Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της"

Transcript

1 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της Άσκηση 1 Σε µία απλή ζεύξη χρησιµοποιείται ίνα µήκους 60 µε συντελεστή εξασθένησης 0. / και συντελεστή χρωµατικής διασποράς ίσο µε D 0 /(nm ). Η ισχύς εκποµπής είναι 4 mw. Στη σύζευξη του ποµπού µε την ίνα εµφανίζεται 1 απωλειών. Στη σύζευξη της ίνας µε το δέκτη εµφανίζεται επίσης 1 απωλειών. Για ρυθµό 1 Gbit/s, η ευαισθησία του δέκτη είναι 7 m. Οι µεταδόσεις γίνονται στα 10 nm µε ρυθµό Gbit/s. 1) Ποιος είναι ο περιοριστικός παράγοντας (οι απώλειες ή η διασπορά ή και οι δύο) στη ζεύξη και γιατί; Η µέγιστη επιτρεπόµενη χρονική διεύρυνση κάθε NRZ παλµού είναι ίση µε το % της διάρκειας του bit. ) ίνεται ίνα αντιστάθµισης της διασποράς (DCF) για να τοποθετηθεί πριν το δέκτη µε µήκος L 1 1. Ποιοι πρέπει να είναι οι συντελεστές χρωµατικής διασποράς και εξασθένισης της DCF ώστε να αντισταθµίζεται πλήρως η διασπορά και να έχουµε τουλάχιστον περιθώριο στο δέκτη; Στη σύζευξη του ποµπού µε την ίνα εµφανίζεται 1 απωλειών, όπως και στη σύζευξη της ίνας µε το δέκτη. Το ποσοστό σύζευξης των δύο ινών είναι 7.43%. Βοηθητικά, δίνεται και το επόµενο σχήµα Τ 60 1 R Υποδείξεις Το οπτικό εύρος ζώνης θεωρείται διπλάσιο του ρυθµού µετάδοσης. Η σχέση µεταξύ του οπτικού εύρους ζώνης στην περιοχή των συχνοτήτων και στην περιοχή των µηκών κύµατος είναι η εξής: f ( c λ ) λ, όπου c η ταχύτητα του φωτός στο κενό και η οποία ισούται µε c m/s. Απαντήσεις 1) Επειδή οι µεταδόσεις γίνονται µε ρυθµό Gbit/s, η ευαισθησία γι αυτό το ρυθµό θα είναι: Gbit s P 7m+ log 7m + 17m 1Gbit s Η ισχύς εκποµπής θα είναι: 4mW mw mw P log log log 3m 6m 1mW 1mW 1mW Οπότε, από το ισοζύγιο ισχύος θα έχουµε ότι:

2 4mW P log 14 6m 14 m 1mW Επειδή, όµως, m > 17 m, αυτό σηµαίνει ότι είµαστε πάνω από την ευαισθησία του δέκτη και η ζεύξη δεν περιορίζεται από τις απώλειες. Όσον αφορά την επίδραση της διασποράς, πρώτα από όλα, θα πρέπει να υπολογιστεί το εύρος ζώνης στην περιοχή των µηκών κύµατος. Αυτό θα είναι ίσο µε: λ λ R 10 nm 1 s 1 m m λ f c c m 1 s m 3 1 nm 1 nm 0. 16nm Θεωρώντας ότι η µέγιστη επιτρεπόµενη χρονική διεύρυνση κάθε NRZ παλµού είναι ίση µε (1/4) bit, όπου bit είναι η διάρκεια του bit, σχετικά µε την επίδραση της διασποράς θα πρέπει να ισχύει ότι: D> 0 D λ L nm R nm 4 1 s Αλλά το προηγούµενο προφανώς δεν ισχύει. Άρα, η επίδραση της διασποράς είναι ο περιοριστικός παράγοντας. ) Ο συντελεστής διασποράς της DCF (έστω D 1 ) θα προκύψει από το γεγονός ότι αντισταθµίζεται πλήρως η διασπορά. Οπότε: D L λ+ D L λ 0 D L λ+ D L λ 0 D L+ D L D L D nm 1 D 1 D1 0 4 D1 0 1 nm nm Αντίστοιχα, ο συντελεστής εξασθένησης (έστω a 1 ) θα προκύψει από το ισοζύγιο ισχύος. Αρχικά, θα υπολογίσουµε την επίδραση του ποσοστού σύζευξης ως απώλεια. ηλαδή, log 1 0 Οπότε από το ισοζύγιο ισχύος παίρνουµε: P log a1 1 PR + 0 6m a m+ 1 6 m a1 1 1m a1 1 6 a1 a Τονίζεται ότι πήραµε και όχι στο ισοζύγιο ισχύος, επειδή στην εκφώνηση αναφέρεται ότι έχουµε τουλάχιστον περιθώριο στο δέκτη. Εποµένως, ο συντελεστής χρωµατικής διασποράς είναι που πρέπει να έχει η ίνα αντιστάθµισης της διασποράς είναι D 1 0 /(nm ) και ο συντελεστής εξασθένισης θα είναι a /. Άσκηση Στην παρακάτω ζεύξη, µία τυπική µονότροπη ίνα (SMF) ακολουθείται από ένα ενισχυτή, ενώ µία ίνα που αντισταθµίζει τη διασπορά (DCF) µεσολαβεί µεταξύ του ενισχυτή και του δέκτη. Η µονότροπη ίνα έχει µήκος L 1, συντελεστή εξασθένησης α 1 0. / και συντελεστή χρωµατικής διασποράς ίσο µε D 1 0 /(nm ). Η ίνα που αντισταθµίζει τη διασπορά παρουσιάζει συντελεστή εξασθένησης ίσο µε α 0.3 / και συντελεστή χρωµατικής διασποράς D 1 /(nm ). Ο

3 ενισχυτής έχει µέγιστο κέρδος ίσο µε G max 30 και ισχύ εξόδου κόρου P out,sat 17 m. Για ρυθµό 1 Gbit/s, η ευαισθησία του δέκτη είναι 30 m. Οι µεταδόσεις γίνονται στα 10 nm και σε ρυθµό Gbit/s. 1) Να βρεθεί το µήκος της ίνας αντιστάθµισης της διασποράς, αν η ολική επίδραση της διασποράς µετά τη DCF, δηλαδή η χρονική διεύρυνση κάθε παλµού στο δέκτη είναι ίση µε το 1/ της διάρκειας του bit για το ρυθµό στον οποίο γίνεται η µετάδοση, ενώ ταυτόχρονα η σωρευµένη διασπορά στο τέλος της ζεύξης είναι θετική. ) Να βρεθεί η ισχύς εκποµπής σε mw, δεδοµένου ότι ο ενισχυτής αξιοποιείται πλήρως ως προς το κέρδος του, δηλαδή λειτουργεί στη γραµµική περιοχή του. Στη σύνδεση ποµπού-ίνας εισάγεται 1 απωλειών. Όµοια 1 απωλειών εισάγεται στη σύνδεση ίνας-ενισχυτή και 1 εισάγεται στη σύνδεση ενισχυτή-ίνας. Στη σύνδεση ίνας-δέκτη εισάγεται και πάλι 1 απωλειών. Επιπλέον, στο δέκτη απαιτείται περιθώριο ισχύος ίσο µε 1. 3) Αν αλλάξει η θέση των SMF και DCF (αντιµετάθεση των θέσεων των SMF και DCF) διατηρώντας όλες τις υπόλοιπες παραµέτρους (µήκη, απώλειες σύζευξης, επίπεδα ισχύος εκποµπής, απαιτούµενο περιθώριο ισχύος στο δέκτη) ως έχουν, τι θα συµβεί ως προς τη διασπορά και τι ως προς τον ισολογισµό ισχύος; Ποια λύση προτείνετε; Οπτικός ενισχυτής L 1 L R Υποδείξεις Ίδιες µε της προηγούµενης άσκησης. Σηµείωση!!! Με την προσθήκη της φράσης «ενώ ταυτόχρονα η σωρευµένη διασπορά στο τέλος της ζεύξης είναι θετική», εξασφαλίζεται ότι υπάρχει µία λύση για τη σχέση D1 λ+ D L λ και δε χρειάζεται να ελεγχθούν οι δύο περιπτώσεις D1 λ+ D L λ και D1 λ+ D L λ, αλλά µόνο η πρώτη. Αυτό δεν είχε αναφερθεί µε σαφήνεια στο µάθηµα, διότι κατά η στιγµή της εκφώνησης δεν είχε δοθεί η έννοια της σωρευµένης διασποράς. Απαντήσεις 1) Όσον αφορά την επίδραση της διασποράς, αρχικά, θα πρέπει να υπολογιστεί το εύρος ζώνης στην περιοχή των µηκών κύµατος. Αυτό θα είναι ίσο µε: 10 nm 1 λ λ R λ f c c m 1 s s 1 m m m 3 1 nm 1 nm 0. 16nm Εποµένως, µε θετική σωρευµένη διασπορά στο τέλος της ζεύξης, θα έχουµε ότι:

4 D1 λ + D λ L D1 λ + D λ L nm nm L nm nm 1 s nm nm L L nm nm nm nm nm L L 337. L L. 3 1 Το µήκος της ίνας αντιστάθµισης της διασποράς είναι L.3. ) Αρχικά, θα πρέπει να υπολογιστεί η ευαισθησία για ρυθµό Gbit/s. Γι αυτό το ρυθµό θα Gbit s είναι ίση µε PR 30m+ log 30m+ 0m. Από το 1Gbit s ισοζύγιο ισχύος προκύπτει ότι: P PR + 1 P m+ 1 P m P 1. 74m P,mW mw 1. 4mW Άρα, η ισχύς εκποµπής είναι P,mW 1.4 mw. 3) Με την αντιµετάθεση των θέσεων των SMF και DCF, η επίδραση της διασποράς δε θα αλλάξει, διότι το φαινόµενο της διασποράς είναι σωρευτικό. Αυτό αποδεικνύεται και από την σχέση D λ L + D1 λ που είναι ίση µε τη σχέση D1 λ + D λ L. Ως προς το ισοζύγιο ισχύος, η ισχύς στην είσοδο του ενισχυτή µπορεί να υπολογιστεί ως εξής: P m m Η ισχύς εισόδου κόρου του ενισχυτή είναι ίση µε P in,sat P out,sat G 17 m m. Εποµένως, αυτό σηµαίνει ότι ο ενισχυτής βρίσκεται στον κόρο, επειδή 11 m > 13 m. Άρα, µετά τον ενισχυτή και µέχρι το δέκτη θα έχουµε: Pout,sat m 36 1m εδοµένου, όµως, ότι η ευαισθησία του δέκτη για ρυθµό Gbit/s είναι 0 m (και γίνεται 1 m το ελάχιστο επιτρεπόµενο λαµβανόµενο επίπεδο ισχύος αν ληφθεί υπόψη και το απαιτούµενο περιθώριο ισχύος), αυτό σηµαίνει ότι η ζεύξη δε λειτουργεί, αφού ο δέκτης λαµβάνει χαµηλότερο επίπεδο ισχύος από το ελάχιστο που απαιτείται για να γίνει αξιόπιστη φώραση. Η προτεινόµενη λύση είναι η µείωση του ρυθµού µετάδοσης, διότι µε αυτό τον τρόπο θα µειωθεί η ευαισθησία σαν επίπεδο ισχύος. Για παράδειγµα, για ρυθµό Gbit/s και διατηρώντας όλες τις παραµέτρους ως έχουν, η νέα ευαισθησία θα είναι ίση µε Gbit s PR 0m+ log 0m 3 3m Gbit s Αλλά 1 m > 3 m + 1, οπότε η ζεύξη θα λειτουργεί και θα υπερκαλύπτεται και το απαιτούµενο περιθώριο ισχύος στο δέκτη.

5 Ωστόσο, η άσκηση δεν ολοκληρώθηκε. Χρειάζεται για το νέο ρυθµό να ελεγχθεί η επίδραση της διασποράς για το νέο ρυθµό, µέσω της σύγκρισης µεταξύ της χρονικής διεύρυνσης των παλµών που προκύπτει µε το νέο ρυθµό και της µέγιστης επιτρεπόµενης χρονικής διεύρυνσης για το νέο ρυθµό. Προκαταβολικά, αναφέρεται ότι ο έλεγχος αυτός είναι τυπικός. Αυτό συµβαίνει διότι αφού λειτουργεί η ζεύξη για το µεγαλύτερο ρυθµό, σίγουρα θα λειτουργεί και για το µικρότερο ρυθµό. Αυτό µπορεί να εξηγηθεί µε βάση το γεγονός ότι µε την πτώση του ρυθµού µειώνεται το εύρος ζώνης και µεγαλώνει η µέγιστη επιτρεπόµενη χρονική διεύρυνση των παλµών. Και πάλι, όµως, µπορούµε να το διαπιστώσουµε επιβεβαιώνοντας της λειτουργία για το νέο ρυθµό. Το εύρος ζώνης για το νέο ρυθµό (R R/, µε R Gbit/s) θα είναι: R' R λ λ R' 0 nm R λ G f ' λ 0. 16nm 0. 0nm R Gbit s c c m s Περνώντας στην επίδραση της διασποράς, θα ελέγξουµε αν ισχύει η ακόλουθη ανίσωση: D λ G L+ D1 λ G Εποµένως, κάνοντας πράξεις βασιζόµενοι στα δεδοµένα που έχουµε: D λ G L + D1 λ G ( D L + D1 ) λ G λ 1 ( D L + D1 ) ( D L + D1 ) λ 4 R 4 R ΘΕΤΙΚΗ ΣΩΡΕΥΜΕΝΗ ΙΑΣΠΟΡΑ ( D L + D L ) λ 4 R 4 4 R 1 R Η προηγούµενη σχέση προφανώς ισχύει. Ο λόγος που ακολουθήθηκε αυτός ο τρόπος είναι για να φανεί ότι µε την πτώση του ρυθµού πέφτουµε στη µισή χρονική διεύρυνση σε απόλυτο νούµερο από την επίδραση της διασποράς για το νέο ρυθµό σε σχέση µε την αντίστοιχη χρονική διεύρυνση στα Gbit/s. Ταυτόχρονα, η µέγιστη επιτρεπόµενη χρονική διεύρυνση γίνεται διπλάσια για τα Gbit/s σε σχέση µε τα Gbit/s. Εποµένως, για το µικρότερο ρυθµό καλυπτόµαστε και από την επίδραση των απωλειών και από την επίδραση της διασποράς. Ένα σχόλιο ακόµα, αφορά την εύρεση του ρυθµού για τον οποίο οριακά καλυπτόµαστε όσον αφορά την επίδραση των απωλειών. Με βάση τα δεδοµένα της άσκησης, για το νέο ρυθµό θα χρειαζόµασταν ευαισθησία R' PR' 30m+ log 1Gbit s Θεωρώντας ότι και πάλι στο δέκτη φθάνει ένα επίπεδο ισχύος ίσο µε 1 m, τότε, µε ταυτόχρονη απαίτηση για 1 ανοχών στο δέκτη, θα έχουµε:

6 R' R' 1m 30m+ log + 1 log 1Gbit s 1Gbit s P R' R' 1 log 1Gbit s 6 R' R' log 6 3 1Gbit s 1Gbit s 64 R' Gbit s 1 Gbit s R' Gbit s 6. 4 Gbit s Με το νέο ρυθµό των 6.4 Gbit/s, θα καλυπτόµασταν οριακά ως προς τις απώλειες και σίγουρα θα καλυπτόµασταν και ως προς την επίδραση της διασποράς, αφού: D λ6. 4G L + D1 λ6. 4G ( D L + D1 ) λ6. 4G 1 ( D L + D1 L 1) λ ( D L + D1 ) λ 4 R R ΘΕΤΙΚΗ ΣΩΡΕΥΜΕΝΗ ΙΑΣΠΟΡΑ 4 R R 4 R R R Αν αυξανόταν το επίπεδο της ισχύος εκποµπής, δε θα λυνόταν το πρόβληµα, επειδή ο ενισχυτής βρίσκεται ήδη στον κόρο και µε µία πιθανή αύξηση του επιπέδου της ισχύος εκποµπής, ο ενισχυτής θα παρέµενε στον κόρο. Τέλος, σηµειώνεται ότι και η µείωση του ρυθµού µετάδοσης δεν είναι πολύ καλή λύση, διότι αυτό σηµαίνει ότι πέφτει η προσφερόµενη ποιότητα στην υπηρεσία που παρέχεται, αλλά στην προκειµένη περίπτωση δεν υπάρχει καλύτερη λύση. Σχετικά µε το χάρτη χρωµατικής διασποράς, θα έχουµε τα ακόλουθα δύο διαγράµµατα των συντελεστών χρωµατικής διασποράς συναρτήσει του µήκους και της σωρευµένης διασποράς συναρτήσει του µήκους, αντίστοιχα. Αναφέρεται ότι η σωρευµένη διασπορά των 3600 /nm πριν τον ενισχυτή (µετά τη διάδοση κατά µήκος του τµήµατος L 1 ) προκύπτει ως εξής: D nm nm Η σωρευµένη διασπορά στο τέλος της ζεύξης προκύπτει ως: D1 + D L nm nm nm nm nm Το ίδιο ακριβώς αποτέλεσµα θα προέκυπτε αν παίρναµε την τελική χρονική διεύρυνση και τη διαιρούσαµε µε το εύρος ζώνης του σήµατος που µεταδόθηκε, δηλαδή 0 1 λ 1 s 0. 16nm 0. 16nm που είναι αναµενόµενο, επειδή της ζεύξης D 1 + D L µε θετική σωρευµένη διασπορά στο τέλος λ nm

7 /(nm ) Μήκος () 1 Σωρευµένη διασπορά /(nm) Μήκος () Τονίζεται ότι όταν µελετούµε την επίδραση της σωρευµένης διασποράς κατά µήκος ζεύξεων, δεν παίρνουµε απόλυτες τιµές. ηλαδή όταν έχουµε d a /nm σωρευµένης διασποράς στο τέλος µίας ζεύξης τριών ινών µε µήκη L 1, L και L 3 η καθεµία, και συντελεστές χρωµατικής διασποράς D 1, D και D 3 η καθεµία αντίστοιχα, τότε θα έχουµε D 1 L 1 + D L + D 3 L 3 d a /nm Ανεξάρτητα από τον αν d a > 0 ή d a < 0. Αυτό γενικεύεται για οποιοδήποτε πλήθος ινών. Όταν γίνονται οι µεταδόσεις για ένα συγκεκριµένο ρυθµό µετάδοσης και είναι γνωστό ότι έχουµε χρονική διεύρυνση κάθε NRZ παλµού στο δέκτη ίση µε t spr (t spr > 0), τότε πρέπει να µας δοθεί αν έχουµε θετική ή αρνητική σωρευµένη διασπορά. Για θετική σωρευµένη διασπορά, θα θέταµε (παρόµοια µε το πρώτο ερώτηµα αυτής της άσκησης) D 1 L 1 λ + D L λ + D 3 L 3 λ t spr Αντίθετα για αρνητική σωρευµένη διασπορά, θα θέταµε D 1 L 1 λ + D L λ + D 3 L 3 λ t spr Αν δε δοθεί κάποια πληροφορία θετικής ή αρνητική σωρευµένης διασποράς και έχουµε κάποιο άγνωστο µήκος ή άγνωστο συντελεστή χρωµατικής διασποράς, τότε θα ελέγχαµε και τις δύο περιπτώσεις. Τέλος, όταν µας ζητείται ο έλεγχος της λειτουργίας µίας ζεύξης λαµβάνοντας υπόψιν την επίδραση της χρωµατικής διασποράς, όταν η µέγιστη επιτρεπόµενη χρονική διεύρυνση κάθε NRZ παλµού είναι ίση µε το 1/4 της διάρκειας του bit, τότε αυτό που πράττουµε είναι να κάνουµε τον έλεγχο έχοντας συµπεριλάβει οπωσδήποτε και τις απόλυτες τιµές, δηλαδή D 1 L 1 λ + D L λ + D 3 L 3 λ Τ bit /4 Σε µία τέτοια περίπτωση, όλες οι παράµετροι θα είναι γνωστές και το µόνο που θα µένει είναι να καταλήξουµε σε κάτι που θα ισχύει ή όχι, ώστε να απαντήσουµε ότι µε βάση της επίδραση της χρωµατικής διασποράς, η ζεύξη λειτουργεί ή όχι, αντίστοιχα.

Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή της

Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή της ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Δ. Συβρίδης Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή

Διαβάστε περισσότερα

Σύνθετη Άσκηση για Απώλειες και ιασπορά

Σύνθετη Άσκηση για Απώλειες και ιασπορά ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής. Συβρίδης Σύνθετη Άσκηση για Απώλειες και ιασπορά

Διαβάστε περισσότερα

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η Στη ζεύξη που φαίνεται

Διαβάστε περισσότερα

T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km

T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η ίνεται η

Διαβάστε περισσότερα

Λύσεις 2ης Οµάδας Ασκήσεων

Λύσεις 2ης Οµάδας Ασκήσεων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης Λύσεις 2ης Οµάδας Ασκήσεων Άσκηση 1η Στην οπτική

Διαβάστε περισσότερα

Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά

Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΡΙΑΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΥΑ ΟΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά Άσκηση 1

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή

1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης η Οµάδα Ασκήσεων Άσκηση η Εγκατεστηµένη ζεύξη

Διαβάστε περισσότερα

Λύσεις 2ης Ομάδας Ασκήσεων

Λύσεις 2ης Ομάδας Ασκήσεων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης Λύσεις ης Ομάδας Ασκήσεων Άσκηση

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή

1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΡΙΑΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΥΑ ΟΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης 1η Οµάδα Ασκήσεων Άσκηση 1η Εγκατεστηµένη ζεύξη συνολικού

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. Κόµβος Ν L 1 L 2 L 3. ηλεκτρονικής επεξεργασίας σήµατος km L N L N+1

1η Οµάδα Ασκήσεων. Κόµβος Ν L 1 L 2 L 3. ηλεκτρονικής επεξεργασίας σήµατος km L N L N+1 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση η Έστω ότι θέλουµε να καλύψουµε

Διαβάστε περισσότερα

1. Μελέτη επίδρασης απωλειών 1.1. Γενικά για τις απώλειες, τα db και τα dbm

1. Μελέτη επίδρασης απωλειών 1.1. Γενικά για τις απώλειες, τα db και τα dbm ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής. Συβρίδης Οι δύο βασικοί άξονες εξέτασης οπτικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης 1η Ομάδα Ασκήσεων Άσκηση 1η Έστω

Διαβάστε περισσότερα

Λύσεις 1ης Ομάδας Ασκήσεων

Λύσεις 1ης Ομάδας Ασκήσεων ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης Λύσεις ης Ομάδας Ασκήσεων Άσκηση

Διαβάστε περισσότερα

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Διαβάστε περισσότερα

Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς.

Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς. 0. ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΑΘΜΗΣ ΣΗΜΑΤΟΣ 0.. Γενικά Στα τηλεπικοινωνιακά συστήματα, η μέτρηση στάθμης σήματος περιλαμβάνει, ουσιαστικά, τη μέτρηση της ισχύος ή της τάσης (ρεύματος) ενός σήματος σε διάφορα «κρίσιμα»

Διαβάστε περισσότερα

Εξελίξεις στις οπτικές επικοινωνίες

Εξελίξεις στις οπτικές επικοινωνίες Ινοοπτικές ζεύξεις Εξελίξεις στις οπτικές επικοινωνίες Δεκαετία 1980: μήκος κύματος φέροντος στα 850nm (1o παράθυρο εξασθένησης) Δεκαετία 1990: μήκος κύματος φέροντος στα 1310nm (2o παράθυρο εξασθένησης

Διαβάστε περισσότερα

Πολύπλεξη μήκους κύματος Wavelength Division Multiplexing

Πολύπλεξη μήκους κύματος Wavelength Division Multiplexing Πολύπλεξη μήκους κύματος Wavelength Division Multiplexing Η πολυπλεξία μήκους κύματος (WDM) επιτρέπει την παράλληλη μετάδοση πολλών υψίρυθμων ψηφιακών σημάτων (TDM) δια μέσου του ίδιου ζεύγους οπτικών

Διαβάστε περισσότερα

Γραµµικά και Μη Γραµµικά Συστήµατα Μετάδοσης

Γραµµικά και Μη Γραµµικά Συστήµατα Μετάδοσης Γραµµικά και Μη Γραµµικά Συστήµατα Μετάδοσης Τα περισσότερα δίκτυα σήµερα είναι γραµµικά µε κωδικοποίηση γραµµής NRZ Τα µη γραµµικά συστήµατα στηρίζονται στα σολιτόνια µε κωδικοποίηση RZ. Οπτικό σύστηµα

Διαβάστε περισσότερα

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Εξέταση 17/2/2006

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Εξέταση 17/2/2006 Θέμα (γ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Εξέταση 7//6 Καλείστε να σχεδιάσετε σύστημα μετάδοσης σημείο-προς-σημείο μήκους 6 k. Το σύστημα χρησιμοποιεί κοινή μονότροπη ίνα (SMF με διασπορά β ps /k

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά

Διαβάστε περισσότερα

NRZ Non return to zero: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό Bandwidth)

NRZ Non return to zero: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό Bandwidth) ιαµόρφωση Αποδιαµόρφωση ) Μορφές Σηµάτων NRZ No rtur to zro: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό adwidth) RZ Rtur to zro : Ανάµεσα σε δύο άσσους µεσολαβεί ένα κενό διάστηµα (Μεγαλύτερο

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής

Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής 2 η ΕΡΓΑΣΙΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Διδάσκων: Δρ. Βασίλης Κώτσος Λαμία 2013 Περιεχόμενα 1. Οπτική πηγή 1.1 Χαρακτηριστικές καμπύλες

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Προκειμένου να δώσουμε τον ορισμό των μεγεθών που μας ζητούνται θεωρούμε έστω ισχύ P σε Watt ή mwatt και τάση V σε Volt ή mvolt:

Προκειμένου να δώσουμε τον ορισμό των μεγεθών που μας ζητούνται θεωρούμε έστω ισχύ P σε Watt ή mwatt και τάση V σε Volt ή mvolt: 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση 1 Δώστε τον ορισμό των dbw,dbm,dbμv. Υπολογίστε την τιμή του σήματος στην έξοδο αθροιστή, όταν στην είσοδο έχουμε: Α) W + W Β) dbw + W Γ) dbw + dbw Δ) dbw + dbm Προκειμένου να

Διαβάστε περισσότερα

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση

Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ακήεις για έκτες PIN και έκτες µε Οπτική Προενίχυη

Διαβάστε περισσότερα

ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ ΚΑΙ ΣΤΑ ΟΠΤΙΚΑ ΦΙΛΤΡΑ

ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ ΚΑΙ ΣΤΑ ΟΠΤΙΚΑ ΦΙΛΤΡΑ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ

Διαβάστε περισσότερα

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά ΙI Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗΣ ΟΜΑ ΑΣ ΑΣΚΗΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗΣ ΟΜΑ ΑΣ ΑΣΚΗΣΕΩΝ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗΣ ΟΜΑ ΑΣ ΑΣΚΗΣΕΩΝ Άκηη ιαθέτουµε

Διαβάστε περισσότερα

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά Ι Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση μαθήματος

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ LINKSIM

ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ LINKSIM ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕ

Διαβάστε περισσότερα

Διασπορά Ι ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

Διασπορά Ι ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά Ι Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση μαθήματος

Διαβάστε περισσότερα

WDM over POF ΤΕΧΝΟΛΟΓΙΑ ΣΤΟ ΔΙΚΤΥΟ ΜΕΤΑΔΟΣΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ

WDM over POF ΤΕΧΝΟΛΟΓΙΑ ΣΤΟ ΔΙΚΤΥΟ ΜΕΤΑΔΟΣΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ Π.Μ.Σ. ΗΛΕΚΤΡΟΝΙΚΗ & ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΙΔΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ WDM over POF ΤΕΧΝΟΛΟΓΙΑ ΣΤΟ ΔΙΚΤΥΟ ΜΕΤΑΔΟΣΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ Μπανιάς Κωνσταντίνος ΑΜ.55 1 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΩΝ POF Χαμηλό κόστος.

Διαβάστε περισσότερα

Απαντήσεις σε απορίες

Απαντήσεις σε απορίες Ερώτηση 1 Αν έχουµε ένα πολυώνυµο G(x) π.χ. 10010101 αυτό είναι βαθµού k=7 και έχει k+1=8 bits και γράφεται : x^7 +x^4 +x^2 +1. Τι συµβαίνει στην περίπτωση που το G(x) έχει x^k=0, π.χ. το 01010101. Αυτό

Διαβάστε περισσότερα

8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 8.1. Γενικά Για την εκτέλεση μετρήσεων σε ινοοπτικές ζεύξεις απαιτούνται: Μία ή περισσότερες οπτικές πηγές. Η πηγή ή οι πηγές μπορεί να είναι: Δίοδοι εκπομπής (LEDs).

Διαβάστε περισσότερα

Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών:

Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών: 1 ΔΟΜΗ ΟΠΤΙΚΗΣ ΙΝΑΣ Κάθε οπτική ίνα αποτελείται από τρία μέρη: Την κεντρική γυάλινη κυλινδρική ίνα, που ονομάζεται πυρήνας(core core) και είναι το τμήμα στο οποίο διαδίδεται το φως. Την επικάλυψη (απλή

Διαβάστε περισσότερα

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec Τµήµα Μηχανικών Υπολογιστών, Τηλεπικοινωνιών και ικτύων ΗΥ 44: Ασύρµατες Επικοινωνίες Εαρινό Εξάµηνο -3 ιδάσκων: Λέανδρος Τασιούλας η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Θεωρήστε ένα κυψελωτό σύστηµα, στο οποίο ισχύει το

Διαβάστε περισσότερα

Γενικά χαρακτηριστικά ανάδρασης

Γενικά χαρακτηριστικά ανάδρασης Ενισχυτικές Διατάξεις 1 Γενικά χαρακτηριστικά ανάδρασης Κάθε ηλεκτρονικό κύκλωµα, για το οποίο η δυναµική συµπεριφορά καθορίζεται από κάποιας µορφή σχέση µεταξύ εισόδου (διέγερση) και εξόδου (απόκριση),

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ για το µάθηµα των ΟΡΥΦΟΡΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΣΚΗΣΕΙΣ για το µάθηµα των ΟΡΥΦΟΡΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ για το µάθηµα των ΟΡΥΦΟΡΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΗ Η βαθµίδα εισόδου του επίγειου σταθµού ενός συστήµατος δορυφορικών επικοινωνιών που εξυπηρετεί υπηρεσίες εύρους 50ΚΗz φαίνεται στο σχήµα που ακολουθεί:

Διαβάστε περισσότερα

Ενδεικτικές Ερωτήσεις

Ενδεικτικές Ερωτήσεις Ενδεικτικές Ερωτήσεις Ενισχυτές Πηγές Laser έκτες (Αρχείο FiltersAmplifsLasers2016.pdf) Φίλτρα Fabry-Perot και φίλτρα φραγµάτων Bragg Αρχή λειτουργίας, σχηµατική απεικόνιση, εξίσωση που συσχετίζει τα µήκη

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ Οπτικές Ίνες Οπτικά δίκτυα

ΤΕΙ ΗΠΕΙΡΟΥ Οπτικές Ίνες Οπτικά δίκτυα ΟπτικέςΊνες Οπτικάδίκτυα Μήκος κύµατος - φάσµα (Wavelength and Spectra) Μήκοςκύµατος (Wavelength): Μια ακτίνα φωτός µπορεί να χαρακτηριστεί µε βάση το µήκος κύµατος (wavelength) Ανάλογο στοιχείο µε την

Διαβάστε περισσότερα

//009 Βασικές εργασίες του επιπέδου ζεύξης ηµιουργία πλαισίων Έλεγχος σφαλµάτων Έλεγχος ροής Σχέση µεταξύ πακέτων (επιπέδου δικτύου) και πλαισίων (επι

//009 Βασικές εργασίες του επιπέδου ζεύξης ηµιουργία πλαισίων Έλεγχος σφαλµάτων Έλεγχος ροής Σχέση µεταξύ πακέτων (επιπέδου δικτύου) και πλαισίων (επι //009 Επίπεδο ζεύξης δεδοµένων Εφαρµογών Παρουσίασης Συνόδου ιακίνησης ικτύου Ζεύξης Ζεύξης Φυσικό Τι κάνει το επίπεδο ζεύξης Χρησιµοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) µεταφορά

Διαβάστε περισσότερα

Διασπορά ΙI ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

Διασπορά ΙI ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά ΙI Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση

Διαβάστε περισσότερα

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο. 1ος ΤΡΟΠΟΣ ΛΥΣΗΣ

ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο. 1ος ΤΡΟΠΟΣ ΛΥΣΗΣ ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο Άσκηση-1 (ΔΙΑΣΠΟΡΑ) Δίνεται πολύτροπη ίνα με συντελεστή διασποράς δ(λ)=-15 ps/nmkm και δείκτες διάθλασης n 1 =1,48 και n =1,47. Να βρεθεί το μέγιστο μήκος ζεύξης

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές

Κινητές επικοινωνίες. Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές Κινητές επικοινωνίες Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές 1 Γενικά Σχεδιαστική παράμετρος 2 Μέτρηση ισχύος Για λόγους ευκολίας, λογαριθμίζουμε την ισχύ και έχουμε τις ακόλουθες μονάδες μέτρησης: Κατά συνέπεια:

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τη διαχείριση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΛΕΙΤΟΥΡΓΙΑ ΚΑΙ ΑΠΟ ΟΣΗ ΨΗΦΙΑΚΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εξετάζονται οι βασικοί συµβιβασµοί (δυνατότητες ανταλλαγής) µεταξύ των εξής σχεδιαστικών παραµέτρων ψηφιακών τηλεπικοινωνιακών συστηµάτων: Εύρους

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΟΠΤΙΚΩΝ ΖΕΥΞΕΩΝ

ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΟΠΤΙΚΩΝ ΖΕΥΞΕΩΝ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΟΠΤΙΚΩΝ

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο

Διαβάστε περισσότερα

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδοτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:

Διαβάστε περισσότερα

Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία

Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία Τρόποι διάδοσης ηλεκτρομαγνητικών κυμάτων Στο κενό, τα ηλεκτρομαγνητικά κύματα διαδίδονται έχοντας το ηλεκτρικό πεδίο Ε και το

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 09/01/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 09/01/12 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΚΠ. ΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΝΙΚΗΣ ΠΑΙΔΙΑΣ/Γ ΛΥΚΙΟΥ ΣΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΡΟΜΗΝΙΑ: 09/0/ ΛΥΣΙΣ ΘΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις -

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ «ΛΥΣΕΙΣ ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ» ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ Α.Μ.:585 ΑΣΚΗΣΗ Θεωρούµε ότι στην επιφάνεια µίας θαλάσσιας περιοχής από κάποιο βιοµηχανικό ατύχηµα εναποτέθηκαν

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Δίνονται: Ερώτημα 1: (1.α) (1.β) (1.γ) (1.δ) Ερώτημα 2: (2.α) (2.β) (2.γ)

ΑΣΚΗΣΗ 1 Δίνονται: Ερώτημα 1: (1.α) (1.β) (1.γ) (1.δ) Ερώτημα 2: (2.α) (2.β) (2.γ) ΑΣΚΗΣΗ 1 Ένα δίκτυο κινητής τηλεφωνίας τεχνολογίας GSM εγκαθίσταται και λειτουργεί σε μια μικρή γεωγραφική περιοχή. Το δίκτυο αυτό αποτελείται από 4 ψηφιακά κέντρα, όπου κάθε Ψηφιακό Κέντρο (MSC) ελέγχει

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου Κινητές επικοινωνίες Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου 1 Σχεδίαση συστήματος Η εταιρία μας θέλει να καλύψει με κυψελωτό σύστημα τηλεφωνίας μία πόλη επιφάνειας 20000 km 2 (συχνότητα

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 4: Κοντή γραμμή μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα

Διαβάστε περισσότερα

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών 1.1 Βασικές μετατροπές Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών Όταν μας ενδιαφέρει ο υπολογισμός μεγεθών σχετικών με στάθμες ισχύος εκπεμπόμενων σημάτων, γίνεται χρήση και της λογαριθμικής κλίμακας με

Διαβάστε περισσότερα

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ - διαφάνεια 1 - Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ιαµορφωτής Ηλεκτρικό Σήµα Ποµπός Οπτικό Σήµα Οπτική Ίνα διαµορφωτής: διαµορφώνει τη φέρουσα συχνότητα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Συνδυαστικές Ασκήσεις Διασπορά-μη γραμμικά φαινόμενα Ηρακλής Αβραμόπουλος Photonics Communications

Διαβάστε περισσότερα

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά.

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 53 ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. 5. Άσκηση 5 5.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την

Διαβάστε περισσότερα

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Στο δίκτυο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 0 ΜΑΪΟΥ 013 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό

Διαβάστε περισσότερα

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδoτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα.

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. 1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. Για τους δείκτες διάθλασης n 1 και n 2 ισχύει: n 2 = (11 / 10)

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΜΑ Α Α Στις προτάσεις από Α1 µέχρι και Α5, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Στις παρακάτω ερωτήσεις -, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Ενότητα 2. Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης

Ενότητα 2. Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης Ενότητα 2 Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης Εισαγωγή στις βασικές έννοιες των δικτύων υπολογιστών ικτυακός Καταµερισµός Εργασίας Το υπόδειγµα του Internet Εξοπλισµός ικτύου Κατηγοριοποίηση ικτύων

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

1ο Κριτήριο Αξιολόγησης ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ-ΑΝΑΚΛΑΣΗ, ΙΑΘΛΑΣΗ- ΕΙΚΤΗΣ ΙΑΘΛΑΣΗΣ

1ο Κριτήριο Αξιολόγησης ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ-ΑΝΑΚΛΑΣΗ, ΙΑΘΛΑΣΗ- ΕΙΚΤΗΣ ΙΑΘΛΑΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ 1. Φύση του φωτός - Ανάκλαση, διάθλαση - είκτης διάθλασης 2. ιασκεδασµός - Ανάλυση του φωτός από πρίσµα 3. Επαναληπτικό στο 1ο κεφάλαιο 4. Επαναληπτικό στο 1ο κεφάλαιο 11. 12. 1ο Κριτήριο

Διαβάστε περισσότερα

ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ. ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz.

ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ. ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz. ΕΞΑΣΘΕΝΗΣΗ ΑΠΟ ΒΛΑΣΤΗΣΗ ΣΤΗ ΖΩΝΗ ΣΥΧΝΟΤΗΤΩΝ 30 MHz ΕΩΣ 60 GHz. Εισαγωγή Έχει παρατηρηθεί, ότι η εξασθένηση των ραδιοκυµάτων και µικροκυµάτων, που προκύπτει από βλάστηση, µπορεί σε ορισµένες περιπτώσεις

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α Α.1. Η συχνότητα ταλάντωσης µιας πηγής, που παράγει εγκάρσιο αρµονικό κύµα σε ένα ελαστικό µέσο, διπλασιάζεται χωρίς

Διαβάστε περισσότερα

ίκτυα Οπτικών Επικοινωνιών

ίκτυα Οπτικών Επικοινωνιών ίκτυα Οπτικών Επικοινωνιών Μεταπτυχιακό Ρ/Η ιάδοση σηµάτων σε οπτικές ίνες Φαινόµενα και τρόποι αντιµετώπισής τους Αντώνης Μπόγρης Προεπισκόπηση παρουσίασης Εισαγωγή Γραµµικά φαινόµενα Χρωµατική ιασπορά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Εργαστήριο ίκτυα Η/Υ ΙΙΙ

Εργαστήριο ίκτυα Η/Υ ΙΙΙ Εργαστήριο ίκτυα Η/Υ ΙΙΙ ρ. Κ. Σ. Χειλάς Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι : (α) η εµβάθυνση σε θέµατα λειτουργίας δικτύων καθώς και (β) η εξοικείωση των σπουδαστών µε ένα από τα συχνότερα

Διαβάστε περισσότερα

Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Μάθηµα 1ο Θέµα Εισαγωγή στις τηλεπικοινωνίες 1. Τι ορίζουµε µε τον όρο τηλεπικοινωνία; 2. Ποιες οι βασικότερες ανταλλασσόµενες πληροφορίες, ανάλογα µε τη φύση και το χαρακτήρα τους; 3. Τι αποκαλούµε ποµπό

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της

ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 3 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Σε δύο σηµεία της ίδιας ζήτησης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 6: Μακριά γραμμή μεταφοράς -Τετράπολα Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα