθεση Αερίων Προετοιμασία του κλίβανου Εναπόθεση σε κυλινδρικό θάλαμο θέρμανσης ίνας πυριτίου Υψηλής καθαρότητας εναπόθεση μανδύα Εναπόθεση Πυρήνα Πολυριθμική εναπόθεση 30-70 επιπέδων Μονορυθμική- Ένα ή λιγοστά επίπεδα εναποτίθενται Δείκτης διάθλασης ρυθμίζεται από σύνθεση επιπέδων και πάχος πυρήνα

Τροποποιημένη Χημική Εναπόθεση Αερίων Προετοιμασία του κλίβανου Αντίδραση μορίων πυρήνα (οξείδωση) Μοριακή ανάπτυξη και σύμπτυξη Εναπόθεση μέσω θερμο-φόρεσης (κλιμακωτή μεταβολή θερμοκρασίας) Εδραίωση εναποθετιμένων μορίων και σύντηξη

Κατασκευή Σε θερμοκρασία 000 C-3000 C το παραγόμενο κυλινδρικό μείγμα πυριτίου (προ-φόρμα) τεντώνεται και παίρνει τελική μορφή 60 cm 100 cm μπορεί να δώσει 100-00 Km οπτικής ίνας

Κατασκευή Ίνας-Μετατροπή προφόρμας σε ίνα (Ι) Διοχέτευση προ-φόρμας ευθυγράμμιση υψηλής ακρίβειας Λιώσιμο Γυαλιού σε 000 C Ο ρυθμός μετατροπής της προφόρμας σε ίνα εξαρτάται από το ρυθμό διοχέτευσης της προ-φόρμας και το ρυθμό διοχέτευσης στον τόρνο(capstan) Η διάμετρος της Ίνας ελέγχεται από υπολογιστή υψηλής ταχύτητας σχεδίασης ο οπoίος ελέγχεται από ανατροφοδοτούμενο σήμα το οποίο χρησιμοποιείται για επίβλεψη

Κατασκευή Ίνας-Μετατροπή προφόρμας σε ίνα (ΙΙ) Απόκλιση στη διάμετρο πυρήνα < 0.1 μm και ελλειπτικότητα < 0.5 μm In line εφαρμογή επικάλυψης συμπαρασύρεται το αποθηκευμένο υλικό του περιβλήματος μαζί με το υλικό του πυρήνα προσδίδοντας ευελιξία στην οπτική ίνα. Μάζεμα ίνας με μικρή γωνία καμπής και ανεξάρτητα από την τρέχουσα ταχύτητα σχεδίασης